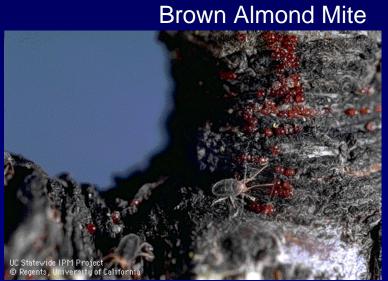
North San Joaquin Valley Almond Day Modesto, CA, January 22, 2009

Integrated Management of Mites in Orchard Systems

Frank Zalom
Dept. of Entomology
University of California
Davis, CA 95616



Twospotted Spider Mite

Pacific Spider Mite

European Red Mite

European Red Mite Panonychus ulmi

No webbing

Found on nut, pome and stone fruit trees

Usually thought of as an early season species

Overwinters in egg stage

Eggs - red with a stipe

Adults - dark red with long, curved hairs from white spots

Can have 5 to 10 generations a year

European Red Mite

Panonychus ulmi

- Feeding causes stippling and rarely leaf drop
- Yellowed leaves from spring feeding may 'green up'
- Possible yield loss with chronic infestations

Brown Almond Mite Bryobia rubrioculus

No webbing

Found on nut, pome and stone fruit trees

Overwinters in egg stage

Eggs - red with no stipe; laid in masses

Adults - reddish-brown, 1st pair of legs are long

Juveniles - newly hatch young are bright reddish

- Feeding causes whitish gray spots to appear on leaves
- Mites move off of foliage during the day
- Defoliation observed at densities of 50 per leaf

Spider Mites- Dormant Spur Sampling

European Red Mite and Brown mite

Controlled with the oil in a (delayed) dormant spray

- Sample between mid-November and late January
- Randomly clip 2 to 3 spurs from the inside of each tree's canopy for a total of 100 spurs
- Clip the spur off at the base, making sure to include some old spur wood
- Examine the spurs in groups of 20 under magnification for mite eggs, and record the number of spurs where they are present or not (presence/absence sample)
- Treat with oil if over 20% have mite eggs present

Pacific Spider Mite

Tetranychus pacificus

A webspinning spider mite

- Broad host range
- Usually thought of as the greater problem in warm growing areas

Eggs - spherical and may be laid in webbing

Adults vary in color from slightly amber to greenish or reddish; usually 2 larger spots forward, 2 rear

Twospotted Spider Mite Tetranychus urticae

A webspinning spider mite

- Broad host range
- Usually thought of as the greater problem in cooler growing areas

Eggs - spherical and may be laid in webbing

Adults vary in color from whitish or greenish to amber; usually 2 large spots forward that may merge

Spider Mites - Damage

Tetranychus spp.

Suck cell contents; stippling, yellowing and leaf drop

Tetranychus spp.

Overwinter as diapausing mated females Move up the tree as weather warms Early season distribution on foliage

Spider Mites - sampling

Webspinning mites can be sampled by counting number of mites per leaf or by a presence/absence sample

If counting - select 10 leaves from five trees and determine number per leaf; sample leaves randomly from all 4 compass points and the tree interior

Calculate average number of mites per leaf

Rule of thumb treatment threshold is 4 mites

Mite brushing machine (I know these aren't almond leaves!)

Spider Mites - sampling

Webspinning mites can be sampled by counting number of mites per leaf or by a presence/absence sample

If using presence/absence - select 15 leaves from five trees and determine number per leaf; sample leaves randomly from all 4 compass points and the tree interior

Record number of leaves with mites (not number of

mites per leaf)

