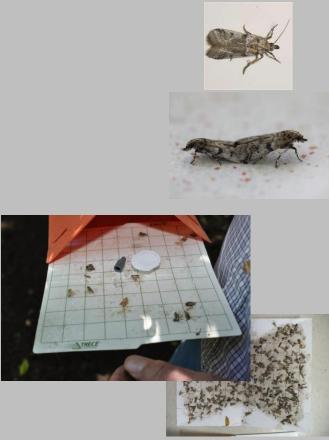
"Navel Orangeworm Monitoring and Management"

Central Valley Almond Day

Bradley S. Higbee

Field R&D Mgr


Trécé, Inc.

Bakersfield, CA

bhigbee@trece.com

buglimo@gmail.com

661-301-3225

Outline

- Intro
- Monitoring for NOW
 - Trapping
 - Early HS evals
- NOW Management
 - Sanitation
 - Insecticides
 - Mating Disruption

NOW damage at Historical levels in 2017

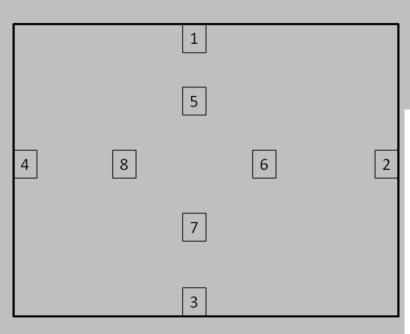
- Highest seen since 2006 in many orchards
- Heavy pressure came on late, 3rd and 4th flights
- Monitoring able to give some warning, but growers must be able to respond rapidly
- 2018 may be similar
- What can be done to keep damage at acceptable levels?

Trapping for NOW

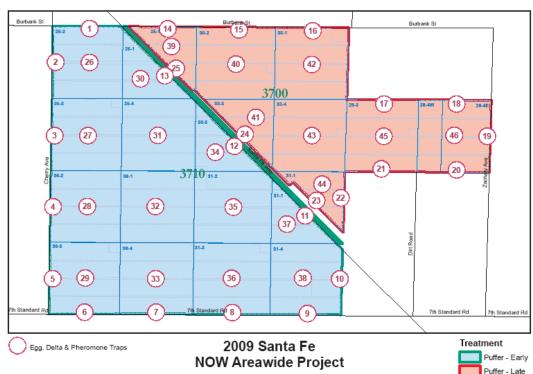
- Pheromone Lure
- Almond/Pistachio/mummy baits
- PPO lure (attracts males and females)
- Synthetic Kairomone lure (under development)

Early HS monitoring

- Spend 5-10 mins (3-5 trees) at each location starting when very 1st nuts split – typically south edges
- Collect evenly from upper and lower canopy
- Up to 30 split nuts
- Examine for NOW infestation record %
 Infested at each location


What is your objective?

- Timing for insecticide spray appls
- Spray application decision
- Under or influenced by MD?


The Monitoring Site Approach Making informed NOW management decisions

- Precision:
 - Is treatment needed?
 - What areas are at the greatest risk?
- Relative rather than absolute
 - Are there areas where counts are elevated?
 - Is there agreement among metrics?
- Experience breeds confidence

Monitoring Site approach

- 1. Pheromone trap
- 2. Egg and/or oviposition attractant trap
- 3. Pre-harvest or early split examinations
- 4. Harvest sample evaluations

NOW Management

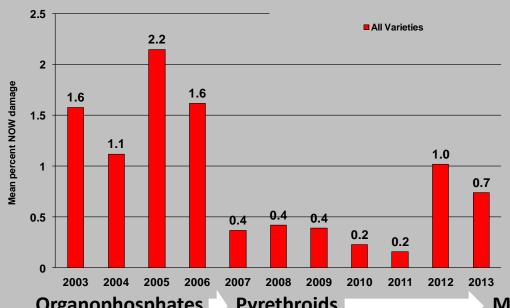
- History of insect damage
 - Dictates program intensity
 - May need to plan for worst case scenario but new predictive capabilities exist
 - Monitoring crucial for guiding management decisions
- Sanitation
 - Solid benefit in almonds, should be foundation of any program
- Insecticides Ovi-larvicides + Pyrethroids
 - Load up residues prior to harvest
- Mating Disruption
 - Greatest value has been in more challenging settings
- Biocontrol limited potential

Sanitation

- Established benefit in almonds
- Ground <u>and</u> tree mummies influence damage : Reducing mummy load results in lower NOW damage
- The impact is greater as pressure (damage) increases
- NOW is highly mobile (able to travel 0.5+ mile in one night) – Larger adjacent acres will benefit most
- Can we make up for a deficit in mummy destruction with other tactics?

