

Genetic Improvement of Beef Cattle: Current Practice and Future Prospects

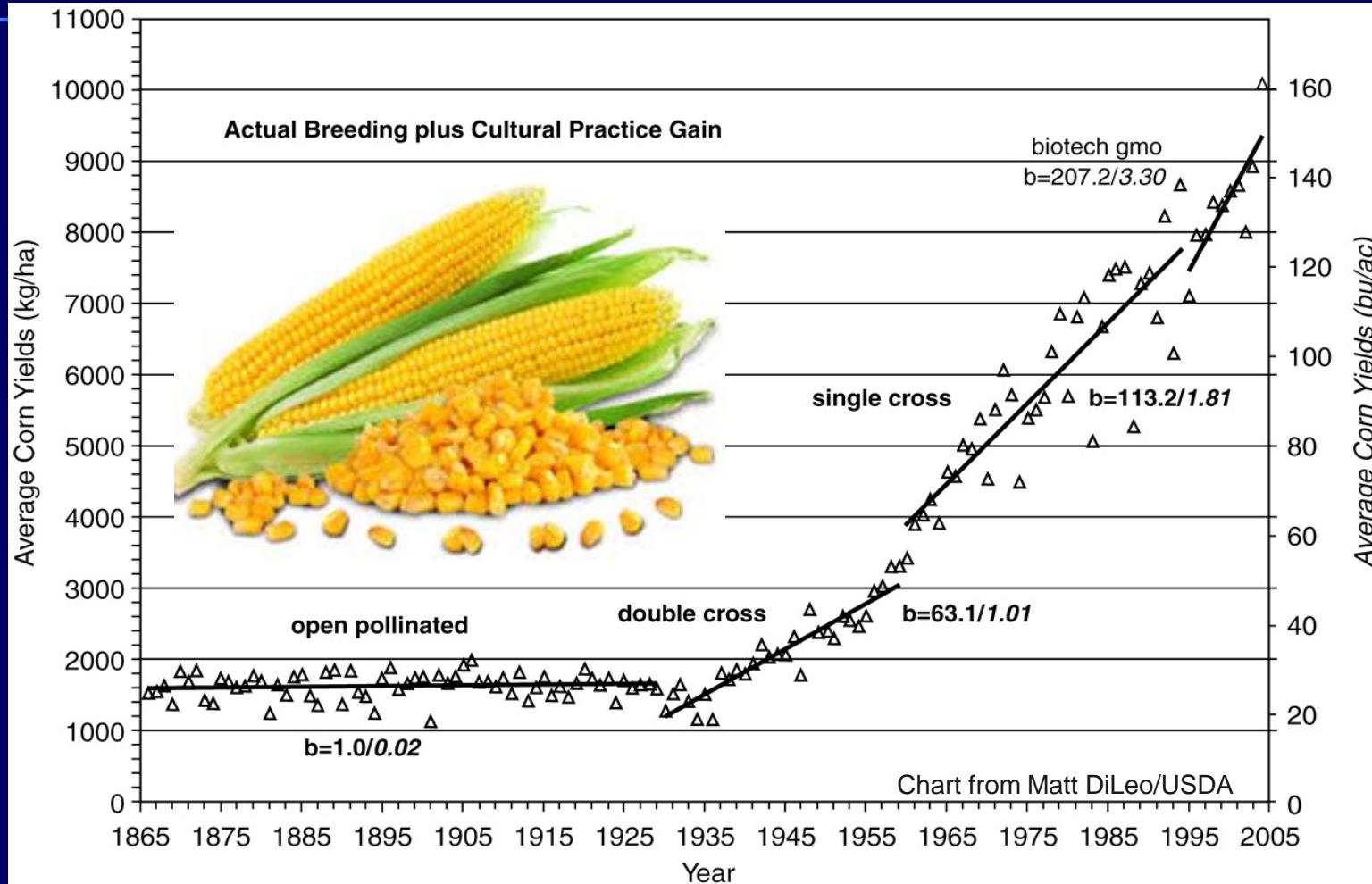
Alison Van Eenennaam, Ph.D.

Cooperative Extension Specialist
Animal Biotechnology and Genomics
Department of Animal Science
University of California, Davis, USA