Continue sampling until a decision is made

Rule of thumb treatment threshold is 40% infested leaves

UC	IPM		Almonds — Webspinning Spider Mites Monitoring Supplement to UC IPM Pest Management Guidelines: Almond					
	Count the number of As you move from the Theat" columns belo If your numbers are the	parea, sample a minim namine both sides of ea say be only 1 to 2 miles leaves on each tree wit er to tree, keep a numer we.	am of 5 trees. Select 1 ich leaf carefully. Look or predators on a leaf it geet miles or their er og total of leaves with it an the "Don't Sneat" on BETWEEN, continue s	S leaves from each tree for spider miles and eg age, and the number of nites on the form. Once lumn, you can stop san ampling until a decision	i, randomly picking leasings, western predatory leaves with predators, you have sampled 5.1 spling. If your numbers.	ies from both the imade mittes and eggs, sinspo and record below. Do- rees, compare your total	e and outside of the car ded thrips, and other p not count individual mi al to the numbers in the	redators. Look tes or predator "Don't Treat"
Date			Grower/Orcha	ed				
					# predators	are present	# predator	are absent
		Number of leaves	Total number of	Number of leaves with western produtory mile	Don't treat	Treat.	Don't treat	Tree
Tree numb	Total number of leaves sampled	with miles (on each tree)	(on all trees)	and/or sorspotted thrips	f total leaves with miles is:	miles is:	mites is:	
Tree numb								miles

Tree number	Total number of leaves sampled	Number of leaves with miles (on each tree)	Total number of leaves with mites (on all trees)	Number of leaves with western predatory mile and/or strapolled thrips	Don't treat if total leaves with mites is:	Treat if total leaves with miles is:	Don't treat if total leaves with mites is:	Treat if total leaves with miles is:
-	15							
2	30							
3	45							
4	60							
5	75				s 27	a 40	4.12	s 24
6	90				4 33	a 48	4.15	+28
7	105				4.39	a 55	4.10	a 31
8	120				145	a 62	s 21	a 35
9	135				s 51	a 69	s 23	× 39
10	150				4.57	275	4.26	a 43
11	165				4 63	a 83	4.29	a 46
12	180				s 70	≥ 90	s 32	2 50
13.	195				a 76	a 97	+ 35	a 54
14	210				+ 82	a 104	+ 38	a 57
15	225				4 00	2.111	441	a 61
16	240				4.94	> 118	445	265
17	255				s 101	2 125	s 48	2 68
18	270				s 107	a 132	4.51	a 72
19	265				s 113	a 139	s 54	a 75
20	300				s 119	a 146	4.57	279

Why do spider mites become problems?

Usually there is some kind of disruption

- Hot, dry conditions
- irrigation practices that promote water stress
- pesticide use secondary (induced) pests
- changes in insecticide and fungicide use patterns
- What about newer products?

Do they affect six-spotted thrips, lacewings, hemipterans, predaceous beetles, or predator mites?

What about their effects on spider mite development?

Spider Mites - Natural enemies

Spider Mites - Chemicals

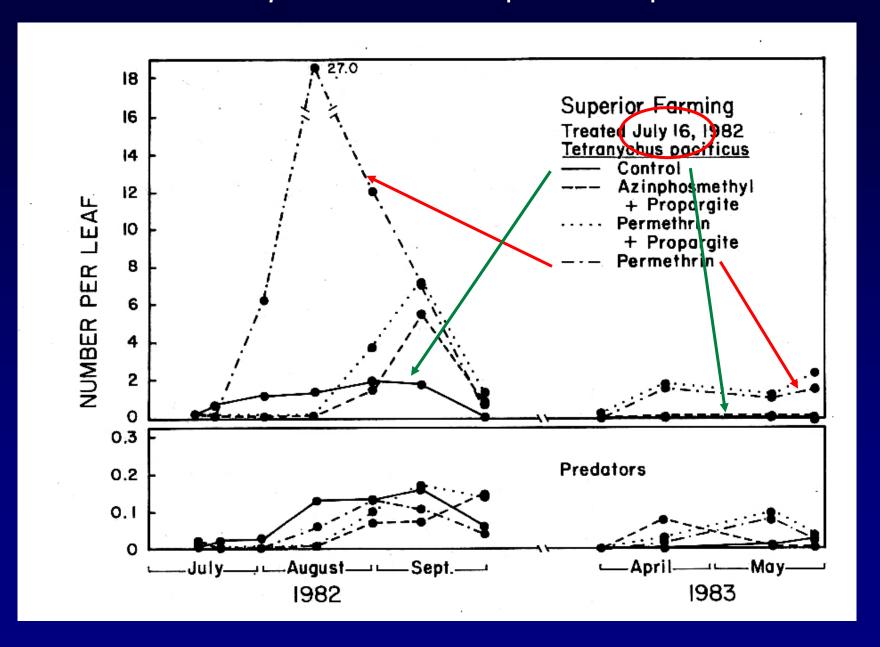
- Pesticide use has a major impact on spider mites
 use selective products
- Consider possibility of unintended impacts on spider mites whenever introducing a new chemical into an orchard
- General predators like six-spotted thrips, lacewings, hemipterans and predaceous beetles can be affected, not just predator mites
- Older products such as carbaryl were known to increase spider mite reproduction in addition to killing mite predators