Insecticides

- Limited Arsenal
 - Pyrethroids
 - Bifenture, others (bifenthrin)
 Warrior (lambda-cyhalothrin)
 - Danitoi (fenpropathrin)
 - others
 - IGRs
 - Intrepid (methoxyfenozide)
 - Dimilin (diffubenzuron)
 - Anthranilic diamides
 - Altacor (chlorantraniliprole)
 - Organophosphates
 - Lorsban, not registered in pistachios chlorpyrifos)
 - Imidan (phosmet)
 - Bacterial fermentation products and derivatives
 - Delegate (spinetoram)
- Coverage limiting 50% damage reduction per spray

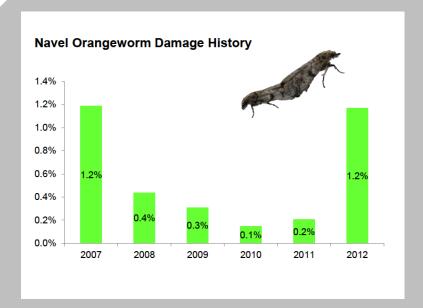


Pyrethroid Performance in large scale field trials

- 2007 bifenthrin included in one application: typically 80-95% damage reduction
- 2014 bifenthrin included in 2-3 applications:
 45-55% damage reduction
- Lab assays have confirmed a degree of resistance development

