Evaluation of variety tolerance and chemical control of Fusarium vine decline

Brenna Aegerter, UC Cooperative Extension, San Joaquin County

Cassandra Swett & Kelley Paugh, UC Davis Plant Pathology

Amber Vinchesi-Vahl, UCCE Colusa & Sutter/Yuba counties

Tom Turini, UCCE Fresno County

In collaboration with Ag Seeds and TS & L

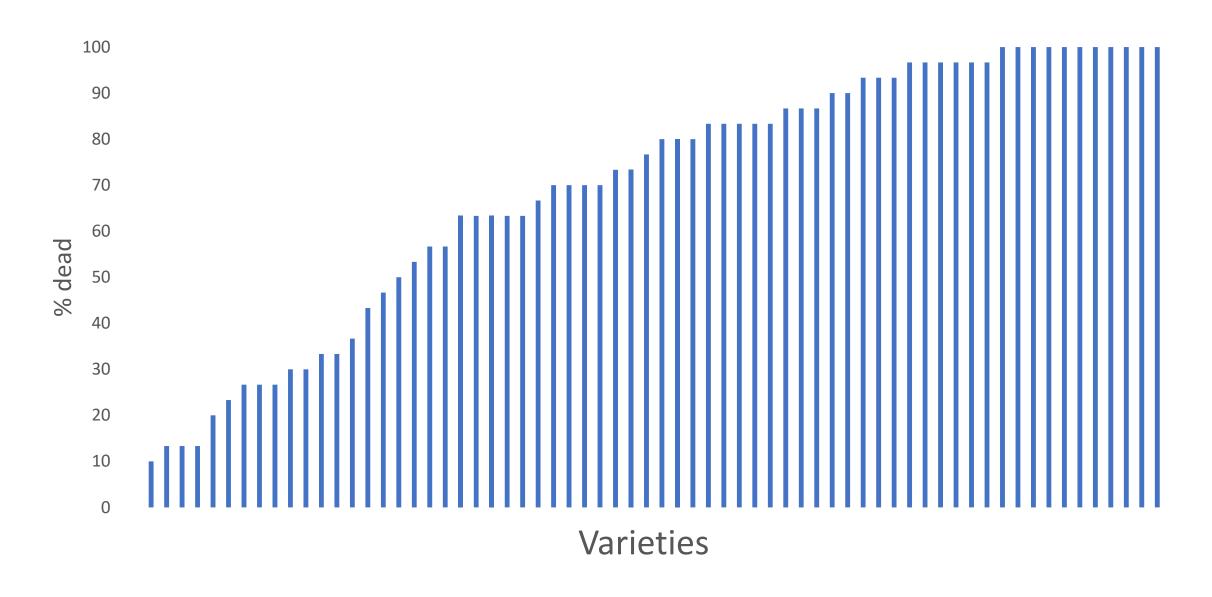
Fusarium wilt

Fusarium falciforme vine decline

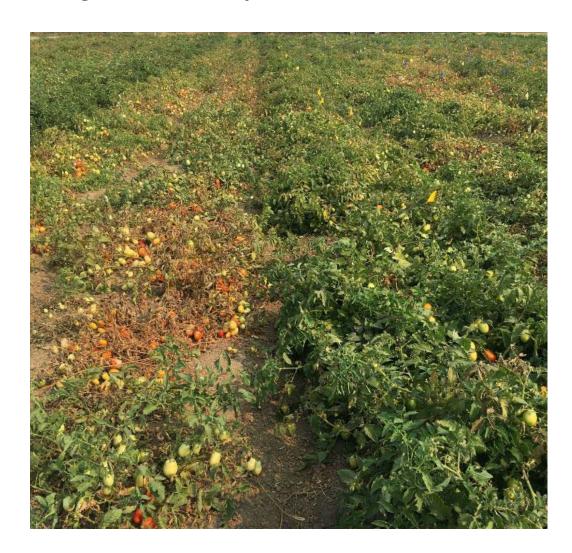
Fusarium wilt

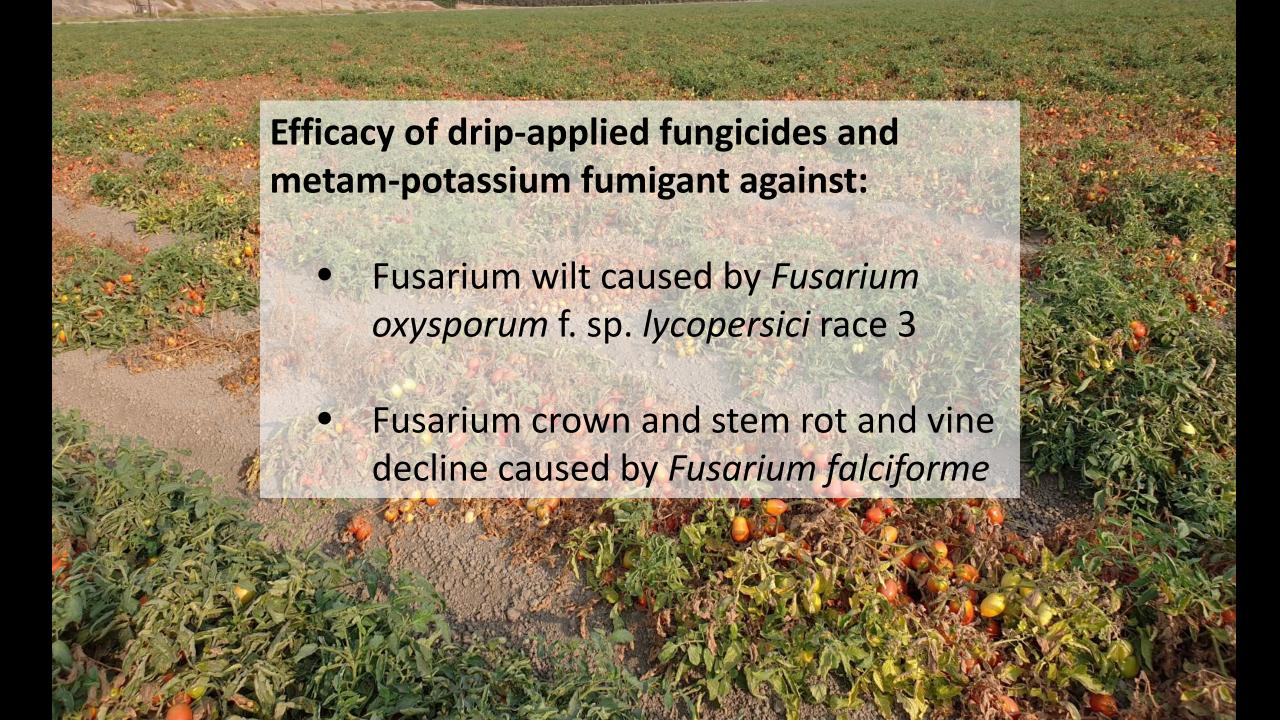
Fusarium crown and root rot

Fusarium falciforme stem rot and vine decline



Cassandra Swett


TS&L variety trial in a commercial field, Yolo County 2022


	# of field		Normalized fruit	Fruit damage average to very	Normalized vine					
Cultivar	trials	Normalized yield ^x	damage levels ^y	low	decline at harvest ^z	Tendency towards vine decline				
HIGH PERFORMING										
H1776	3	1.26	0.54	very low fruit damage	0.96	average tendency towards vine decline				
SVTM9016	3	1.16	0.52	very low fruit damage	0.82	more data needed				
SVTM9019	2	1.15	0.61	very low fruit damage	0.54	more data needed				
N6428	7	1.13	0.65	low fruit damage	0.87	less likely to decline prematurely				
SVTM9025	3	1.13	0.39	very low fruit damage	0.95	more data needed				