Predaceous mites on almonds

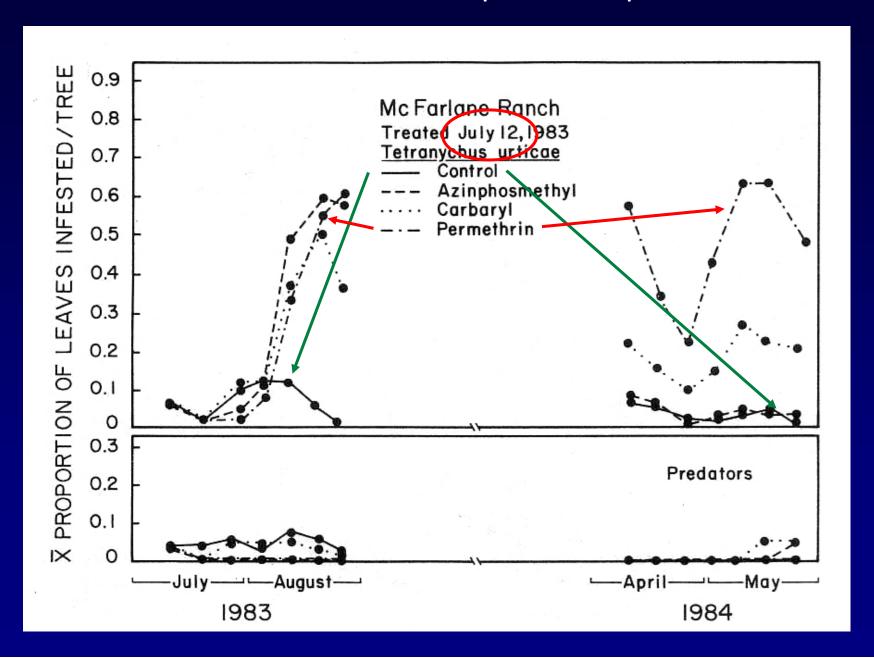
- Adult females are typically narrowly oval
- Most are shiny white to slightly yellow or reddish
- Tend to move much more quickly than do spider mites
- Eggs are elliptical and perhaps 3 to 4 times larger than the spherical eggs of spider mites
- Overwinter primarily as mated, adult females on bark

Sampling and decision rules in - "Integrated Pest Management for Almonds, 2nd Edition"

Predaceous mites - monitoring


- Monitor using presence/absence sample for both spider mites and predators
- Predator will maintain good control unless the proportion of leaves with spider mites is higher than the proportion with predatory mites (actual number of each is not critical)
- A good rule of thumb is that predator mites will control spider mites if presence/absence sampling indicates a 1:1 of leaves with a predatory mite to leaves with a webspinning mite
- When predators are present but are not controlling the spider mites, a lower-than-label rate of a selective miticide may be applied to create a more balanced ratio

Field observations of effect of registered insecticides on spider mite and *G. occidentalis* populations


3 sites - Kern Co., Fresno Co., Butte Co. 3 insecticides - azinphosmethyl, carbaryl, permethrin Weekly sampling for proportion of leaves infested

Bentley, W., F.G. Zalom, W.W. Barnett, and J.P. Sanderson. 1987. Population densities of *Tetranychus* spp. (Acari: Tetranychidae) after treatment with insecticides for *Amyelois transitella* (Lepidoptera: Pyralidae). J. Econ. Entomol. 80: 193-200.


