How Much Water Does A Landscape Really Need?

2012 Landscape Industry Show Workshop

Dennis Pittenger

Area Environmental Horticulturist University of California Cooperative Extension

dennis.pittenger@ucr.edu

www.ucanr.org/sites/UrbanHort Phone

Phone: 951.827.3320

- B.S. & M.S. Horticulture, Ohio State Univ.
- 30 years experience
 - Landscape & urban horticulture
 - Education and applied research programs
 - Landscape irrigation mgt., plant water needs, weatherbased irrigation control
 - Presentations, workshops, publications, Web

Los Angeles County/U.C. Riverside Center for Landscape & Urban Horticulture

CEU Credit

- This 2-hour seminar is worth 2 CEUs
- Reminder to keep documentation of your participation
- Check with CLCA if any questions

University of California Agriculture and Natural Resources

Los Angeles County/U.C. Riverside Center for Landscape & Urban Horticulture

HEALTHY FOOD SYSTEMS . HEALTHY ENVIRONMENTS . HEALTHY COMMUNITIES . HEALTHY CALIFORNIANS

Useful Reference Materials

- U.C. Center for Landscape and Urban Horticulture
 - www.ucanr.org/sites/UrbanHort, click Landscape Water
 Management tab in left column
- 2011. Irrigation Association's Landscape Irrigation Auditor Book, 2nd Ed. Chapter 7 and Appendix D
- Landscape Irrigation Mgt. Program LIMP
 - http://biomet.ucdavis.edu/irrigation-scheduling.html
- 2000. A Guide to Estimating Irrigation Water Needs of Landscape Plantings in California – the landscape coefficient method and WUCOLS III
 - Web search "WUCOLS"

University of California Agriculture and Natural Resources

Los Angeles County/U.C. Riverside Center for Landscape & Urban Horticulture

HEALTHY FOOD SYSTEMS . HEALTHY ENVIRONMENTS . HEALTHY COMMUNITIES . HEALTHY CALIFORNIANS

Goals

- Understand why & how plants use water
- Discover how plant water needs are estimated scientifically
- Learn how to estimate meaningful landscape coefficients based on research
- Understand effective irrigation scheduling

Los Angeles County/U.C. Riverside Center for Landscape & Urban Horticulture

HEALTHY FOOD SYSTEMS . HEALTHY ENVIRONMENTS . HEALTHY COMMUNITIES . HEALTHY CALIFORNIANS

Landscapes require irrigation when.....

performance expectations exceed plant adaptation to precipitation

Demand for Climate-based Landscape Water Need Estimates

- Water budgets & tiered pricing
- State & local conservation ordinances
- 'Green' building & development standards
- Smart irrigation controllers

Climate-Based Water Budgets

Maximum Allowable Water Allocation (or Need) MAWA = ETo × PF or Kc × LA × 0.62 gallons = inches × % × sq. ft. × conversion

Why & How Plants Use Water

Why & How Plants Use Water

- Maintain structure
- Photosynthesis & physiological processes
- Cooling (transpiration)
- Transports minerals & nutrients

Why & How Plants Use Water

• SPAC:

Soil-Plant-Air-Continuum

Creates pull

Landscape Water Use

Evaporation + Transpiration = *Evapotranspiration (ET)*

Evapotranspiration (ET)

Evapotranspiration = Evaporation + Transpiration

Factors Affecting Plant Water Use & ET

- Sunlight
- Temperature
- Humidity
- Wind
- Plant species
- Plant size
- Site characteristics

Plant Responses to Water Stress

- Stomata may/may not close
- Photosynthesis & transpiration reduced
- Growth & leaf area reduced
- Premature leaf drop
- Predisposed to disease & insect pests

Estimating Plant Water Use

- Climate & Weather
- Plant Physiology

Estimating Plant Water Needs

- Define a reference for plant water use that is a function of climate
- Compare amount of water needed to maintain given plant with reference amount
- Express plant water need as % of reference
 - Plant Factor (PF or Kp)
 - Crop Coefficient (Kc)

Reference Evapotranspiration (ETo)

An estimate of environmental water demand of a planted area

- Climate-based reference of plant water use
- Inches/day
- Data available real-time & historical tables

Reference ET (ETo)

- ETo = water use of 6-in. tall well-watered cool-season turf
- Calculated by formula using weather data
 - sunlight, temperature, RH, wind

Reference ET (ETo)

CIMIS

(California Irrigation Management Information System) http://www.cimis.water.ca.gov/cimis

Reference ET Alternatives

Estimating Plant Water Use

- Calculate ETo
- Quantify plant's water use (ETcrop)
- ETc ÷ ETo =

Crop Coefficient (Kc)

 Assume standard conditions and plant responses

Optimum growth or yield

Unlimited soil water

The Big Leaf

Uninterrupted air flow

ETo & Estimating Plant Water Use

Synchrony of ETo & other plants is assumed

Reference water loss (ETo) in/day

ETo & crop water use are synchronized

Reference water loss (ETo) in/day

Assumption

1 ...

