Evaluation of grafted plants for processing tomato production

Brenna Aegerter Farm Advisor, UCCE San Joaquin County Zheng Wang Farm Advisor, Stanislaus, Merced & San Joaquin counties Gene Miyao Farm Advisor, retired, UCCE Yolo, Solano & Sacramento counties

Why graft tomatoes?

Combine the features of two cultivars

Scion:

Fruit traits desired by processors, determinant growth habit

Rootstock:

- Resistance and/or tolerance to soil-borne disease and nematodes
- Increased abiotic stress tolerance

Source: www.mightymato.com (Plug Connection, Vista, CA)

- Increased vigor & fruit size, fruiting over a longer period
- Mostly interspecific hybrids between cultivated tomato (Solanum lycopersicum) and wild species (typically S. habrochaites, less commonly S. peruvianum or S. cheesmaniae)

Most tomato rootstocks have been bred for greenhouse production, where they allow longer production cycles and tolerance of variable conditions (cold, hot, etc.) Gene Miyao

1. Sterile trays & sterile media seeded 4 weeks before grafting

 Both rootstock & scion plant stems clipped at ~45° angle

3. Grafting clips positioned half-way on rootstock stems

4. Scion stems align to rootstock angle with attention to match stem diameter

Occasional problems with overgrowth of the high vigor rootstocks, which then need to be hand removed

2018 field trial, north Delta

- Three scion varieties: N 6428, DRI 319 and HM 3887
- Three rootstocks: Maxifort, Multifort (both De Ruiter) and a pre-commercial, non-disclosed rootstock
- All combinations of the above, plus non-grafted controls
- Plots single bed by 65 feet, Replicated four times
- Plants produced by California Masterplant
- Transplanted May 30th, delayed harvest October 19th
- drip irrigated, no major disease problems in trial area
- Machine harvested, PTAB fruit quality measurements

		Yield			Soluble solids		ΡΤΑΒ		ΡΤΑΒ
Scion	Rootstock	(tons/ac) Increa			(°Brix)		Hue		рН
DRI 319	Maxifort	62.60	b	26%	5.10	d	21.1	ab	4.54
DRI 319	Multifort	56.93	bc		5.43	cd	20.9	bc	4.51
DRI 319	Non-disclosed rootstock	50.36	С		5.75	bc	20.9	bc	4.51
DRI 319	non-grafted control	49.83	С		5.70	bc	21.0	ab	4.49
HM 3887	Maxifort	79.55	а	55%	5.13	d	21.0	ab	4.51
HM 3887	Multifort	77.74	а	51%	5.08	d	21.1	ab	4.48
HM 3887	Non-disclosed rootstock	52.57	bc		6.30	а	20.4	С	4.49
HM 3887	non-grafted control	51.33	С		6.00	ab	20.9	bc	4.45
N 6428	Maxifort	86.38	а	50%	4.30	е	21.5	а	4.52
N 6428	Multifort	80.75	а	40%	4.60	е	20.9	bc	4.49
N 6428	Non-disclosed rootstock	60.85	bc		5.33	cd	20.4	С	4.47
N 6428	non-grafted control	57.73	bc		5.15	d	20.6	bc	4.50
	Mean	63.89			5.32		20.9		4.50
	LSD	11.20		0.45			0.6	ns	
	Probability <0.0001			<0.0001			0.040		0.508
	CV (%)	12.182			5.85		2.05		1.00
	GROUP CONTRASTS								
	Grafte	67.53	а	27%	27% 5.22 b			20.9	
	Non-grafted	52.96	b		5.62	2 a	20.8		4.48
	Contrast Probability	<0.0001			0.0006	5	ns		ns

		8-Aug	5-Oct	5-Oct vigor	5-Oct cover	est. harvest date
Scion	Rootstock	NDVI	NDVI	(1 to 4)	(%)	(day in October)
DRI 319	Maxifort	0.81	0.59	2.4	56	10.3
DRI 319	Multifort	0.80	0.57	2.0	51	10.5
DRI 319	Non-disclosed rootstock	0.79	0.50	1.4	40	5.5
DRI 319	non-grafted control	0.78	0.50	1.3	39	5.0
HM 3887	Maxifort	0.81	0.63	3.5	74	16.8
HM 3887	Multifort	0.80	0.63	3.6	75	17.3
HM 3887	Non-disclosed rootstock	0.74	0.52	1.8	45	10.8
HM 3887	non-grafted control	0.73	0.55	1.8	51	12.0
N 6428	Maxifort	0.85	0.66	3.9	85	17.3
N 6428	Multifort	0.84	0.64	4.0	80	15.5
N 6428	Non-disclosed rootstock	0.82	0.56	2.9	65	10.8
N 6428	non-grafted control	0.79	0.55	2.9	59	12.5
	Mean	0.8	0.6	2.6	60	12
	LSD	0.036	0.037	0.67	12.1	3.8
	Probability	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	CV (%)	3.093	4.502	17.770	14.027	22.238
	GROUP CONTRASTS					
	Grafted	0.81	0.59	2.8	63.5	12.7
	Non-grafted	0.77	0.53	2.0	49.6	9.8
	Contrast Probability	<0.0001	<0.0001	<0.0001	<0.0001	0.0027