UCDAVIS
ANIMAL SCIENCE

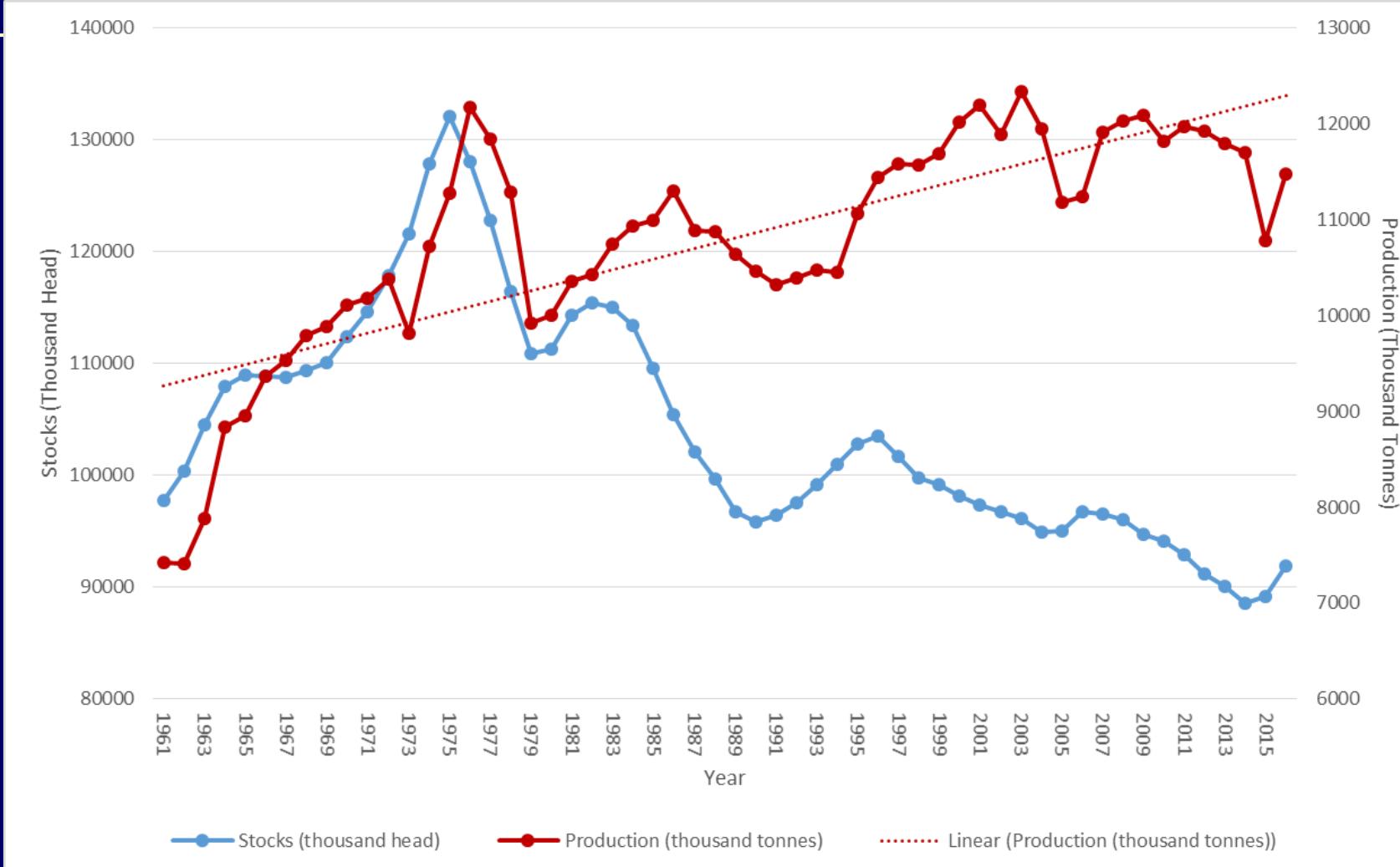
Email: alvaneenennaam@ucdavis.edu

Twitter: @BioBeef BLOG: <http://biobeef.faculty.ucdavis.edu>
<http://animalscience.ucdavis.edu/animalbiotech>



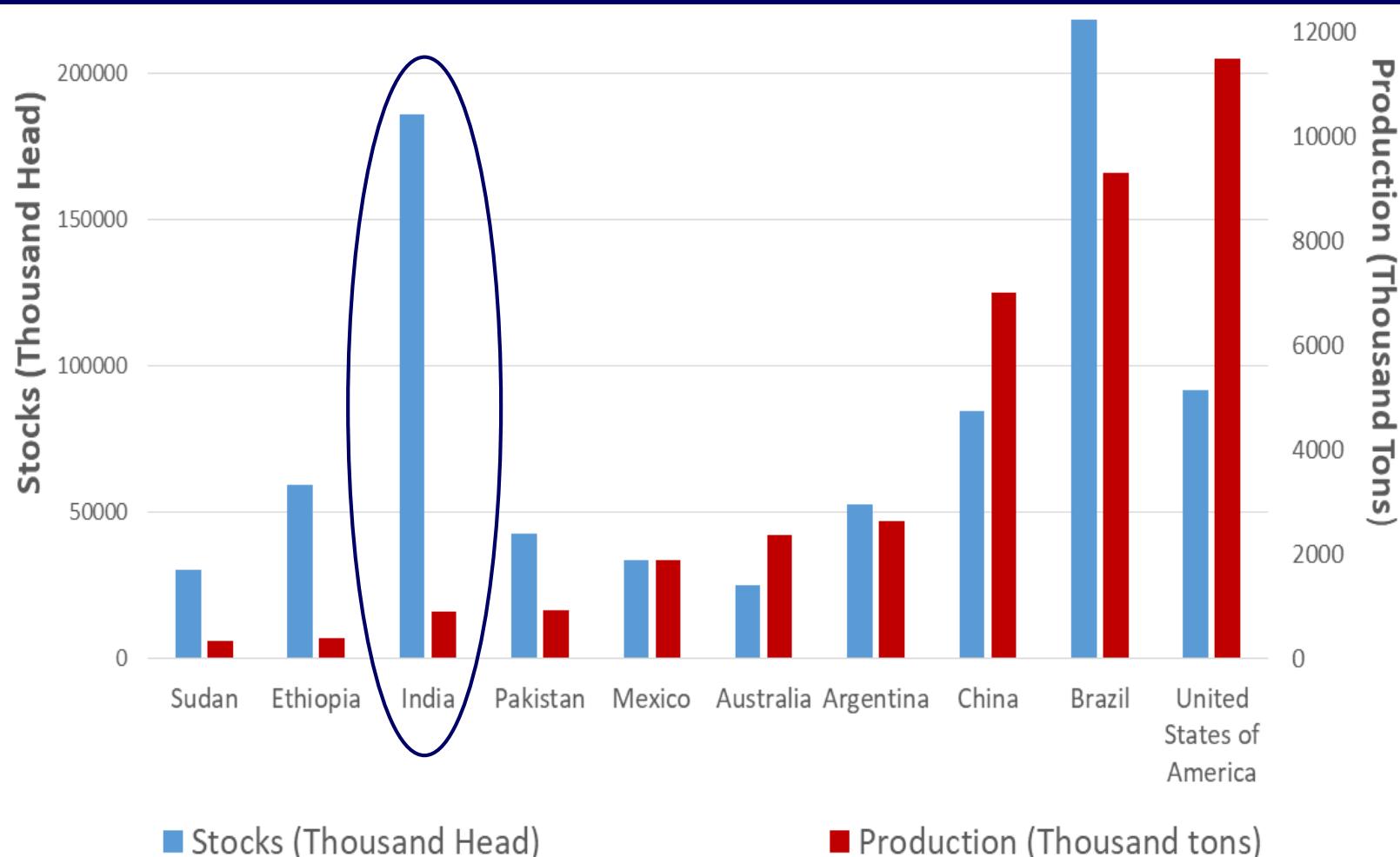
Animal breeders have used selection on phenotypes to great effect!