NOW Damage to Almonds - All Varieties

NOW damage to Almonds


Organophosphates

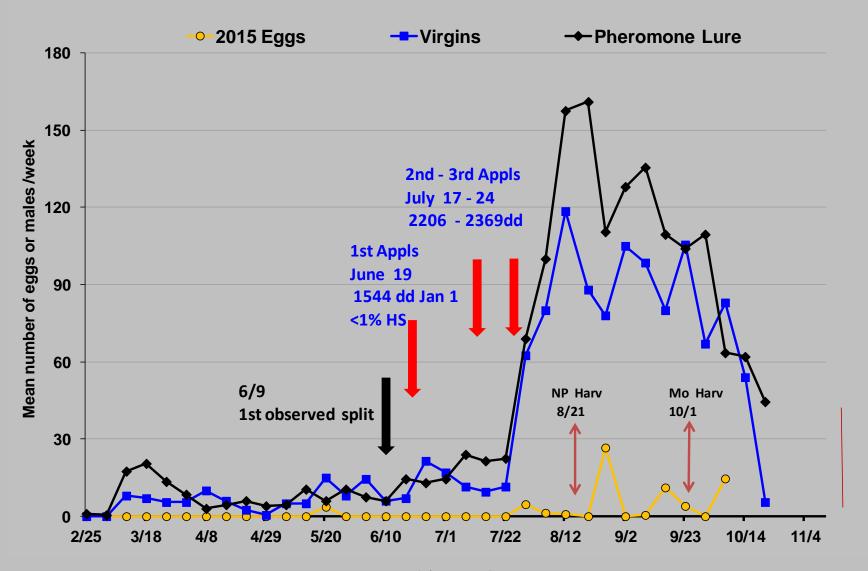
Pyrethroids

MD/New chems

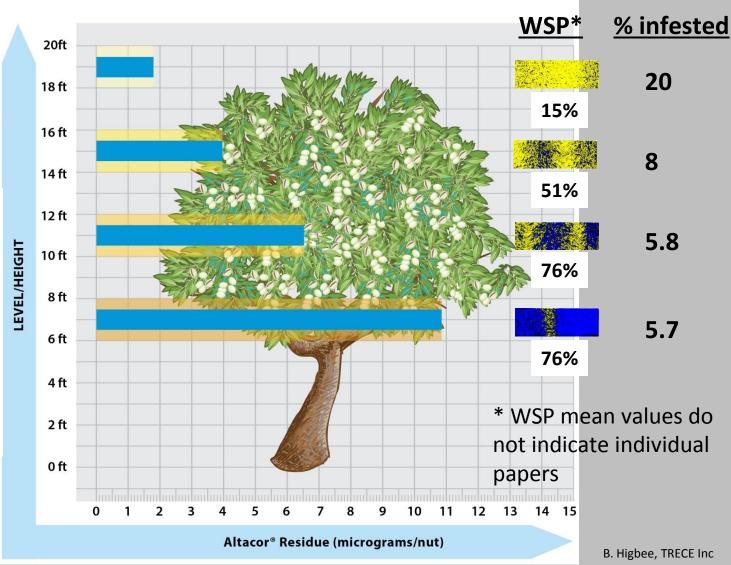
NOW damage to Pistachios

B. Higbee, TRECE Inc

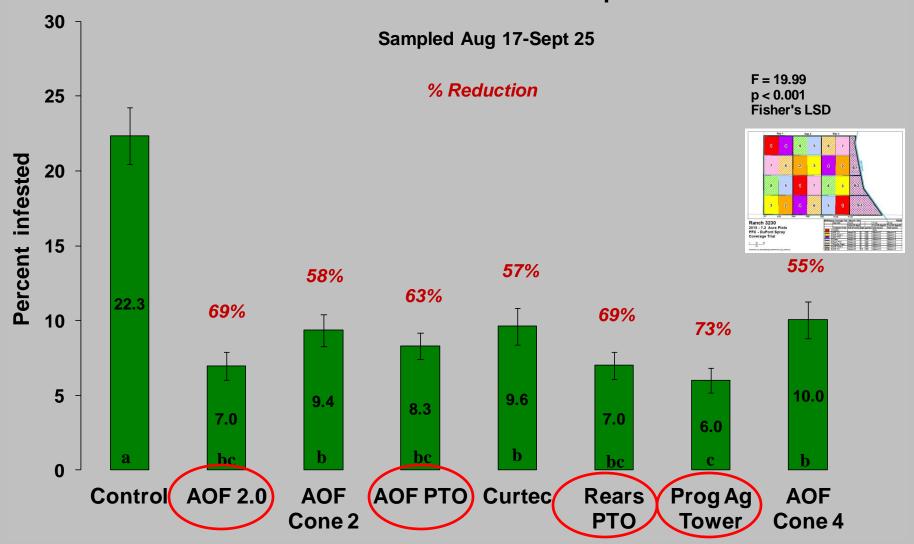
2015 Spray Coverage Trial


Treatment Regimes

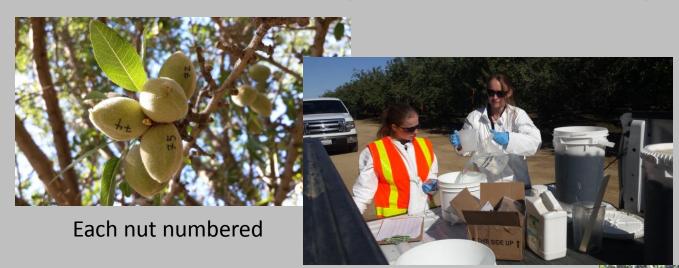
	NOW Spray Cove	erage Trial - Al				
	R3230					
		Early HS appl	<u>HS</u> Appl	Post HS Appl		
Р	roduct (fl oz/ac):	Intrepid (24)	Altacor (4.5)	Altacor (4.5)		
	Appl date:	19-Jun	17-Jul	24-Jul		
	DD from Jan 1:	1545	2206	2370		
		Targets		Actual		Avg (MPH)
	Treatment Code	<u>mph</u>	gals/ac	<u>mph</u>	gals/ac	<u>Airspeed</u>
2	40500	0.0	000	2.0	470	400
	AOF 2.0	2.0	200	2.0	172	100
	AOF 2.0 AOF Cone 2	2.0	200	2.0	212	100 125
3		_		_		
3 4	AOF Cone 2	2.0	200	2.0	212	125
3 4 5	AOF Cone 2 AOF PTO	2.0 2.0	200 200	2.0 1.9	212 212	125 120
3 4 5 6	AOF Cone 2 AOF PTO Curtec	2.0 2.0 2.0	200 200 200	2.0 1.9 1.9 - 2.1	212 212 200	125 120 50


Almond Insecticide Spray Coverage Trial 2015

Air-O-Fan Spray Coverage (2 sprays)



- Extremely rugged design
- 100 mph, Hi
 Volume air
- Nozzle flexibility a plusMulti-Boom



2013 Trial

Almond Spray Coverage Trial- 2015 NOW Infested nuts from Tree/level samples - NP+Mo

100% Coverage by Dipping Nuts

Mix spray solution

Determine maturity status

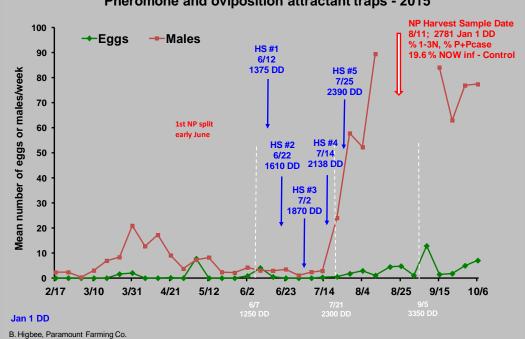
Nut Dipping

- At each of the 3 spray application timings, 300 NP nuts were dipped in situ for 5 secs in the spray tank solution.
- Interior trees, 5-6' from ground.
- % NP split:
 - June 19 = 0%
 - July 17 = 66%
 - July 24 = 94%