Mean number of *T.pacificus* and its predators per almond leaf

Mean number of *T.urticae* and its predators per almond leaf

Mean number of *T.urticae* and its predators per almond leaf

Zalom, F. G., M. W. Stimmann, T. S. Arndt, D. B. Walsh, C. Pickel, and W. H. Krueger. 2001. Analysis of permethrin (*cis*- and *trans*- isomers) and esfenvalerate on almond twigs and effects of residues on the predator mite *Galendromus occidentalis* (Acari: Phytoseiidae). Environ. Entomol. 30: 70-75.

Pyrethroid bark residues - Methods

- Orchard was never previously treated
- Eight single tree replicates applied by handgun sprayer; randomized complete block design
- Untreated buffer trees between each treatment replicate
- Rates: esfenvalerate 0.1 lbs ai per acre permethrin - 0.4 lbs ai per acre

Pyrethroid bark residues - Methods

Treatments

- 1. Esfenvalerate dormant spray only
- 2. Permethrin dormant spray only
- 3. Esfenvalerate dormant spray and hull-split spray
- 4. Permethrin dormant spray and hull-split spray
- 5. Esfenvalerate hull-split spray only
- 6. Permethrin hull-split spray only
- 7. Untreated

Dormant spray - February 3, 1995 Hull split spray - July 21, 1995

Esfenvalerate residues on field treated almond twigs on sampling dates after dormant and hull-split applications

Esfenvalerate application	ng/mm ² esfenvalerate
Dormant only	
2/3/95	0.84 ± 0.12
7/21/95	0.28 ± 0.08
8/24/95	0.12 ± 0.04
Dormant + hullsplit	
7/21/95	0.35 ± 0.09
8/24/95	0.29 ± 0.08
Hullsplit only	
8/24/95	0.26 ± 0.11

Application date 2/3/1995

Mean SD; each value = 4 samples run in duplicate

Permethrin residues on field treated almond twigs on sampling dates after dormant and hull-split applications

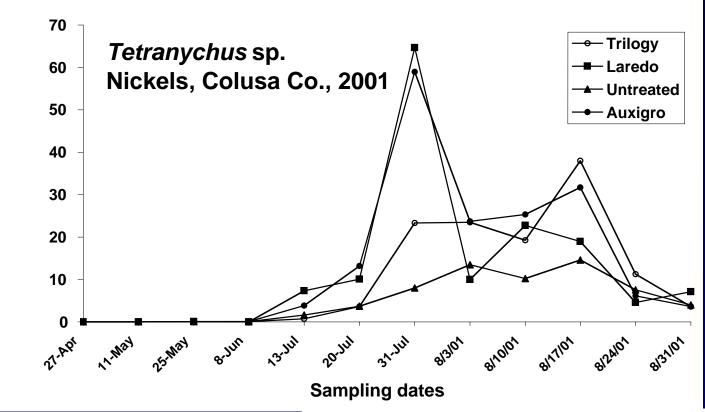
Permethrin application	cis-permethrin	trans-permethrin
Dormant only		
2/3/95	0.77 ± 0.23	0.95 ± 0.26
7/21/95	0.16 ± 0.11	0.24 ± 0.16
8/24/95	0.10 ± 0.07	0.16 ± 0.11
Dormant + hullsplit		
7/21/95	0.50 ± 0.21	0.65 ± 0.28
8/24/95	0.25 ± 0.18	0.36 ± 0.26
Hullsplit only		
8/24/95	0.34 ± 0.28	0.50 ± 0.41