Visual courtesy of R. Kjelgren, Utah St. Univ.

11

Violated in landscapes & urban settings

Landscape Plants Water *Use* ≠ Water *Need*

May use more water than they need to meet expectations

Estimating Plant Water Needs

• Kc = Crop Coefficient

= amt. of water needed for *optimum* growth or crop yield

• PF = Plant Factor

= amt. of water needed for acceptable
growth, level of appearance, function

Kc & PF Estimates for Landscape Plants

- Turfgrass Kc's developed
- No true Kc's for landscape plants
- Few reliable PFs for landscape plants

Turfgrass Irrigation Needs

- Cool-season Kc:
 80% ETo annual avg.
 (60% ETo minimum)
- Warm-season Kc:
 60% ETo annual avg.
 (35% ETo minimum)

Estimating Landscape Plant Water Needs

Estimating Landscape Plant Water Needs

Estimating Landscape Plant Water Needs

Field Studies on Landscape Plant Water Needs

- 79 plant species to date
 - 33 trees, 12 groundcovers, 34 shrubs
- Locations no summer rainfall
 - Inland valley 28 trees
 - South Coastal 28 shrubs, 9 groundcovers, 5 trees
 - Low Desert 6 shrubs, 3 groundcovers

Our Research Approach

- Minimum water needed for acceptable performance/appearance (%ETo = PF)
- Apply multiple % ETo treatments
- Irrigate when:

Σ(daily ETo × trtmt. %) = depletion target

- Evaluate plant performance
 - Aesthetics
 - Growth

Groundcover Irrigation Study

Groundcover Species

- Baccharis pilularis 'Twin Peaks'
- Drosanthemum hispidum
- Vinca major
- Osteospermum fruticosum
- *Hedera helix* 'Needlepoint'
- Potentilla tabernaemontanii

Gazania Overall Quality Ratings 1990-1991

Potentilla Overall Quality Ratings 1990-1991

Vinca Overall Quality Ratings 1990-1991

Hedera Overall Quality Ratings 1990-1991

Baccharis Overall Quality Ratings 1990-1991

Drosanthemum Overall Quality 1990-1991

Apply 30% of Accumulated ETo

Treatments Applied:

- 3 days per week
- 1 day per week
- 1 day every 2 weeks
- 1 day every 4 weeks

Phormium tenax Aesthetic Quality Ratings

Phormium tenax

Raphiolepis indica Aesthetic Quality Ratings

Arbutus unedo Aesthetic Quality Ratings

Ligustrum japonicum Aesthetic Quality Ratings

Salvia leucantha Aesthetic Quality Ratings

Pyracantha 'Santa Cruz' Aesthetic Quality Ratings

Jan-Feb Mar-Apr May-Jun Jul-Aug Sep-Oct Nov-Dec

Lantana 2007

Center for Landscape & Urban Horticulture University of California Cooperative Extension

Groundcovers, Trees, Shrubs

- Less water often limits growth, not appearance
- Typically acceptable 30-60% ETo
 Range 0-80%
- Discrepancies with WUCOLS
- ETo unreliable predictor of landscape water need

Why Adjust ETo?

Landscape Coefficient Components

$K_L = K_{PLANTS} + K_{VEG. DENSITY} + K_{MICROCLIMATE}$

Vegetation Density Factor (Kd)

- Assumes plant mix & leaf area directly affect water need
- ETo accounts for dense cover
- Assumes factor is 0.5-1.3
- No scientific basis for assigning value!!

Microclimate Factor (Kmc)

- Assumes shade & reflected heat predictably affect water need
- Research shows effects can be *un*predictable
- Assumes factor is 0.5-1.4
- No scientific basis for assigning value!!