Plant and animal breeders have perhaps the most compelling sustainability story of all time



<https://grist.files.wordpress.com/2015/12/corn-hybrid-yields.jpeg>

US Cattle Inventory 1961 – 2015


Stocks Down ('000 Head; blue, left) vs. Production Up ('000 Tonnes; red, right)

2016 Global Beef Production Numbers

Cattle numbers ('000 Head; blue, left) vs. Beef production ('000 Tonnes; red, right)

A black and white photograph of Bill Nye, the Science Guy. He is wearing a light-colored shirt and a purple bow tie. He is holding a large, clear plastic dome over his head with both hands, looking upwards. In the foreground, there is a large, bold, white text that reads "SCIENCE". The text is partially cut off on the right side. The background is dark, and there are some glowing yellow lines and a small circular object on the left side.

SCIENCE

Time line for beef breeding

Bull purchase/selection

Progeny born

Progeny slaughtered

Female progeny used for breeding

2018

2019

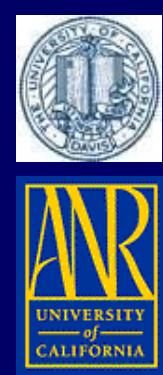
2020

2021

2022

2023

2024


2025

2026

2027

2028

Image adapted from
“More Beef from Breeding”
Workshop (2007). Meat and
Livestock (MLA), Australia

Practical Guide to Bull Buying

A vertical decorative image on the left side of the slide shows a stained glass window depicting a bull's head and neck. The glass is composed of various colored pieces (red, blue, green, yellow) set in a lead frame. The bull has a dark coat with a white blaze on its forehead and white socks on its legs.

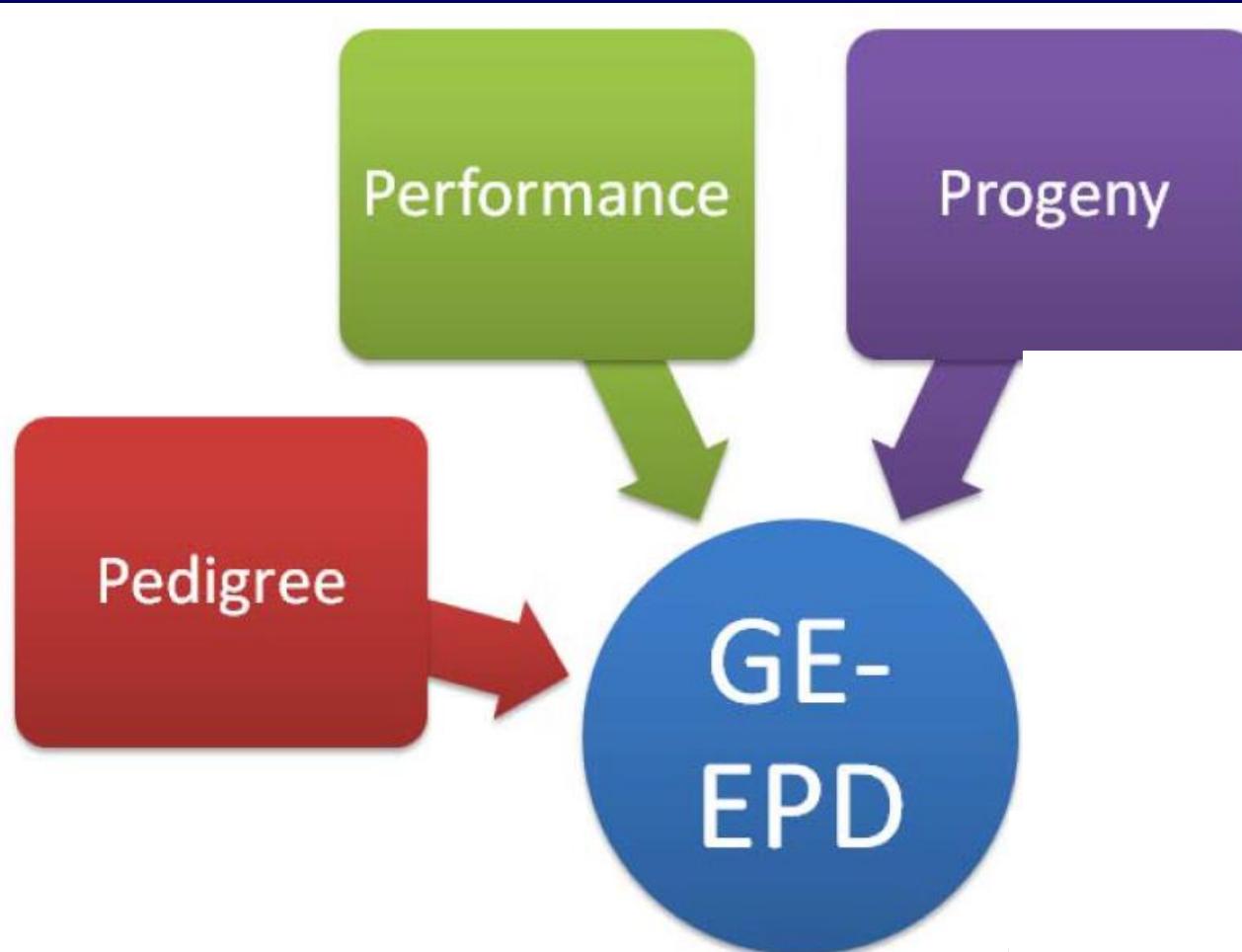
- Determine marketing strategy
 - Will heifers be retained?
- Determine management level
 - Labor
 - Nutrition
- Assure bulls are reproductively sound
 - BSE
- Check for structural soundness