Application date 2/3/1995 values expressed as mean ng/mm² SD; each value = 4 samples run in duplicate

Percent survival of the predator mite *Galendromus* occidentalis on pyrethroid treated almond twigs ~7 months after dormant application

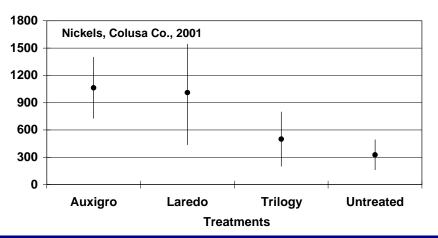
	Percent survival correct		
	for control mortality		
Pesticide and timing	24 hrs ^{a/}	48 hrs ^{b/}	
Untreated	100.0 d	100.0 d	
Esfenvalerate dormant	19.6 a	8.4 ab	
Permethrin dormant	53.6 c	48.1 c	

Treatments applied 2/3/95


Bark samples collected 8/24/95

Treatment means followed by the same letter do not differ significantly (p<0.05) when compared by Fishers protected LSD.

a
 F = 8.85, df = 8, p<0.0001


 $^{^{}b}$ F = 8.355, df = 8, p<0.0001

Spider mites collected from experimental fungicide plots

Season total mite-days

ANOVA statistics - F=3.875; df= 3,12; P=0.0378

Almond Acaricide IRAC* Classification

Product	Active ingredient	Primary target site of action	IRAC#
Agri-Mek	Abamectin	Chloride channel activators	6
Apollo	Clorfentezine	Mite growth inhibitor	10A
Onager	Hexythiazox	Mite growth inhibitor	10A
Zeal	Etoxazole	Mite growth inhibitor	10B
Vendex	Fenbutatin oxide	Inhibitor of mitochondrial ATP synthase	12B
Omite	Propargite	Inhibitor of mitochondrial ATP synthase	12C
Kanemite	Acequinocyl	Mitochondrial complex III electron transport inhibitor	20B
Fujimite	Fenpyroximate	Mitochondrial complex I electron transport inhibitor	21
Nexter	Pyridaben	Mitochondrial complex I electron transport inhibitor	21
Desperado	Sulfur +	Unclassified + Mitochondrial complex I	UNC
	Pyridaben	electron transport inhibitor	+ 21
Envidor	Spirodiclofen	Inhibitor of lipid synthesis	23
Acramite	Bifenazate	Unknown mode of action	UN
Various	Botanical oils	Unclassified	UNC
Various	Narrow range oil	Unclassified	UNC

^{*} Insecticide resistance action committee

Mean (SD) motile two spotted spider mites per leaf, Arbuckle, 2005

			Mean ± SD 2-spot motiles/leaf							
Treatments	Rate	Pretreat 8/15/2005	8/23/05	8/30/05	9/6/05	9/14/05	9/21/05			
Untreated	NA	0.13 ± 0.19	0.13 ± 0.10	1.43 ± 0.93	1.35 ± 0.89	5.13 ± 5.18	4.38 ± 5.94			
Summer oil	1%	0.68 ± 0.79	0.45 ± 0.70	1.58 ± 2.18	1.68 ± 1.73	14.15 ± 21.05	$10.49 \pm 8.67^*$			
Ecotrol EC	4 pts	0.23 ± 0.45	0.38 ± 0.45	1.53 ± 2.18	0.93 ± 0.83	5.03 ± 9.05	3.73 ± 4.75			
Kanemite	21 oz	0.13 ± 0.25	0.08 ± 0.10	0.03 ± 0.05	$0.43 \pm 0.46^*$	2.25 ± 3.07	2.08 ± 2.55			
Kanemite	26 oz	0.05 ± 0.06	0.03 ± 0.05	0.00 ± 0.00	$0.13 \pm 0.10^*$	0.55 ± 0.62	1.40 ± 1.26			
Kanemite	31 oz	$2.48 \pm 2.55^*$	0.00 ± 0.00	0.48 ± 0.56	$0.20 \pm 0.11^*$	0.90 ± 0.47	1.15 ± 1.27			
Acramite	1 lb	0.00 ± 0.00	0.03 ± 0.05	0.08 ± 0.10	$0.10 \pm 0.00^*$	0.23 ± 0.22	0.83 ± 1.05			
Onager	20 oz	0.03 ± 0.05	0.00 ± 0.00	0.03 ± 0.05	$0.33 \pm 0.17^*$	0.38 ± 0.22	0.65 ± 0.59			
Agri-Mek	15.6 oz +									
+ Oil	0.25%	0.00 ± 0.00	0.15 ± 0.19	0.15 ± 0.13	$0.38 \pm 0.22^*$	0.42 ± 0.72	0.31 ± 0.10			