Control nuts – not dipped

Treated nuts - dipped x 3

- Aug 17 % NOW infested/damage to NP
 - Infested: = Control 36.3% vs Dipped 2.3% = 93.6% reduction.
 - Damage = 26% vs 2% = 92.3% reduction
- Many dead neonates on treated nuts (96.4% vs 7.4% of larvae were dead)
- Therefore: Under heavy pressure, the best this 3 spray program can achieve is 2% damage, or a reduction of 92%!


Spray Coverage

- Under the conditions of this trial (≈ 30% infested,
 3 sprays) max potential is 92% damage reduction
- PTO based machines look as effective as engine driven – operational advantage
- Cone-jet nozzles do not provide any significant advantage at 2 mph, but may have potential at higher speeds (4 mph in this trial)
- The Progressive Ag tower continues to be a top performer, but not sig better than the standard AOF machines

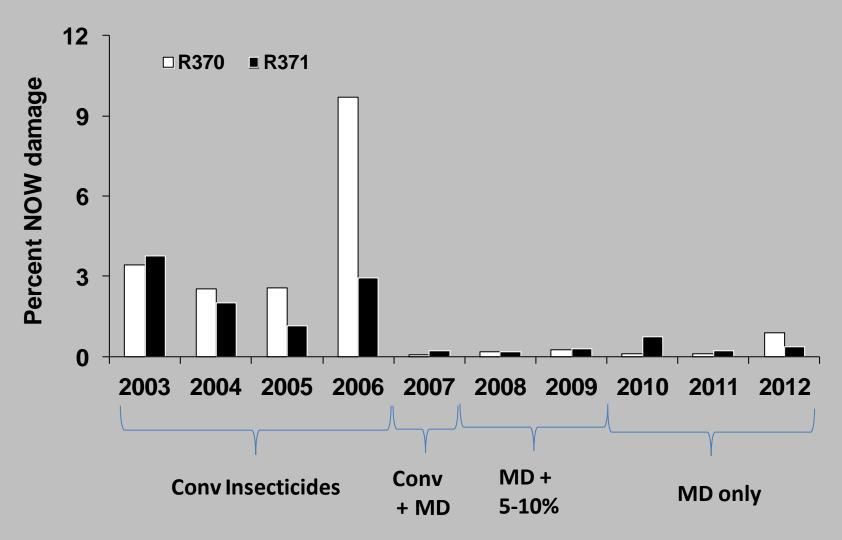
14044 Illisecticide Col	IILI	Of Ittal 2 - Allii	011a - 2013				
No MD				Timing			
Jan 1 DD		1400-1600 DD	1650-1850 DD	1900-2100 DD	2150-2350 DD	2400-2600 DD	
Treatments		Early HS	2nd Early HS	HS	1st Late HS	Late HS	
1		No Treatments					
	2	Warrior+Intrepid		Warrior+Intrepid		Brig+Altacor	
	3	Intrepid		Intrepid		Altacor	
	4	Warrior		Warrior		Brig	
	5	Intrepid	Intrepid	Altacor	Danitol	Danitol	
	6	Altacor	Altacor	Lorsban	Lorsban		
	7	Intrepid	Intrepid		Altacor	Altacor	
Estimated date		June 12- June 19	June 22- June 29	July 2- July 9	July 12- July 19	July 22- July 29	
Actual date		June 12	June 22	July 2	July 14	July 25	
DD (Jan 1)		1375	1610	1870	2138	2390	

NOW Insecticide Control Trial 2 - Almond - 2015

NOW Insecticide Programs - Almond

Program	Products	NP	Pollenizers	All Va	r % Reduction
#2 - 3 sprays	Warrior or Brigade + Intrepid or Altacor	4.4	2.5	3.1	81
#5 – 5 sprays	Intrepidx2-Altacor-Danitolx2	5.8	3.1	4.0	75.4
#3 – 3 sprays	Intrepid x 2 - Altacor	7.6	4.8	5.7	65
#4 – 3 sprays	Warrior x 2 - Brigade	14.4	5.8	8.8	47
Control	None	19.6	14.7	16.3	0

Insecticides


- Pyrethroid tank mixes are now required for the most impact
- Residue loading prior to harvest is the most effective strategy. The earlier timings, prior to beginning of the 2nd flight (mid-late June in Kern), do not seem to contribute as much to damage reduction
- The later the spray, the greater the impact. The window of time about 10-60 days prior to harvest are primetime for applications
- There has not been a new worm insecticide in 10+ years