Practical Guide to Bull Buying

- Set performance levels based on resource availability
- Select for performance using EPDs/Indexes
- Determine other selectable factors
 - Visual Appraisal
 - Disposition
 - Color
 - Horned/Polled

Performance

- Actual Measurement
- Ratios
- Expected Progeny Differences (EPD)
- Genomics


EPDs

- Best tool for selecting for performance traits
- Uses all information: actual measurement, relatives, environment, genomics
- Risk management tool

Information sources for EPDs

EPD

+65 lbs

Direct

+50 lbs

Expect the average difference in offspring to be 15 pounds.

EPD

+25 lbs

Maternal

+15 lbs

Expect the average difference in offspring of the sires daughters to be 10 pounds.

Calving Ease

Bull – Calving Ease Direct

Heifers/Cows

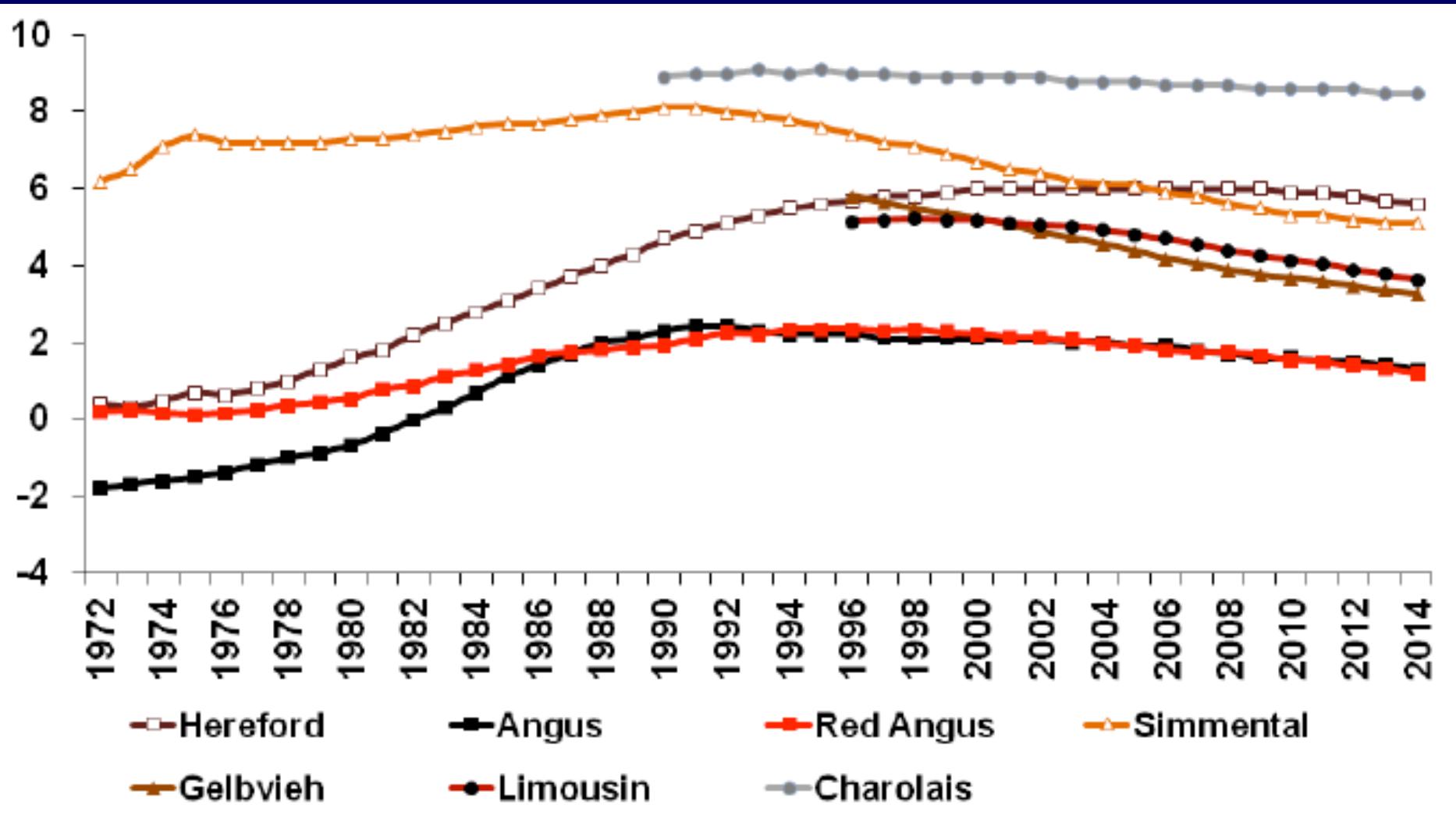
Time spent with calving females

Heifers – Calving Ease Maternal

If replacements are kept

Does not replace buying CED bull

Be careful not to put too much emphasis on selection for calving ease



Smallest calf

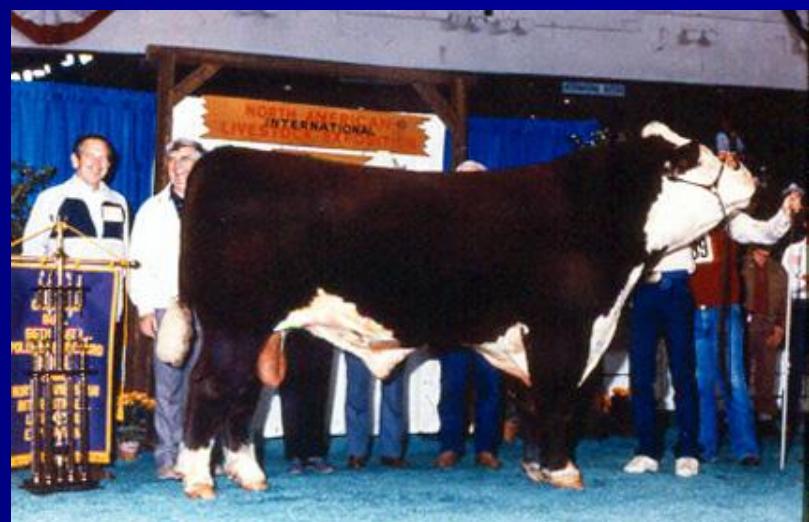
An 850-pound Angus cow, owned by Paul Utz of Madison, Va., licks the face of her calf. Weighing 16 pounds at birth, the calf is the

world's smallest, according to officials at the Guinness Book of World Records. (AP Laser-photo)

