

Department of LAND, AIR AND WATER RESOURCES University of California, Davis

Climate Change • Sustainable Agriculture Environmental Quality • Landscape Processes

Availability of nitrogen in processing tomato residue

Daniel Geisseler

Nutrient Management Specialist, UC Davis

Northern San Joaquin Valley Processing Tomato Meeting, Modesto January 29, 2020

N uptake by processing tomatoes

- Results from field trial at UC Davis
- Average yield: 60 t/ac, no treatment effects
- Average values from 2 years (2017 and 2018)

Treatment	N application	Fruits	Total N uptake	N in fruits	N in vines
	lbs/acre	lbs N/ton	lbs/acre	lbs/acre	lbs/acre
Low N	150	2.5	227	146	81
Intermediate N	200	2.8	255	164	91
High N	250	3.0	314	192	122

- Soil temperature
- Soil moisture
- Residue nitrogen content; C to N ratio
- Residue moisture
- Residue management

- Soil temperature
- Soil moisture
- Residue nitrogen content; C to N ratio
- Residue moisture
- Residue management

Factors affecting N mineralization: Temperature

- Soil temperature
- Soil moisture
- Residue nitrogen content; C to N ratio
- Residue moisture
- Residue management

Factors affecting N mineralization: Soil moisture

- Soil temperature
- Soil moisture
- Residue nitrogen content; C to N ratio
- Residue moisture
- Residue management

Factors affecting N mineralization: Residue N content

- Soil temperature
- Soil moisture
- Residue nitrogen content; C to N ratio
- Residue moisture
- Residue management

Studies: Treatments

Laboratory incubation:

- Treatments included:
 - Different soil moisture contents (FC, PWP)
 - Different residue moisture (fresh, air dry)
- Constant temperature (77 °F) for 12 weeks

Field trial:

- Treatments included:
 - Plots with residue incorporation
 - Plots without aboveground residue
- Soil sampling throughout the winter

Studies: Soils and Residues

Residue properties:

- 1.8% N
- C to N ratio of 22:1

Soil properties:

- Location: west of UC Davis campus
- Yolo silt loam
- pH 7.6
- 1.4% soil organic matter

Nitrogen mineralization

Nitrogen mineralization

Nitrogen mineralization

Nitrogen mineralization in the field during the winter

Nitrogen mineralization in the field during the winter

Nitrogen mineralization in the field during the winter

Conclusions

- Plants adjust N uptake to N availability
 - ⇒ Not all of the "excess" N is at risk of being leached
- One third of N in aboveground biomass left in the field as residues
- N mineralization from tomato residue during the winter is slow
 - ⇒ C:N ratio of around 20:1
 - ⇒ Fall: dry soil
 - ⇒ Winter: cool soil

Acknowledgement

- UC Agricultural and Natural Resources (UC ANR)
- CDFA Fertilizer Research and Education Program (FREP)
- California Tomato Research Institute
- Gene Miyao, Brenna Aegerter, Tom Turini, Michael Cahn, Tim Hartz
- Suzette Turner, Kelley Liang, Irfan Ainuddin, Ken Miller