H5608	4	1.10	0.77	low fruit damage	0.44	more data needed				
N6434	3	1.05	0.73	low fruit damage	0.38	more data needed				
HM58841	5	1.05	0.86	low fruit damage	1.04	average tendency towards vine decline				
MEDIUM PERFORMING										
BQ273	2	1.04	1.65		0.24	more data needed				
H1428	3	1.00	0.81	low fruit damage	0.89	more data needed				
HM5235	4	1.00	1.39		0.90	less likely to decline prematurely				
H1996	2	0.96	0.57	very low fruit damage	1.50	more data needed				
BQ403	2	0.95	1.30		1.06	more data needed				
H4707	2	0.90	0.56	very low fruit damage	0.95	more data needed				
H1662	2	0.88	0.43	very low fruit damage	0.98	more data needed				
LOW PERFORMING										
HM5522	2	1.04	1.63		1.23	more data needed				
HM3887	7	0.88	1.35		1.33	more likely to decline prematurely				
N6416	2	0.77	1.30		1.30	more likely to decline prematurely				

Top performers under F. falciforme pressure

- N 6428
- H 5608, H 1776
- SVTM 9016, SVTM 9019,
 SVTM 9025
- HM 58841, HM5235

Trials on-going

Study sites

2019

- UC Davis field infested with Fusarium wilt
- UC Davis field infested with Fusarium falciforme
- Yolo Co. commercial field with Fusarium falciforme
- San Joaquin Co. commercial field with both diseases