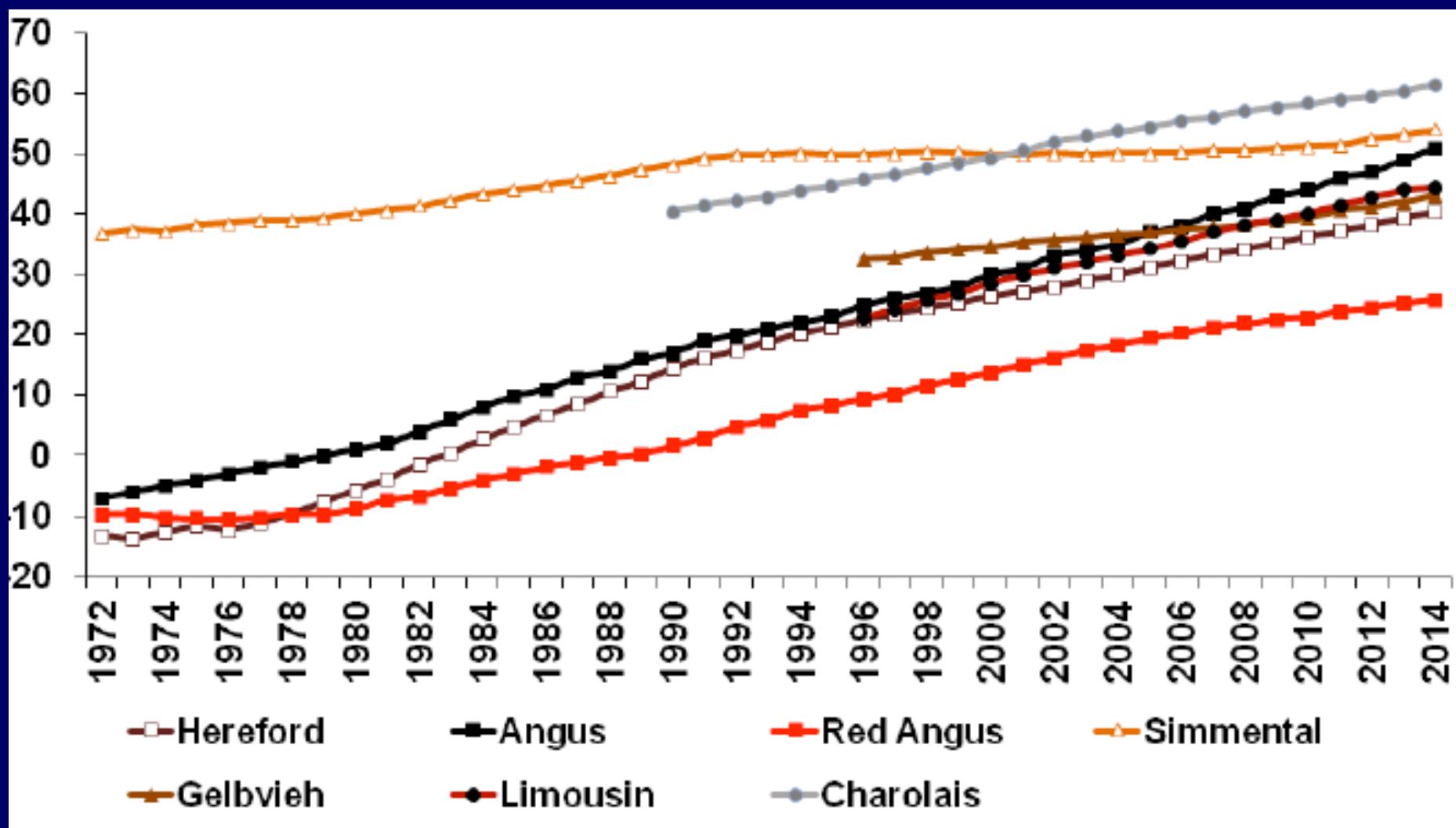
Birth Weight Trends

Growth

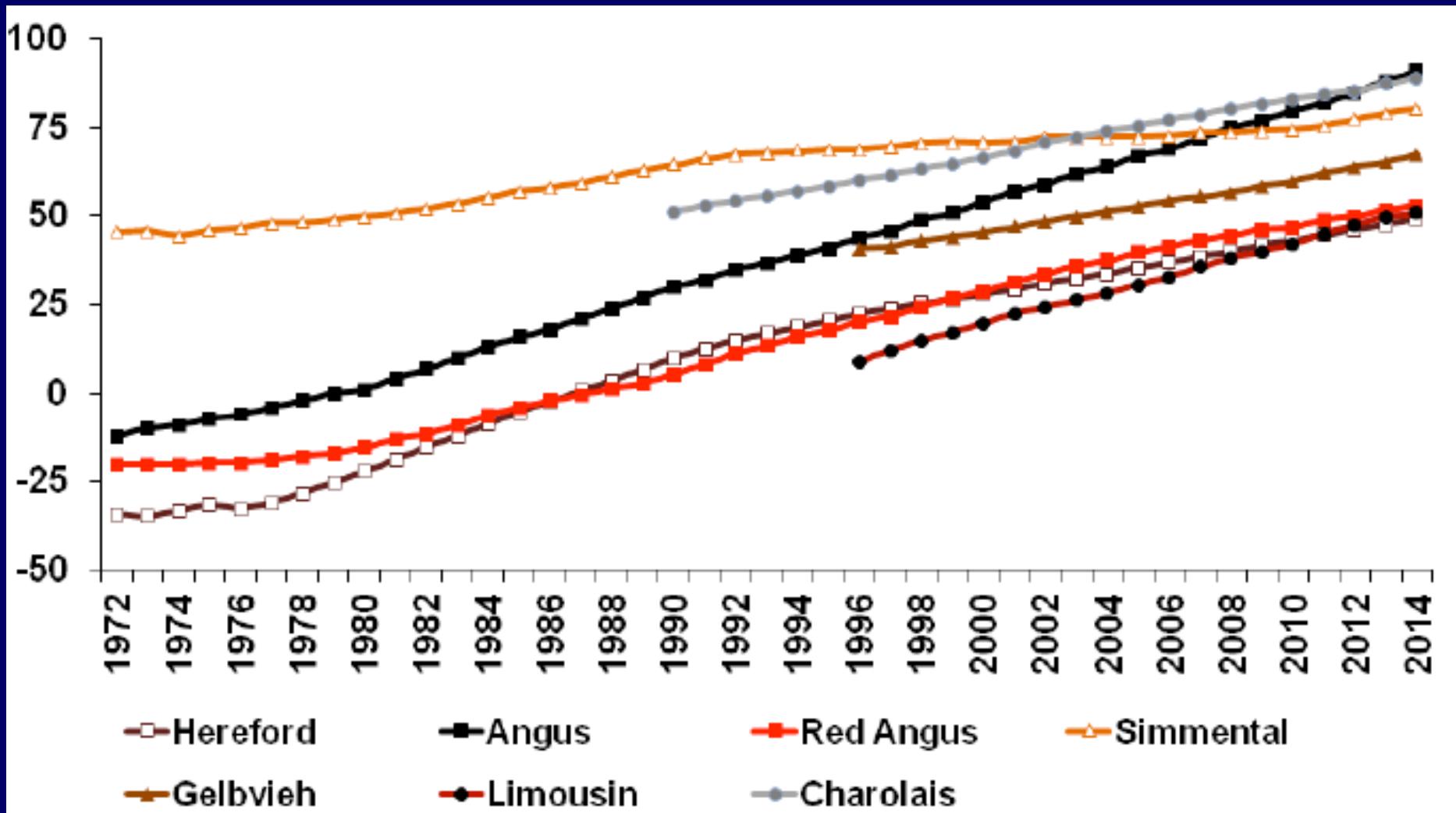

- Use EPD closest to marketing endpoint
 - Weaning Wt EPD
 - Yearling Wt EPD
 - Carcass Wt EPD
- Be aware of correlated traits
 - Milk
 - Mature Size
 - Calving Ease