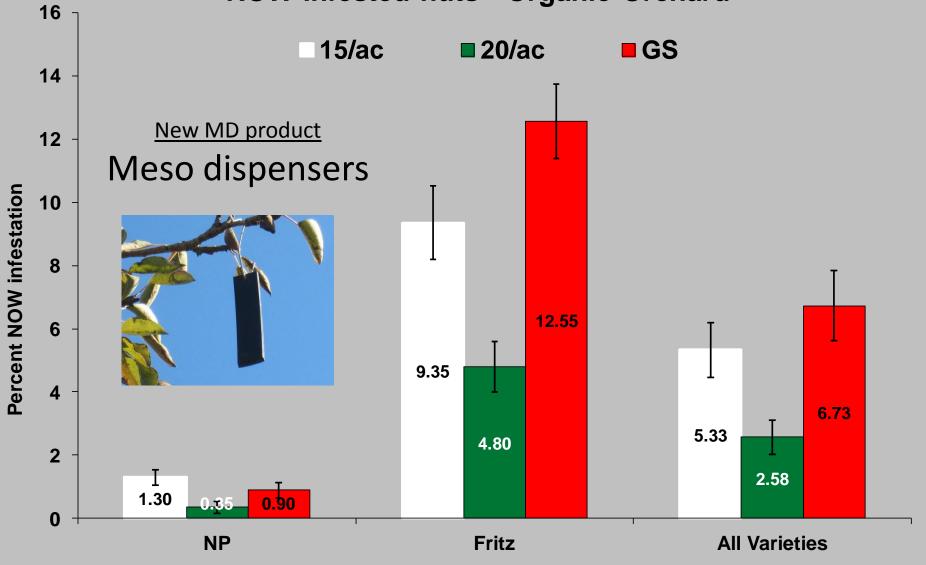
Mating Disruption


Santa Fe Areawide Project - 2500 acres 2007-2012 "Puffer" P24 **Mating Disruption** TS3 T80 T85 P36 T89 P6 (40) 42 (27) (31) (43) (45) 2008 Santa Fe OVIP/Delta Trap **NOW Areawide Project** (28) 32 (42) 17) (29) (33) (18) (43) (45) 46 (21) 2010 Santa Fe Egg, Delta & Pheromone Traps **NOW Areawide Proje** (28) 35) (32) (36) (38) (29) (33) **Development of Monitoring System** 46 monitoring sites, 1 per 54 ac 2012 Santa Fe Puffer - Early Egg, Delta & Pheromone Traps Puffer - Late **NOW Areawide Project** No Puffer

Santa Fe NOW Areawide Project

Historical NOW Damage - All varieties

** After 2007: 75-100% reduction in insecticide applications for NOW


Lost Hills Areawide NOW MD Project

Processor/huller samples - All Varieties

TRECE NOW MD Mesos - 2017

NOW infested nuts - Organic Orchard

Mating Disruption

- Proven benefit in almonds and more recently pistachios – 50% damage reduction is the expectation
- Adoption on steep incline in last 5 years
- Economics a factor
 - \$120-160+/ac for MD
 - \$40-60 per insecticide application
- New delivery technologies could add efficiency and flexibility to current puffer systems

NOW control in Almonds

- Foreign markets are driving down acceptable damage levels (aflatoxin)
- Pyrethroid performance is waning
- Coverage is problematic for ovi-larvicides
- Heavy pressure areas will require multiple appls of ovi-larvicides (3-5) + MD
- Lower pressure areas can be controlled with MD alone, or 1-2 sprays
- Combining insecticides with MD results in lowest damage in all situations

Bottom Line

- No new developments are on the horizon.
- We must use the tools we have as effectively and efficiently as possible.
- Low to moderate pressure situations can still be managed, but High pressure situations will require the most control inputs and there is no guarantee that an expectation of 1-2% NOW damage can be achieved.

What is the future for NOW management?

- Sanitation Costly, but likely will be most effective intervention until futuristic technologies overcome the need
- Insecticides Little if any in the pipeline
- Mating Disruption is it optimized? Competition may impact cost
- SIT Proven in other systems
 - Mass release of sterilized moths
 - RIDL Looks promising for mosquito control
- Molecular Approaches
 - CRSPR Clustered Interspersed Short Palindromic Repeats
 - Gene Editing no foreign DNA introduced
 - RNAi Ribonucleic Acid Interference
 - Gene silencing via interfering with mRNA
 - 5-10 yrs until seen in the field?

Thank you for your kind attention