Treatment date - August 16, 2005

^{*} Means significantly different from untreated control at *P*<0.05 by Student's t-test 10 leaves per replicate sampled n = 4 reps

Mean (SD) motile European red mites per leaf, Arbuckle, 2005

		Mean ± SD European red mites/leaf						
	Rate	Pretreatment						
Treatment	(Form)	8/15/2005	8/23/05	8/30/05	9/6/05	9/14/05		
Untreated	NA	7.65 ± 4.17	17.55 ± 18.42	7.40 ± 6.84	4.68 ± 3.69	1.60 ± 0.91		
Summer Oil	1%	10.45 ± 7.98	7.65 ± 6.32	2.95 ± 1.68	6.13 ± 5.25	7.08 ± 8.77		
Ecotrol EC	4 pts	15.55 ± 12.48	15.68 ± 10.42	26.80 ± 19.00*	$9.25 \pm 4.09*$	5.68 ± 5.22		
Kanemite	21 oz	9.88 ± 8.45	2.70 ± 3.46	$0.63 \pm 0.51^*$	$1.70 \pm 2.60^*$	3.04 ± 2.90		
Kanemite	26 oz	9.35 ± 9.89	7.73 ± 11.07	$0.88 \pm 0.62^*$	$0.45 \pm 0.37^*$	1.28 ± 1.19		
Kanemite	31 oz	9.03 ± 11.27	0.53 ± 0.79	$0.53 \pm 0.73^*$	1.25 ± 1.45*	0.80 ± 0.56		
Acramite	1 lb	15.35 ± 12.72	15.58 ± 9.28	4.28 ± 5.29	$1.03 \pm 0.71^*$	2.05 ± 2.30		
Onager	20 oz	10.25 ± 5.21	5.45 ± 9.57	1.40 ± 1.19*	2.64 ± 3.47	1.58 ± 2.18		
Agri-Mek	15.6 oz							
+ Oil	+ 0.25%	13.65 ± 6.34	11.70 ± 6.73	11.95 ± 8.00	6.50 ± 3.39	2.13 ± 2.10		

Treatment date - August 16, 2005

^{*} Means significantly different from untreated control at *P*<0.05 by Student's t-test 10 leaves per replicate sampled n = 4 reps