1953. Grand Champion Angus
Female, International, 1953

1950. Grand Champion Steer,
International, weighing 1025 lbs

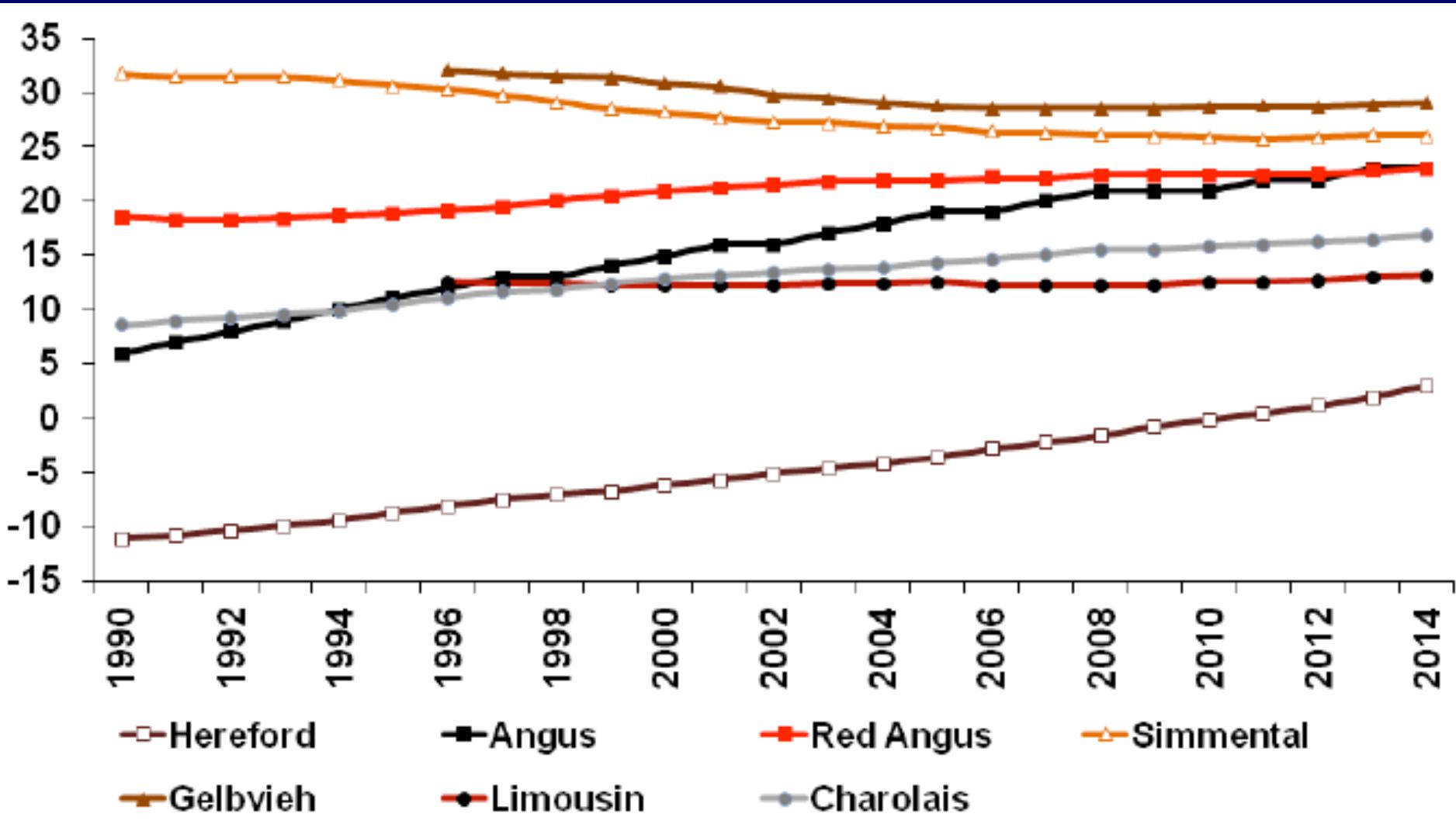


1986. "Coblepond New Yorker" weighed 2529
lbs and measured 65 inches tall at 35 mos.
(Frame 10) when he was Denver Champion.



1988 Grand Champion Bull, National Polled
Hereford Show (frame 10).
Images from Harlan Ritchie's historical review of type
<https://www.msu.edu/~ritchieh/historical/cattletype.html>

Weaning Weight Trends


Yearling Weight Trends

Maternal

- Milk
- Reproduction
 - Heifer Pregnancy
 - 30-Month Pregnancy
 - Stayability
 - Sustained Cow Fertility

Milk Trends

When making selection decisions to improve fertility – which group of cattle should selection focus upon?

A vertical, spiraling stained glass artwork with a variety of colors and patterns, located on the left side of the slide.

1. Bulls
2. Cows
3. Heifers

Genetic composition of the herd:

87% of genetic composition of calf crop is determined by the sires used over the last 3 generations

Maternal great-grand sires
(12.5%)

Maternal grand sires
(25%)

Sires (50%)

Image adapted from
“More Beef from Breeding”
workshop (2007). Meat and
Livestock (MLA), Australia

Carcass

- Carcass Wt EPD
- Quality Factors
 - Marbling EPD
 - % IMF EPD
- Yield Factors
 - Fat EPD
 - Ribeye Area EPD

Other

- Disposition
 - Docility EPD
 - Visual
- Scrotal Circumference
 - SC EPD
 - Actual Measurement
- Color/Horned-Polled
 - Homozygous vs Double bred
 - Carrier

30**PVF Insight 12****S A V Brilliance****PVF Missie****Triple C Majic Man****NB Sugar & Spice****NB Magic Sugar**