Plant Material Factor

- Plant material factor types
 - Kc = Crop Coefficient
 - = amt. of water needed for *optimum* growth or crop yield
 - PF = Plant Factor

= amt. of water needed for *acceptable* growth, level of appearance, function

Water Use vs. Water Need

Expectations

WUCOLS

- Not research based
- Adds complexity without improving water budgeting
- Unreliable false precision
- Default source of "numbers"

WUCOLS Analysis

WUCOLS ZONE	1	2	3	4	5	6	AVG.
# of species appropriate to zone	1602	1088	1969	1185	529	820	1199
% High Water Needs 70-90%	5	6	5	9	7	8	7 (84)
% Medium Water Needs 40-60%	51	52	57	57	66	68	59 (707)
% Low Water Needs 10-30%	38	36	31	32	25	24	31 (372)
% Very Low Water Needs <10%	7	5	7	3	2	0.5	4 (48)
Control Total	101	99	100	101	100	100.5	

Research Take Home

- More water does not always yield better plant performance
 - Water Use ≠ Water Need
- WUCOLS unreliable false precision
 - ≈30% match + ≈ 30% partial match
 - ≈ 40% disagreement
- Budget 50%-60% ETo for non-turf plantings
 - Exact PFs not needed for water budgeting
 - Adjust to meet expectations

Simplified Landscape Irrigation Demand Estimation

SLIDE

....a new paradigm

SLIDE Rules (DRAFT)

- Landscape plant water USE ≠ NEED
 - Plants often use more than they need
 - Meet minimum expectations in a range of % ETo
 - ETo concept has limited accuracy in landscapes
- Most non-turf plants need near 50% ETo
- Landscape plants can be placed in % ETo water needed based on plant type
- Many landscape plants can tolerate managed drought

SLIDE Rules (DRAFT)

- Categories of Water Need (under discussion)
 - Turfgrass = 60-80% ETo
 - Annual-Perennial Flowers/Foliage = 70-80% ETo
 - Tree/Shrub/Groundcover/Vine = 50-70% ETo
 - Very Drought Tolerant Plants = 20-40 % ET
 - Desert Natives/Research Proven Drought Tolerance
 - Physical traits

PF high: more leaves

Visual courtesy of R. Kjelgren, Utah St. Univ.

PF low: fewer leave

1----
Using & Adjusting PF & Kc Values

Landscape Coefficient Take Home

- Imprecision inherent in K_L components
- Exact PFs not needed
- Woody plants have broad %ETo
- Assign turf Kc
- Assign 50%-60% ETo for non-turf plants
 - Reduce to 30%-40% for known drought tolerant
 - Increase to 75% ETo for flowers and foliage
- Ignore Kd
- Use Kmc with shade only
- Adjust to meet performance expectations

Irrigation Scheduling.....

applying water at the time and in the amount needed for plants to perform to expectations

Key Concepts For Effective Water Management & Irrigation Scheduling

- Distribute water as uniformly as possible
- Apply depth of water equal to the need of plants and that wets root systems
- Avoid runoff
- Verify Smart Controller performance

Priorities for Conserving Landscape Irrigation

- 1. Maximize irrigation system efficiency
- 2. Improve schedules
- 3. Reduce turf area

Steps to Develop Irrigation Schedules

- 1. Walk-through inspection
- 2. Calculate PR & DU
- 3. Estimate plant water needs
- 4. Calculate station run times
- 5. Decide irrigation frequency
- 6. Observe and adjust

System Evaluation Data Analysis

- Can/should DU be improved?
- Ideal vs. actual schedules for each zone
- System hardware improvements needed?
- Are more irrigation cycles needed?
- Cultural practices affecting irrigation management?

Calculating System Performance Characteristics

- Precipitation rate
- Distribution uniformity
- Each station

Useful Equations

Inches = $\frac{\text{Gallons}}{\text{Sq. Ft. x 0.623}}$

Gallons = Inches x Sq. Ft. x 0.623

Gallons ÷ 748 = Billing Units

Precipitation Rate (PR)

- Depth or volume applied per unit of time
- Inches per hour

PR (In/Hr) = <u>Avg. catch depth inches x 60</u> Test time minutes

Distribution Uniformity

DU = Low Quarter Average Overall Average

The low quarter average is the mean of the 25% of the measurements receiving the least amount of water

"RAINBIRD 1/8 AND 3/32 NOZZLES 40-42 PSI 40' SQ SPACING" Original Catch Can Data

(Top) catch can spacing 5.00 ft

Run Time

Run Time (minutes.) = $\frac{\text{ETo x PF x 60}}{\text{PR x DU}}$

- ETo = inches per day or week from CIMIS or table PF = decimal from SLIDE
- PR = inches per hour from system evaluation
- DU = decimal from system evaluation

Dennis Pittenger

Area Environmental Horticulturist University of California Cooperative Extension

dennis.pittenger@ucr.edu www.ucanr.org/sites/UrbanHort

Phone: 951.827.3320