2020 & 2021

San Joaquin Co. commercial field with both diseases

Fungicides (applied at planting and early season):

- Miravis (Syngenta) pydiflumetofen (FRAC group 7)
- Velum (Bayer) fluopyram (7)
- Rhyme (FMC) flutriafol (3)

Fumigant (applied at least two weeks prior to planting):

K-Pam (AMVAC) – metam potassium

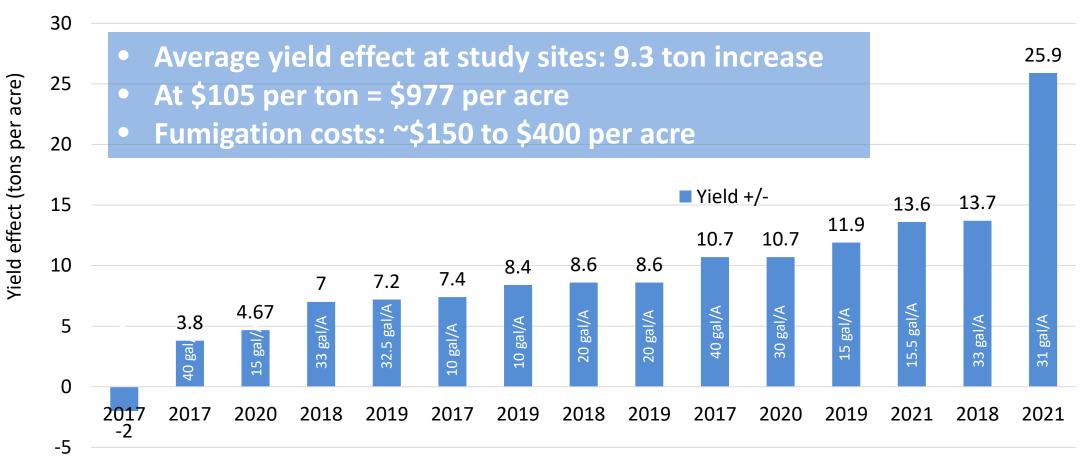
Application timings

かがはは大	application timing(s) relative to transplant date	>2 weeks pre-plant	At transplanting	2 to 4 wk	4 to 6 wk
	Product (active ingredient)				
	Velum One (fluopyram)		drench	drip	drip
	Rhyme (flutriafol)		drench	drip	drip
1	Miravis (pydiflumetofen)		drench	drip	drip
	K-Pam (metam potassium)	drip			

	Fusarium incidence (%)			Marketable yield		Fruit biomass	
Treatment		13-Aug		(tons/acre)		(tons/acre)	
K-Pam 31 gal	1.8	15.8	e	53.5	a	58.7	a
K-Pam 31 gal + AMV6125 at planting	3.0	18.8	de	48.6	ab	56.8	a
K-Pam 15.5 gal	3.0	23.0	cd	41.2	abc	49.9	ab
Rhyme 7 oz at 0, 4 & 6 wks	6.0	23.8	bcd	41.1	abc	47.8	ab
K-Pam 15.5 gal + AMV6125 at planting	3.3	21.5	cde	40.5 bc		48.2 ab	
AMV6125 at planting	5.8	34.0	а	36.8	bcd	43.2	bc
Miravis 13.7 oz at 0, 2 & 4 weeks	3.5	27.5	abc	36.8	bcd	44.6	bc
Rhyme 7 oz at 0, 2 & 4 weeks	6.5	28.5	28.5 abc		34.0 cd		bc
Non-treated control	4.3	30.3	ab	27.6	d	34.1	С
Mean	4.1	24.8		40.0		47.0	
LSD	NS	7.03		12.69		12.09	
P-value	NS	0.0004		0.015		0.008	
CV %	54.9	19.4		21.7		17.6	

