11th Annual Strawberry Production Meeting in Ventura County Camarillo, August 31, 2012

Lygus, Thrips, Corn Earworm and Drosophila

Frank Zalom Department of Entomology University of California, Davis

Lygus Control Update - Insecticides 2011

Registered and Candidate Insecticides

Pesticide	Chemical	Subgroup	Target Site of Activity	IRAC #
Lannate	methom yl malathion naled bifenthrin fenpropathrin thiamethoxam acetamiprid novaluron			
	borax clothianidin			
	flonicamid sulfoxaflor tolyfenpyrad			
		-		

Not registered Registered Not registered for use on strawberries, but under study

Nerve Poisons

Pesticide	Chemical	Subgroup	Target Site of Activity	IRAC #
Malathion	malathion naled bifenthrin fenpropathrin thiamethoxam			
	acetamiprid			
	novaluron			
	borax clothianidin			
	flonicamid sulfoxaflor tolyfenpyrad	_		

Insect Growth Regulator

Pesticide	Chemical	Subgroup	Target Site of Activity	IRAC #
Malathion	malathion	-		
	naled			
	bifenthrin			
	fenpropathrin			
	thiamethoxam			
	acetamiprid			
	novaluron			
	borax			
	clothianidin			
	flonicamid			
	sulfoxaflor			
	tolyfenpy r a d			
		-		

Rimon Spray Timing

- Rimon is best used early season as it only affects Lygus nymphs and there is more synchronization of the Lygus generations at that time
- Later application is best when tank mixed with another product
- Timing is critical

Contact Poison - Little Residual Activity

Pesticide Malathion	Chemical malathion naled bifenthrin fenpropathrin thiamethoxam acetamiprid novaluron	Subgroup	Target Site of Activity	IRAC #
	borax clothianidin			
	flonicamid sulfoxaflor tolyfenpyrad			

May be useful in a mixture

Contact Poison - Little Residual Activity

Pesticide	Chemical	Subgroup	Target Site of Activity	IRAC #
Malathion	malathion			
	naled			
	bifenthrin			
	fenpropathrin			
	thiamethoxam			
	acetamiprid			
	novaluron			
	borax			
	clothianidin			
	flonicamid			
	sulfoxaflor			
	tolyfenpy r a d			

Unregistered Products

Pesticide	Chemical	Subgroup	Target Site of Activity	IRAC #
Malathion	malathion naled bifenthrin fenpropathrin thiamethoxam			
	acetamiprid novaluron			
	borax clothianidin			
	flonicamid sulfoxaflor tolyfenpyrad			
• •	lerve poison			

- Feeding blocker
- Affects insect's energy metabolism
- ??

Lygus Control - Insecticides - 2011

Treatment	Chemical name	Rate (form/ac)
Untreated		·
Brigade WSB	bifenthrin	16 oz
Actara 25 WG +	thiamethoxam +	4 oz +
Brigade	bifenthrin	16 oz
Rimon 0.83 EC	novaluron	12 oz
Rimon + Brigade	novaluron + bifenthrin	12 oz + 16 oz
Beleaf 50SG	flonicamid	2.8 oz
Belay 2.13 EC	clothianidin	4.0 oz
Belay 2.13 EC	clothianidin	6.0 oz
tolfenpyrad 15 SC	tolfenpyrad	27 oz
tolfenpyrad 15 EC	tolfenpyrad	27 oz
sulfoxaflor (L)	sulfoxaflor	2.85 oz
sulfoxaflor (M)	sulfoxaflor	4.28 oz
sulfoxaflor (H)	sulfoxaflor	5.7 oz

Treatments applied September 30, 2011, to first year 'Albion' field All include Dyne-amic

Lygus Control - Small Nymphs - 2011

	Mean ±	SE small Lygus b	oug nymphs p	er plant
Treatment	10/6/1 1	10/13/11	10/20/ 1 1	10/27/11
				0.04 ± 0.01
				0.08 ± 0.04
				0.05 ± 0.04
				0.11 ± 0.04
				0.06 ± 0.02
				0.09 ± 0.05
				0.02 ± 0.02
				0.09 ± 0.02
				0.08 ± 0.04
				0.12 ± 0.03
				0.06 ± 0.04
				0.05 ± 0.01
				0.04 ± 0.02

* Means are significantly different from control at *P*<0.05 using Dunnett's test.

