Integrating Biologicals for a Holistic Soil Health Management Northern San Joaquin Valley Processing Tomato Meeting 29th January 2020 ## Outline Defining Healthy Soils The Potential of Biostimulants What to Expect from Biostimulants Integrating Biologicals for Healthy Soils ## Soil Health - Integration of chemical, biological, and physical components - Management impacts all three components - Imbalance compromises soil health - Component interactions determine soil health # **Healthy Soils** #### **Functions of Soil** - Medium for plant growth - Regulator of water supplies - Recycler of raw materials - Habitat for soil organisms - Engineering medium - More?? #### Nutrient Cycles Regulated by Microbes - Nitrogen mineralization - Phosphorus acquisition and availability # **Healthy Soils** #### "Healthy Soil" => Sustained Soil Function - Cover soil, reduce disturbance, maintain roots, include livestock, maximize crop diversity - Soil health principles help build resiliency #### "Unhealthy soil" => Constrained Soil Function - Chemical, physical, and/or biological limitations on soil ecosystem services - Constraints increase plant and soil vulnerability to diseases # Healthy Soils and Microbes Achieving a 'microbial balance' with management (and biostimulants?) Crop characteristics, rotation, fertilization, and tillage Management Practices: inoculated seed, diseasesuppressive plants, and soil amendments Management Tools: soil solarization, biological soil disinfestation, biofumigation, biocontrol, and biostimulants University of California Agriculture and Natural Resources "In conclusion, it may be restated that, with very few exceptions, all soil inoculants, other than those for legume bacteria, have so far proven to **be worthless**, at best not better than a mere infusion of some stable manure. Repeated, critical, controlled tests of the effects of an inoculant under a variety of conditions are **necessary** to establish justification for its use in agricultural practice." - Waksman and Starkey, The Soil and the Microbe, 1931 # **Defining Biostimulants** What are plant biostimulants? "a substance or microorganism that, when applied to seeds, plants, or the rhizosphere, stimulates natural processes to enhance or benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, or crop quality and yield." - USDA Farm Bill, 2018 ## **Biostimulant Potential** Current market for biostimulants is huge (billions USD) and continues to grow Majority of products aim to support and improve nutrient availability and acquisition #### **BIOSTIMULANTS MARKET Europe Biostimulants Market** \$753 (US\$ Mn), 2018 Global Biostimulants Market Share for Million Active Ingredients, 2018 34.7% Humic Substances Europe Vitamins & Amino Acids Microbial Amendment The Middle East & Africa Seaweed Extracts Others 2018 2026 Global Biostimulants Market 2.24 Bn 5.69 Bn (US\$ Bn), 2018 to 2026 Copyrights © Fortune Business Insights | www.fortunebusinessinsights.com Supporting sustainable and environmentally friendly crop production by: - Increasing crop yield/quality - Improving nutrient use efficiency - Reducing fertilizer inputs and losses - Protecting against abiotic stresses - Promoting beneficial soil microbes ## Potential and Peril of Biostimulants Using Biostimulants to Achieve Soil Health Goals: - Increase rooting activity - Increase activity and structure of microbial community - Increase nutrient availability - Building resiliency in suboptimal conditions #### Challenges - Can added biologicals produce consistent effects in the field? - Link between microbial manipulation and soil health improvements? University of California Agriculture and Natural Resources # **Biostimulant Expectations** ## Promoting Soil Health with Biostimulants - Can meaningful changes occur from application? - Are changes consistent and repeatable? #### Microbial Biostimulants and Other Substances - Beneficial bacteria and fungi - Seaweed extracts, humic/fulvic acids, protein hydrolysates, phytohormones ## **Biostimulant Expectations** ### Things to keep in mind: - Not a fertilizer replacement - Crop incompatibility - Ex. Brassicas and mycorrhizal fungi - Ensure proper transportation, handling, and storage - Results from laboratory may not translate to field - Microbial biostimulants may have limited capacity to effectively establish and maintain activity in rhizosphere # **Biostimulant Expectations** ## Method and Timing of Application - Foliar spray - Roots, side dressing, or irrigation - Before/After transplanting ## Transplanting stress can impact tomato productivity - Effective rooting promotes adaptability - Increase scavenging of water and nutrients - Increase early season growth rate # Biostimulants and Crop Response | | Humic Acids | Seaweed
Extracts | Protein
Hydrolysates | Plant growth promoting rhizobacteria (PGPR) | |--|--|------------------------------------|--|--| | Physiological Function | Increased root growth and biomass | Increased
nutrient
transport | Protection by flavonoids against stress | Increased
lateral root
growth | | Agricultural Function | Increased root foraging, enhanced use efficiency | Improved mineral composition | Increased crop tolerance to abiotic stress | Increased root foraging, enhanced use efficiency | | Economic and
Environmental
Benefit | Higher crop
yield, reduced
fertilizer losses | Enhanced
nutritional
value | Higher crop
yield under
stress | Higher crop
yield, reduced
fertilizer losses | Du Jardin, Scientia Horticulturae, 2015 #### **Humic Acids** - Formed as a result of crop residue degradation - Most characteristic compounds of soil humic substances - Humic acids, Fulvic acids and Humin - Extracted from compost, coal, and peat - Liquid and granular commercial products #### **Humic Acids Link to Soil Health** <u>Physical</u> (improved aggregation), <u>Chemical</u> (increased nutrient retention) and <u>Biological</u> (microbial composition) #### **Seaweed Extracts** - Brown seaweed commonly used for agriculture - 'Norwegian Kelp' (Ascophyllum nodosum) - Direct and indirect contribution to crop growth - Mineral nutrients and plant growth hormones - Polysaccharides (e.g., polyuronides) - Increase root:shoot biomass ratio - Improve nutrient translocation #### Seaweed Extracts Link to Soil Health <u>Chemical</u> (nutrient enrichment) and <u>Biological</u> (stimulation of mycorrhizal fungi) #### Protein Hydrolysates - Mixture of polypeptides, oligopeptides, and amino acids - Chemical or enzymatic hydrolysis of plant or animal tissues - Enhance nutrient uptake (changes to root growth patterns) - Stimulate enzyme activity (nitrate assimilation) ### Protein Hydrolysates Link to Soil Health <u>Chemical</u> (chelating nutrients), <u>Biological</u> (support microbial community of rhizosphere) ## Plant Growth Promoting Rhizobacteria (PGPR) - Rhizosphere has unique microbial community - Ex.) N-fixing rhizobia of legumes - Plant roots drive composition of rhizosphere - Influence changes with distance to surface - PGPR free-living, soil bacteria - Facilitate nutrient acquisition - Ex.) Bacteria (*Pseudomonas, Bacillus*) #### PGPR Link to Soil Health <u>Biological</u> (augment microbial community of rhizosphere; suppress soil pathogens; produce plant growth hormones) ## Summary Holistic soil health management is focused on building cropping system resilience Biostimulants may have role in holistic soil health management in tomato cropping systems by promoting root growth, nutrient cycling and uptake Integrating biostimulants in tomato cropping systems has opportunities and challenges - Opportunity: Alleviating transplanting stress and early season nutrient deficiency - Challenge: Demonstrating benefits across space and time ## Thank You! ## **Anthony Fulford** Nutrient Management and Soil Quality Advisor Stanislaus, San Joaquin and Merced Counties amfulford@ucanr.edu 209-525-6825