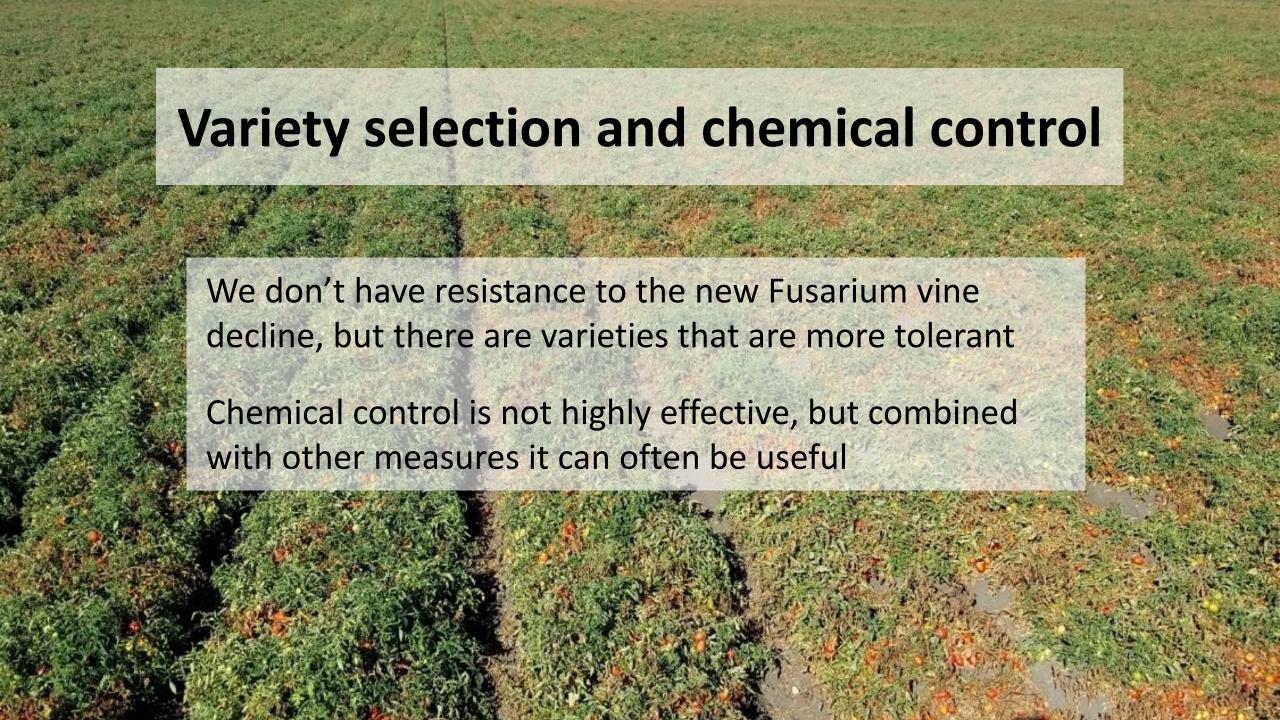

Means in the same column with the same letter are not significantly different.

San Joaquin County trial, 2021


Summary of seven field trials including fungicides and/or fumigants

year location disease(s) Product	UC Davis	2019 UC Davis Ff	2019 Yolo Co Ff	2019 San Joaquin Fol	2019 San Joaquin Ff	2020 San Joaquin Fol & Ff	2021 San Joaquin Fol & Ff
K-Pam ~30 gal	++	NT	NT	++	+ 7.2 t/a	+	+ 26 t/a
C	TT				,		
K-Pam ~15 gal	-	NT	+ 11.9 t/a	NT	NT	+	+ 13.6 t/a
Miravis	++	+	NT	++	NT	+	+ 9.2 t/a
Rhyme	-	NT	NT	-	NT	+	+ 10 t/a
Velum	_	+	NT	_	NT	-	NT
Disease level in non- treated control	68% vine decline	47% rot	73% rot	37% vine decline	20% vine decline	31% vine decline	30% vine decline
Disease <i>P value</i>	P < 0.05	NS	NS	0.01	not tested	0.06	0.0004
Yield <i>P value</i>	NS	NS	0.01	NS	0.016	NS	0.015

NT = not tested "+" = weak (statistically speaking) positive effect "++" and green shading = statistically significant positive effect, NS = not significant



Effect of metam drip fumigation on processing tomato yield in trials 2017 to 2021

2017 -2018 data from Marja Koivunen, AMVAC

Rates are expressed as broadcast equivalents, Yield difference is expressed in comparison to non-treated control in Tons/A

Acknowledgements

California Tomato Research Institute

Ag Seeds and TS & L

Cassandra Swett & Kelley Paugh, UC Davis Plant Pathology

Amber Vinchesi-Vahl, UCCE Colusa & Sutter/Yuba counties

Tom Turini, UCCE Fresno County

Del Carlo Farms, R & J Sanguinetti Ranch, Coit Farms, Dresick Farms

Bill Vignolo, Simplot Stockton

AMVAC, Syngenta, Bayer and FMC

My info: Brenna Aegerter bjaegerter@ucanr.edu (209) 351-1595 mobile