Resistance Breaking Root knot nematode – Fusarium interactions

Amanda Hodson, Assistant Professional Researcher University of California Davis **Co-PI**: Cassandra Swett, Cooperative Extension Specialist **Cooperators**: Tom Turini, Brenna Aegerter, Amber Vinchesi-Vahl

Resistance breaking root knot nematodes

"Resistance-breaking" nematodes identified in California tomatoes

Isgouhi Kaloshian 🗅 Valerie M. Williamson 🗅 Gene Miyao Dennis A. Lawn 🗅 Becky B. Westerdahl Fig. 1. Polyacrylamide gel showing the malate dehydrogenase (Mdh) and esterase phenotypes of single root-knot nematode females. Isozyme patterns of A) known isolates of *M. arenaria* (a), *M. incognita* (i), *M. hapla* (h), and *M. javanica* (j); B) resistance-breaking nematodes from Woodland population (pop. 1), and *M. javanica* (j); C) resistance-breaking nematodes from Kettleman City population (pop. 2), and *M. javanica* (j).

ement at the nematode feeding site and to alterations in nutrient partitioning.

All resistance to root-knot nematodes present in commercial varieties of tomato is conferred by the Mi gene. This gene confers resistance to three species of root-knot nematodes, M. arenaria, M. incognita and M. javanica, the most common root-knot species found in tomato-growing areas in the United States. The resistance was originally identified in Lycopersicon peruvianum, a wild relative of cultivated tomato, and was introduced into cultivated tomato using embryo rescue of a cross of the wild species and cultivated tomato, L. esculentum, about 50 years ago. Embryo rescue is a tech-

- Not a new problem *California Agriculture* paper from 1996.
- Two populations noted (Yolo and Kings Co.).
- "The increasing reliance on resistance due to restricted use of nematicide treatments enhances the potential for selection of resistance-breaking populations in tomato fields."

Resistance breaking root knot nematodes

- 2021 Survey found RKN in 27/30 suspected fields (Mi gene).
- All *M. incognita* and *M. javanica* (not Fresno/Merced).
- Indicates fairly widespread problem.*
- Are these resistance breaking*? Possible explanations
 - 1. Mutations in RKN to overcome resistance.
 - 2. Heat breaking down Mi efficacy.

County	RKN + fields
Fresno	7
Merced	1
San Joaquin	1
Solano	2
Sutter	1
Yolo	15

- Previous assumption was that the Mi gene was sufficient and that breakthroughs were due to high temperature.
- But.... These nematodes are still able to infect plants with the *Mi* gene under controlled conditions (25 C).

			% Root galling		
	County	Isolate	Celebrity' (<i>Mi</i> +)	Rutgers' (<i>Mi</i> -)	
M. incognita	Yolo	139	33	31	
	Yolo	140	44	32	
	Yolo	143	23	27	
	Yolo	144	35	33	
	Yolo	145	19	28	
	Yolo	146	30	37	
	Yolo	213	6	7	
	Yolo	R-R	43	44	
	Solano	212	4.6	12	
	Fresno	157	30	32	
	Fresno	158	26	28	
	Fresno	208	24	20	
	Fresno	207	28	44	
	Fresno	151	34	44	
	Morcod	100	20	20	
	Ivierceu Cuttor	185	28	38	
	Sutter	A-5	46	3/	
M. javanica	Yolo	184	19	29	
	Stanislaus	C-L	0	1	
<u>Controls</u>			1		
M. incognita		Hr3	36	29	
M. incognita		13	0	47	
M. javanica		VW5	33	25	
M. javanica		VW4	5	42	

- Nearly all isolates reproduced on Mi+ 'Celebrity' as well as Mi- control 'Rutgers'.
- Known resistance-breaking M. incognita (Hr3) caused > 29 % root galling on both cultivars.
- Control M. incognita (I3) was not able to reproduce on 'Celebrity' as expected.
- Known resistance breaking M. javanica (VW5) reproduced well on both cultivars, while control (VW4) showed very low galling with 'Celebrity'.
- Establishes that nematode isolates have a genetic ability to overcome the Mi gene, and that field outbreaks are likely not due to Mi breaking down under heat stress.

RKN-Pathogen Complexes

- RKN often co-occurs with Fusarium wilt and other diseases.
- Synergy may cause worse symptoms of both pathogens.
- 2021 data highlights RKN-Fusarium disease complexes as drivers of yield losses.
- Majority of fields with RKN also had Fusarium wilt.
- Of total F3-breaking cases, 63% also had RKN.
- Prior nematode infection can allow Fusarium to overcome resistance in F1 cultivars and likely F3.

Diseases co-occurring with RKN in 27 fields

1	Fusarium wilt (F. oxysporum f. sp. lycopersici-Fol)	55%
2	Fusarium falciforme vine decline	42%
3	Fusarium crown and root rot (F. oxysporum f. sp. radicis lycoerpsici - Forl)	38%

Strategies to manage RKN-pathogen disease complexes

- 2021 data from Tom Turini's Fresno Co. trial
- Commercial field 'BOS811' (F2)
- Nimitz applied pre-plant at 4.11pts/acre vs. Controls
- Vine decline F. oxysporum f. sp. lycopersici (suggests race 3).
- Level of disease in the treated plots would not have been commercially acceptable.
- Trends suggest nematicide could influence vine decline.

What is the potential cost of leaving nematodes out of the management equation?

 2018 yields: 43 - 73 tons/acre \$55.50 - \$85.50/ ton, average return ~ \$4,089/acre.

CONCERNMENT OF ALL

- Co-infection with nematodes can cause Fusarium wilt symptoms to double in previously tolerant cultivars (Chindo et al. 1991).
- Fusarium only yield losses 15% (\$613/acre), with nematodes could double to a 30% loss or (\$1,226/acre).

Future

- Need for research to characterize new "pathotypes" of RB RKN. This can help breeders to build up *Mi* resistance or create the next generation of resistance genes.
- More detailed knowledge of how previous RKN infection affects Fusarium wilt and F. falciforme vine decline severity.
- Potential impacts of co-infection on yield.
- Efficacy of Fusarium disease-resistant cultivars.
- Effects of nematicides on disease co-occurance.

Thank you!

California Tomato Research Institute – 2021 funding.

Grower cooperators

Antoon Ploog

Farm advisors who collaborated with us and sent us samples

- Tom Turini
- Brenna Aegerter
- Amber Vinchesi-Vahl
- Gene Miyao
- Zheng Wang

Email: akhodson@ucdavis.edu