Lygus Control - Total Lygus - 2011

	Mean ± SE To	otal Lygus bugs (adults + nymp	ohs) per plant
Treatment	10/6/1 1	10/13/11	10/20/ 1 1	10/27/11
				0.23 ± 0.05
				0.23 ± 0.03
				0.14 ± 0.03
				0.19 ± 0.02
				0.10 ± 0.03
				0.17 ± 0.07
				0.07 ± 0.02
				0.12 ± 0.03
				0.11 ± 0.07
				0.19 ± 0.04
				0.15 ± 0.06
				0.16 ± 0.03
				0.09 ± 0.03

Pre-treat count = 0.061 small Lygus nymphs per plant, 0.022 large Lygus nymphs per plant, and 0.015 Lygus adults per plant, for a total of 0.098 Lygus per plant

Percent fruit damage at 3, 4 and 5 weeks

	Percent fruit damaged per plot				
Treatment	10/20/ 1 1	10/27/11	11/3/2011		
Untreated	16.09 ± 1.22	8.64 ± 2.84	24.35 ± 7.33		
Brigade	11.66 ± 1.03	9.85 ± 3.94	9.57 ± 4.91		
Actara + Brigade	9.79 ± 0.25	8.45 ± 0.17	11.55 ± 2.78		
Agri-flex	11.55 ± 2.06	7.16 ± 2.55	9.90 ± 2.80		
Rimon	7.77 ± 1.29	4.24 ± 1.34	9.31 ± 1.19		
Rimon + Brigade	5.17 ± 0.78	4.19 ± 0.97	7.23 ± 0.33		
Beleaf	10.73 ± 2.28	8.99 ± 1.06	12.83 ± 1.30		
Belay (L)	9.59 ± 3.04	5.78 ± 2.52	6.31 ± 2.80		
Belay (H)	13.17 ± 2.16	4.91 ± 1.32	11.36 ± 3.99		
tolfenpyrad 15 SC	10.74 ± 1.10	7.03 ± 2.60	11.73 ± 2.40		
tolfenpyrad 15 EC	12.08 ± 1.97	4.76 ± 1.88	8.16 ± 0.91		
sulfoxaflor (L)	12.37 ± 2.86	7.42 ± 1.86	7.06 ± 2.16		
sulfoxaflor (M)	10.57 2.04	7.77 1.79	10.03 3.00		
sulfoxaflor (H)	10.53 ± 2.28	7.59 ± 1.21	10.25 ± 2.72		

Percent fruit damage reduction at 3, 4 and 5 weeks

•	Percent damage reduction			
Treatment	10/20/ 1 1	10/27/11	11/3/11	Average
				21.99
				33.53
				35.68
				57.64
				55.54
				34.42
				42.25
				37.72
				39.44
				46.93
				32.02
				34.05
				35.78

Western Flower Thrips Frankliniella occidentalis

Californ

Bronzing 3 types identified

Koike, S.T., F.G. Zalom, and K.D. Larson. 2009. Bronzing of strawberry fruit as affected by production practices, environmental factors, and thrips. HortScience. 44(6): 1-6.

Causes of Type 3 Bronzing

Elevated temperature and solar radiation Mitigated by: overhead sprinkling certain foliar pesticides lignin

Koike, S.T., F.G. Zalom, and K.D. Larson. 2009. Bronzing of strawberry fruit as affected by production practices, environmental factors, and thrips. HortScience. 44(6): 1-6.

Western Flower Thrips Control, Orange Co.

		Numbe	r of thrips	s per flower	
Treatmen t	Feb 18	Feb	27	Mar 4	Mar 16
Untreate d	1.14				
	0.47				
	0.45				
	0.60				

* Treatment differs from untreated by pairwise t-test at *P*<0.05.

- Problem concern for resistance and restriction on number of applications per season by Dow Agrosciences for all spinosyns (Entrust, Success and Radiant) on strawberries in the Monterey Bay area.
- Other registered insecticides are not very effective.

Thrips Susceptibility of Fields, Pretreatment

Thrips insecticide efficacy - Watsonville, 2009

· · ·	· ·	Mea	n ± SE thrips per flo	wer
Treatmen t	Rate	7/07/09	7/17/09	
			15.96 ± 4.50	
			12.04 ± 1.61	
			14.99 ± 2.72	
			12.54 ± 2.29	
			17.33 ± 3.00	

Treatments applied June 24 and July 10

Beleaf is not registered for strawberries

Thrips insecticide efficacy - Watsonville, 2011

Mean ± SE thrips adults per flower

Treatment Untreated Actara + Brigade Tolfenpyrad 15SC Tolfenpyrad 15EC Closer Closer Closer