	Y 2016	% of	Y 2017	% of	Y 2018	% of
	harvested	non-	harvested	non-	harvested	non-
	yield	grafted	yield	grafted	Yield	grafted
	Tons/A	yield	Tons/A	yield	Tons/A	yield
ASS COMPARISONS:						
Grafted vs	60.4	110	49.9	119	83.5	108%
non grafted	55.2	100	41.9	100	77.1	100%
Probability	0.001		0.00		0.000	
ACTORS						
. Variety (scion)						
Probability	0.000		0.00		0.000	
Rootstock						
Probability	NS		NS		0.000	
LSD 5%						2
. Interaction (probability)						
Variety x Rootstock	NS		NS		NS	
% CV	7		11		5	
Maximum scion x rootstoc	k increase	115%		132%		120%

Grafting Evaluations: 2016-2018, Yolo-Solano area

Yield increase averaged 8 to 19%

 Increased 'vigor' and plant canopy, but delayed maturity

No <u>Interaction</u>
 between
 rootstock x scion
 combinations
 tested

Limited wild shoots emerging from rootstocks

UC Farm Advisor testing in commercial fields

Gene Miyao

Summary

2018 north Delta trial:

- De Ruiter's rootstocks increased yield of three scions by an average of 39%
- High yielding plots had lower soluble solids, Maxifort-grafted plots had slightly poorer fruit color

From three other trials over three years:

• yield increases of 8 to 19%

From all trials:

 Grafting increased 'vigor' and plant canopy, but delayed maturity
 University of California

Agriculture and Natural Resources

POTENTIAL ADVANTAGES	CHALLENGES				
	High cost of establishment (rootstock seed, grafted plants)				
	 Greenhouse logistics: Rootstock seed germination and uniformity challenges Doubling greenhouse space for first month, plus special healing facility 				
Higher yield	 Potentially lower soluble solids? Potentially slightly higher input costs? Delayed harvest 				
Improved resistance to soilborne diseases	 Planting with union belowground may compromise disease resistance Few/no rootstocks with F3,Vert race 2 				
Abiotic stress tolerance	Yield advantage may be greater at some sites than others				
High vigor, better fruit cover, less sunburn	Perhaps greater need to manage vines with training or trimming?				

www.vegetablegrafting.org/tomato-rootstock-table/

1	\mathbf{x}	÷
	\mathcal{M}	=

*

	VEGETABLE GRAFTING
THAT	RESEARCH-BASED INFORMATION PORTAL
HOME	ABOUT RESOURCES STAY CONNECTED DIRECTORY Search our site GO

Home » Tomato Rootstock Table

Tomato Rootstock Table

1 - 51 of 51	1 - 51 of 51 < > >> 🗐 🔻											
Rootstock Variety	Product URL	Developer	Bacterial Wilt	Corky Root Rot	Fusarium Wilt Race 1	Fusarium Wilt Race 2	Fusarium Wilt Race 3	Fusarium Crown and Root Rot	Southern Blight	Vertillium Wilt	Root-knot Nematode	Toi Mo Vir
Aegis F1	Click Here	Takii	IR	IR	HR	HR		HR		HR	HR	R
Aibou	Click Here	Asahi Industries	R		R	R		R		R	R	R
Akaoni	Click Here	Asahi Industries										R
Anchor-T F1	Click Here	Takii	IR		HR	HR				HR	HR	R
Aooni	Click Here	Asahi Industries			R	R				R	R	R

www.vegetablegrafting.org

Vegetable Grafting Webinar Series

Members of the SCRI Grafting Project Team have organized a grafting webinar series. Each month a webinar will be offered, covering a different topic about the science and technology of vegetable grafting.

Upcoming Webinars:

January 31, 2019 8 – 9 AM Pacific Use of Vegetable Grafting for Soil-Borne Disease Management Dr. Frank Louws, North Carolina State University

Past Webinars (recorded, available to watch via YouTube link):

- Developing a New Tomato Grafting Machine. Yuji Masaki, Kusakabe Kikai Co. Ltd., Osaka Japan
- Indoor Production of High Quality Grafted Plants: Benefits and Energy Optimization. Dr. Ricardo Hernández, North Carolina State University

www.vegetablegrafting.org

Acknowledgements

USDA Grant # 2016-51181-25404

Grower cooperators:

Andrew Petrini, Fonseca and Fonseca, Walnut Grove

Chope Gill, Reveille Farms, Dixon

Industry collaborators:

Growers Transplanting Inc.

California Masterplant

Ag Seeds

Seminis Vegetable S

Morning Star (CA Sun Harvesting)

Timothy Stewart and Lekos (TS&L)

Vilmorin/H.M.Clause

Seminis Vegetable Seeds/Bayer

