Influence of Compost Application Rates on Nitrogen Management and Processing Tomato Productivity 2019-2020

UC
CEZheng Wang and Anthony Fulford – UCCE Stanislaus
Costanza Zavalloni - CSU Stanislaus
January 22nd, 2021

Project timeline: 2019-2020, Patterson

mineralization?

Note this is a one-year compost application. Initial benefits may encourage a long-term use of compost.

translocation?

Three objectives...

- Monitor mineralized N from compost application to before tomato transplanting (period > 6 months).
- Determine the impacts of compost application rates (5, 10, and 15 tons/acre) on N mineralization, and how these N-related dynamics affect plant development, yield, and fruit quality.
- Synthesize data and write newsletters and trade magazine articles.

Timelines: 2019 – 2020, Patterson

Pre-plant (Oct. 2019 – Mar. 2020): Spread, Sample, Sieve, Fill, Bury, Incubate Soil N mineralization prior to transplanting

Timelines: 2019 – 2020, Patterson

Post-plant (May. 2019 – Oct. 2020): Plant, Sample, Measure, Incubate, Harvest Impact on plant development, soil inorganic N mineralization, and plant productivity

Key takeaways: Nov. 2019 – April 2020

- 1. We did not observe the increase in soil inorganic nitrogen accumulation for composted soil.
- 2. Net positive mineralized inorganic N in April 2020 was detected for composted soil.

Changes of the accumulated inorganic N (NH₄-N + NO₃-N) during wintertime for both fields. % changes of mineralized N (ppm) in Field 1 [Month (T) – November (T_0)]/November (T_0) Application rate November (T_0) December January February March April 5 tons/ac. 19.45 N/A** -52.3%* -47.8% -22.2% -6.9% 10 tons/ac. 17.56 -36.4% -35.8% -21.5% 0.5%* N/A 15 tons/ac. 18.77 -50.1% -26.8% -48.6% -12.8% 82.5% 15.11 Control -6.39% -0.44% -5.83% 5.93% 100.2% % changes of mineralized N (ppm) in Field 2 [Month (T) – November (T_0)]/November (T_0) 5 tons/ac. 18.94 -28.1% -37.6% -14.5% N/A -3.7% 10 tons/ac. 25.14 -41.5% -47.0% -42.9% -24.8% N/A 15 tons/ac. 22.02 -42.2% -70.8% -68.0% 2.2% 85.1% 24.34 Control -7.1% -21.0% -51.8% 28.3% 55.1%

*Negative number indicates nitrogen immobilization and positive number indicates nitrogen mineralization.

**Starting in April 2020, to reduce the exposure of COVID-19, only buried bags and soil samples with two extremes of composting were measured for inorganic N mineralization.

Key takeaways: May to October 2020

Reverse trend-plant tissue vs. soil

Soil NO³–N concentration 50 Field 1 40 30 20 10 0 Early season Close to harvest Mid season Field 2 50 40 30 20 10 0

0 Ton/acre 15 Tons/acre

Key takeaways: May to October 2020

Application Rate	Yield in Field 1 (tons/acre)	Yield in Field 2 (tons/acre)			
5 tons/acre	62.6 AB	69.7 A			
10 tons/acre	63.6 A	68.0 A			
15 tons/acre	63.2 AB	66.9 A			
Unamended control	58.2 B	66.6 A			
HSD _{0.05}	5.2	5.4			
Mean fruit yields followed by the same letter are not significantly different at P \leq					
0.05 according to Tukey's Honest Significant Difference (HSD).					

Fruit yield from each compost application treatment in both fields.

Key takeaways: May to October 2020

No difference in fruit quality

Fruit quality from each compost application treatment in both fields.

	Field 1 Fruit Quality				
Application rate	Brix	рН	ТА	HUE	
5 tons/acre	4.88	4.28	1.73	20.0	
10 tons/acre	4.78	4.30	1.64	20.4	
15 tons/acre	4.88	4.31	1.55	20.0	
Control	5.00	4.30	1.67	20.2	
	Field 2 Fruit Quality				
5 tons/acre	5.03	4.35	1.68	20.2	
10 tons/acre	5.05	4.38	1.57	20.4	
15 tons/acre	5.08	4.35	1.51	20.3	
Control	5.00	4.38	1.64	20.4	

1. Will there be any worthiness of using compost for possible long-term benefits?

2. Rain precipitation/moisture may play critical roles for compost to mineralize N.

3. A slight yield increase may be an indicator for a long-term composting.

4. Rate vs. economics. \$5 per ton for our compost.

Thank our zzwancioucanr.edu