Mean (SD) motile Pacific spider mites per leaf, Arbuckle, 2006

		Mean ± SD Pacific mites per leaf					
Treatments	Rate/ac	7/26/06	8/2/06	8/9/06	9/6/06	9/13//06	
Untreated	NA	3.00 ± 2.16	3.40 ± 3.86	3.80 ± 3.67	65.00 ± 51.95	49.40 ± 46.14	
Envidor Envidor	18.0 oz 18.0 oz	$0.00 \pm 0.00^*$	0.80 ± 0.35	1.13 ± 1.27	32.40 ± 43.98	12.53 ± 10.94	
+ oil	+ 1% v/v	$0.00 \pm 0.00^*$	0.73 ± 0.81	4.30 ± 4.23	22.03 ± 20.53	15.73 ± 12.93	
Ecotrol **	2.0 pts	$0.60 \pm 0.60^*$	1.80 ± 2.62	7.00 ± 5.10	61.73 ± 49.14	10.37 ± 15.97	
Ecotrol **	4.0 pts	$0.60 \pm 0.60^*$	3.40 ± 3.30	3.47 ± 3.82	45.00 ± 60.85	40.30 ± 68.51	
Kanemite	25.0 oz	$0.00 \pm 0.00^*$	2.20 ± 3.30	2.87 ± 4.29	38.80 ± 45.95	22.60 ± 27.21	
Kanemite	31.0 oz	0.03 ± 0.06 *	0.20 ± 0.35	1.40 ± 1.25	37.40 ± 19.41	30.40 ± 12.73	
Fujimite **	1 pt	$0.07 \pm 0.06^*$	0.43 ± 0.67	1.10 ± 1.21	32.93 ± 44.69	34.80 ± 40.07	
Fujimite **	2 pts	$0.13 \pm 0.23^*$	0.20 ± 0.20	3.63 ± 5.00	40.90 ± 37.77	24.87 ± 27.15	
Agri-Mek **	15.6 oz	$0.40 \pm 0.69^*$	0.00 ± 0.00	2.00 ± 3.46	6.07 ± 9.82	3.17 ± 5.05	
Omni Oil	1% v/v	$0.60 \pm 0.60^*$	1.20 ± 0.00	3.40 ± 1.83	68.00 ± 40.27	35.10 ± 35.71	
Omni Oil	4% v/v	$0.00 \pm 0.00^*$	0.40 ± 0.35	1.87 ± 1.10	45.20 ± 33.70	11.07 ± 11.93	
Acramite	1 lb	$0.20 \pm 0.35^*$	0.20 ± 0.35	0.57 ± 0.60	20.93 ± 24.58	6.97 ± 7.78	
Onager	20 oz	$0.40 \pm 0.69^*$	0.00 ± 0.00	0.80 ± 0.92	5.80 ± 5.50	8.10 ± 8.65	
Zeal	3 oz	$0.00 \pm 0.00^*$	0.00 ± 0.00	0.13 ± 0.23	2.60 ± 2.59	1.57 ± 1.34	

Treatment date - July 19, 2006

^{*} Means significantly different from untreated control at *P*<0.05 by Student's t-test

¹⁰ leaves per replicate sampled

n = 4 reps

^{**} plus an adjuvant; Ecotrol + Natural Wet @ 0.13% v/v, Fujimite and Agri-Mek + LI7000 @ 0.25% v/v

Mean (SD) motile twospotted mites per leaf, almonds, 2007

		Mean ± SD twospotted mites per leaf					
	Rate	August 14					
Treatment	(Form/ac)	Pretreat	August 21	August 28	Sept. 4	Sept. 11	
Untreated	NA	6.8 ± 2.6	5.3 ± 2.1	4.8 ± 2.1	4.5 ± 1.7	3.5 ± 1.3	
Envidor	18 oz	5.3 ± 2.1	$0.0 \pm 0.0^*$	$0.3 \pm 0.5^*$	1.0 ± 1.4*	$1.0 \pm 0.8^*$	
Envidor **	18 oz	7.8 ± 2.1	$0.0 \pm 0.0^*$	$0.0 \pm 0.0^*$	$0.5 \pm 0.6^*$	$0.8 \pm 1.0^*$	
Acramite	1 lb	5.8 ± 2.2	$0.5 \pm 0.6^*$	$0.8 \pm 1.0^*$	$0.8 \pm 1.0^*$	1.5 ± 1.3*	
Fujimite + oil	32 oz + 1%	6.5 ± 3.1	$0.3 \pm 0.5^*$	$0.5 \pm 1.0^*$	$0.8 \pm 1.0^*$	$1.0 \pm 0.8^*$	
Kanemite	31 oz	5.8 ± 2.9	$0.0 \pm 0.0^*$	$0.5 \pm 1.0^*$	$0.8 \pm 0.5^*$	1.3 ± 1.3*	
Agri-mek + oil	15.6 oz + 1%	3.8 ± 1.0	$1.0 \pm 0.8^*$	$0.8 \pm 0.5^*$	1.3 ± 1.5*	1.8 ± 1.3	
Orchex	1% v/v	7.3 ± 4.3	$3.0 \pm 0.8^*$	$3.3 \pm 1.0^*$	5.0 ± 2.2	3.3 ± 1.3	
Orchex	4% v/v	8.5 ± 2.9	$0.8 \pm 1.0^*$	1.3 ± 1.0*	$2.5 \pm 1.3^*$	2.3 ± 1.9	