CE	BW	WW	YW	MCE	Milk	MWW	Marb	REA	API
14	-0.6	62	104	8	30	61	0.27	1.2	131

2018 Purebred Simmental Percentile Table

Purebred	
Fullblood	
Simbrah	
Hybrid	→
Top Fifty Sires	
Possible Change	

%	API	TI	CE	BW	WW	ADG	YW	MCE	MLK	MWW	STY	DOC	CWT	YG	MRB	BF	REA	SF
1	163.73	86.19	18.4	-2.4	85.8	0.30	131.1	15.7	32.7	68.5	19.3	15.2	53.8	-0.49	0.49	-0.100	1.17	-0.51
2	159.11	84.28	17.4	-1.9	83.3	0.29	126.8	14.9	31.4	66.8	18.5	14.7	50.9	-0.46	0.45	-0.094	1.12	-0.48
3	156.19	83.07	16.8	-1.6	81.7	0.28	124.1	14.3	30.5	65.6	17.9	14.4	49.0	-0.45	0.42	-0.091	1.09	-0.47
4	153.99	82.16	16.3	-1.4	80.5	0.27	122.1	13.9	29.9	64.8	17.5	14.2	47.6	-0.44	0.40	-0.088	1.07	-0.46
5	152.20	81.42	15.7	-1.2	79.5	0.27	120.4	13.6	29.4	64.1	17.2	14.0	46.5	-0.43	0.39	-0.086	1.05	-0.45
10	146.07	78.87	14.5	0.5	76.2	0.25	114.7	12.4	27.6	61.7	16.0	13.3	42.5	-0.40	0.33	-0.079	0.98	-0.42
15	141.93	77.16	13.6	-0.1	73.9	0.24	110.9	11.6	26.4	60.1	15.2	12.9	39.9	-0.38	0.30	-0.074	0.94	-0.40
20	138.63	75.79	12.9	0.3	72.1	0.23	107.8	11.0	25.4	58.9	14.6	12.5	37.8	-0.37	0.27	-0.070	0.90	-0.39
25	135.81	74.63	12.3	0.6	70.6	0.22	105.2	10.5	24.6	57.8	14.1	12.2	36.0	-0.35	0.24	-0.067	0.87	-0.37
30	133.26	73.57	11.7	0.9	69.2	0.22	102.8	10.0	23.9	56.8	13.6	11.9	34.4	-0.34	0.22	-0.063	0.84	-0.36
35	130.92	72.60	11.2	1.1	68.0	0.21	100.7	9.5	23.2	55.9	13.1	11.7	32.9	-0.33	0.20	-0.061	0.82	-0.35
40	128.68	71.67	10.7	1.3	66.7	0.20	98.6	9.1	22.5	55.0	12.7	11.5	31.4	-0.32	0.18	-0.058	0.80	-0.34
45	126.53	70.78	10.3	1.6	65.6	0.20	96.6	8.7	21.9	54.2	12.3	11.2	30.1	-0.31	0.16	-0.056	0.77	-0.33
50	124.40	69.90	9.8	1.8	64.4	0.19	94.6	8.3	21.3	53.4	11.9	11.0	28.7	-0.30	0.14	-0.053	0.75	-0.32
55	122.27	69.02	9.3	2.0	63.2	0.18	92.6	7.9	20.7	52.6	11.5	10.8	27.3	-0.29	0.12	-0.050	0.73	-0.31
60	120.12	68.13	8.9	2.3	62.1	0.18	90.6	7.5	20.1	51.8	11.1	10.5	26.0	-0.28	0.10	-0.048	0.70	-0.30
65	117.88	67.20	8.4	2.5	60.8	0.17	88.5	7.1	19.4	50.9	10.7	10.3	24.5	-0.27	0.08	-0.045	0.68	-0.29
70	115.54	66.23	7.9	2.7	59.6	0.16	86.4	6.6	18.7	50.0	10.2	10.1	23.0	-0.26	0.06	-0.043	0.66	-0.28
75	112.99	65.18	7.3	3.0	58.2	0.16	84.0	6.1	18.0	49.0	9.7	9.8	21.4	-0.25	0.04	-0.040	0.63	-0.27