Tolfenpyrad and Closer are not registered for strawberries

Corn Earworm Helicoverpa zea

UC Statewide IPM Project © 2000 Regents, University of California

Trade name	Chemical name	Rate form./acr e
Untreated		
Lannate	methomyl	1.0 lb
Intrepi d	methoxyfenozide	12.0 oz
Rimon	novaluron	12.0 oz
Synapse WG	flubendiamide	2.0 oz
Synapse WG	flubendiamide	3.0 oz
Radiant SG	spinetoram	6.0 oz

Application date 4/13/2007

Application date 4/13/2007 Harvest date 5/2/2007 ANOV statistics - *F*=4.0938, df=6,20, *P*=0.0140

Trade name	Chemical name	Rate form./acre
Untreated		
Altacor	chlorantraniliprole	3.0 oz
Altacor	chlorantraniliprole	6.0 oz
Rimon	novaluron	12.0 oz
Intrepid	methoxyfenozide	10.0 oz
Synapse	flubendiamide	2.0 oz
Synapse	flubendiamide	3.0 oz
Radiant SG	spinetoram	8.0 oz

Application date 4/11/2008

	H zea damaged
Treatment	Rate (form/A) fruit per 20 plants
Untreated	
	3.0 oz
	6.0 oz
	12.0 fl oz
	10.0 fl oz
	2.0 oz
	3.0 oz
	8 0 fl 07

Application date 4/11/2008 Harvest date 4/22/2008 ANOV statistics - *F*=6.4435, df=7,23 *P*=0.001

Corn Earworm Control, Watsonville, 2011

		Rate	Mean ± SE damaged
Treatment	chemical	(form/acre)	fruit per 16 plants
Untreated		NA	
		0.25 lb	
		0.50 lb	
		1.0 lb	
		1.5 oz	

 Means followed by the same letter do not differ significantly by Student's t-test at P=0.05.

¹ Applied in 40 gal. per acre Application date 6/29/2011 Harvest date 9/6/2011

Corn Earworm Control, Watsonville, 2011

		Rate	Mean ± SE damaged
Treatment	chemical	(form/acre)	fruit per 20 plants
Untreated			
		4.5 oz	
		4.5 oz	
		10 oz	
		12 oz	
		10 oz	

* Means followed by the same letter do not differ significantly by Student's t-test at *P*=0.05.
Application date(s) 8/16/2011 and 8/23/2012 (Bt only)
Harvest date 7/19/2011
ANOV statistics - *F*=8.9714, df=5,23 *P*=0.0002 Vinegar flies - Drosophila spp. An export phytosanitary and processing concern Quality assurance protocol for export to Japan - 1997 Cultural controls More frequent harvests

Sanitation

Vinegar flies - *Drosophila* spp Camarillo, 2012

Vinegar flies - Drosophila spp. Sources

Vinegar flies - Drosophila spp.

Traps will capture many species and other flies, too

Traps contain either baker's yeast + sugar + water or apple cider vinegar

Vinegar flies - Drosophila spp.

Insecticides won't control the maggots once fruit are infested, they can only knock down adult flies and protect uninfested fruit.

Organophosphates Malathion Pyrethroids* Danitol, (Brigade, Bifenture) Spinosyns Entrust, Success, Radiant

* Using pyrethroids can exacerbate Lygus resistance

Spotted Wing Drosophila Drosophila suzukii

> New species in North America Attacks sound fruit Problem for fresh market

Drosophila melanogaster and other species Always present Attacks older fruit Problem for processing

Spotted Wing Drosophila Damage to strawberry

Spotted Wing Drosophila Identification and Biology

Male

Female

Adults are 2-3 mm in size. Females and their larvae (maggots) are easily confused with other *Drosophila*

Spotted Wing Drosophila

Drosophila suzukii

Other Drosophila

D. suzukii has a specialized sharp ovipositor, different from other *Drosophila*.

Spotted Wing Drosophila

Management is same as for all Drosophila

- Sanitation, remove mature and overripe fruit
- Sanitation, eliminate alternate habitat (culled fruit, abandoned host fields) that sustains the infestation
- Monitoring and trapping to quickly detect infestations - get ahead of the damage
- Use insecticidal sprays or baits to suppress fly populations

organophosphates, pyrethroids, spinosyns

11th Annual Strawberry Production Meeting in Ventura County Camarillo, August 31, 2012

Lygus, Thrips, Corn Earworm and Spotted Wing Drosophila

Frank Zalom Department of Entomology University of California, Davis