Treatment date - August 14, 2007

n = 4 reps

^{*} Means significantly different from untreated control at P<0.05 by Student's t-test 10 leaves per replicate sampled

^{**} plus an adjuvant; Envidor + LI7000 @ 0.25% v/v

Acaricide side effects Predator mite bioassays

Direct effects - acute toxicity to adult females Indirect effects - sublethal effects

Examples of indirect effects -

Reduced fecundity (fewer eggs per female)

Reduced fertility (lower egg hatch)

Development time Immature mortality Behavioral changes

Acaricide side effects Predator mite bioassays

Total effects of pesticides - E

 $E(\%) = 100\% - (100\% - M) \times R$

Where

M = Abbotts corrected mortality (Abbott, 1925)

R = reproduction per treated female (eggs/female x % fertility) / reproduction per untreated female

Acaricide side effects

Predator mite bioassays - direct contact

G. occidentalis survival, fecundity and fertility after treatment of adult females with label rates of five different acaricides.

	Contact spray						
Active ingredient	% Survival	Total eggs/ female	Fertility (% hatch)	E			
Control	100 0a	12.4 0.8a	100 0a	-			
Acequinocyl	100 0a	9.2 0.6b	96.0 4.9a	28.5			
Bifenazate	100 0a	9.4 0.5b	92.3 3.4a	30.2			
Etoxazole	98.3 2.2a	9.4 0.7b	0 0b	100			
Spiromesifen	98.3 2.2a	8.6 0.5b	96.1 4.0a	34.0			
Fenpyroximate	0 0b	0 Oc	0 0b	100			

Means followed by the same letter are significantly different at p<0.05 by LSD.

Acaricide side effects Predator mite bioassays - residues

G. occidentalis survival, fecundity and fertility after treatment of leaves with label rates of five different acaricides.

	Surface residue						
Active ingredient	% Survival	Eggs laid	Fertility	E			
Control	98.3 2.2a	11.2 1.0a	100 0a	-			
Acequinocyl	93.4 3.0a	9.6 0.5a	92.2 4.9a	25.1			
Bifenazate	95.1 2.7a	9.6 0.9a	96.0 4.0a	20.1			
Etoxazole	93.4 3.0a	9.0 0.5a	0 0b	100			
Spiromesifen	91.7 3.2a	5.0 0.7b	92.6 4.3a	61.7			
Fenpyroximate	0 0b	0 Oc	0 0b	100			

Means followed by the same letter are significantly different at p<0.05 by LSD.

IOBC Classifications -

Leaf surface residues

Acequinocyl

Bifenazate

Spiromesifen

Etoxazole

Fenpyroximate

Slightly harmful (class 2)

Harmful (class 4)

Direct contact spray

Acequinocyl

Bifenazate

Spiromesifen

Etoxazole

Fenpyroximate

Harmful (class 4)

North San Joaquin Valley Almond Day Modesto, CA, January 22, 2009

Integrated Management of Mites in Orchard Systems

Frank Zalom
Dept. of Entomology
University of California
Davis, CA 95616