80	110.17	64.01	6.7	3.3	56.7	0.15	81.4	5.6	17.2	47.9	9.2	9.5	19.6	-0.23	0.01	-0.036	0.60	-0.25
85	106.87	62.64	6.0	3.7	54.9	0.14	78.3	5.0	16.2	46.7	8.6	9.1	17.5	-0.22	-0.02	-0.032	0.56	-0.24
90	102.73	60.93	5.1	4.1	52.6	0.13	74.5	4.2	15.0	45.1	7.8	8.7	14.9	-0.20	-0.05	-0.027	0.52	-0.22
95	96.60	58.39	3.7	4.8	49.3	0.11	68.8	3.0	13.2	42.7	6.6	8.0	10.9	-0.17	-0.11	-0.020	0.45	-0.19
Avg	124.40	69.90	9.8	1.8	64.4	0.19	94.6	8.3	21.3	53.4	11.9	11.0	28.7	-0.30	0.14	-0.053	0.75	-0.32

30

PVF Insight 12

S A V Brilliance

PVF Missie

Triple C Majic Man

NB Sugar & Spice

CE	BW	WW	YW	MCE	Milk	MWW	Marb	REA	API
14	-0.6	62	104	8	30	61	0.27	1.2	131

2018 Purebred Simmental Percentile Table

Purebred	%	API	TI	CE	BW	WW	ADG	YW	MCE	MLK	MWW	STY	DOC	CWT	YG	MRB	BF	REA	SF
1	163.73	86.19	18.4	-2.4	85.8	0.30	131.1	15.7	32.7	68.5	19.3	15.2	53.8	-0.49	0.49	-0.100	1.17	-0.51	
2	159.11	84.28	17.4	-1.9	83.3	0.29	126.8	14.9	31.4	66.8	18.5	14.7	50.9	-0.46	0.45	-0.094	1.12	-0.48	
3	156.19	83.07	16.8	-1.6	81.7	0.28	124.1	14.3	30.5	65.6	17.9	14.4	49.0	-0.45	0.42	-0.091	1.09	-0.47	
4	153.99	82.16	16.3	-1.4	80.5	0.27	122.1	13.9	29.9	64.8	17.5	14.2	47.6	-0.44	0.40	-0.088	1.07	-0.46	
5	152.20	81.42	15.9	-1.2	79.5	0.27	120.4	13.6	29.4	64.1	17.2	14.0	46.5	-0.43	0.39	-0.086	1.05	-0.45	
10	146.07	78.87	14.5	-0.5	76.2	0.25	114.7	12.4	27.6	61.7	16.0	13.3	42.5	-0.40	0.33	-0.079	0.98	-0.42	
15	141.93	77.16	13.6	-0.1	73.9	0.24	110.9	11.6	26.4	60.1	15.2	12.9	39.9	-0.38	0.30	-0.074	0.94	-0.40	
20	138.63	75.79	12.9	0.3	72.1	0.23	107.8	11.0	25.4	58.9	14.6	12.5	37.8	-0.37	0.27	-0.070	0.90	-0.39	
25	135.81	74.63	12.3	0.6	70.6	0.22	105.2	10.5	24.6	57.8	14.1	12.2	36.0	-0.35	0.24	-0.067	0.87	-0.37	
30	133.26	73.57	11.7	0.9	69.2	0.22	102.8	10.0	23.9	56.8	13.6	11.9	34.4	-0.34	0.22	-0.063	0.84	-0.36	
35	130.92	72.60	11.2	1.1	68.0	0.21	100.7	9.5	23.2	55.9	13.1	11.7	32.9	-0.33	0.20	-0.061	0.82	-0.35	
40	128.68	71.67	10.7	1.3	66.7	0.20	98.6	9.1	22.5	55.0	12.7	11.5	31.4	-0.32	0.18	-0.058	0.80	-0.34	
45	126.53	70.78	10.3	1.6	65.6	0.20	96.6	8.7	21.9	54.2	12.3	11.2	30.1	-0.31	0.16	-0.056	0.77	-0.33	
50	124.40	69.90	9.8	1.8	64.4	0.19	94.6	8.3	21.3	53.4	11.9	11.0	28.7	-0.30	0.14	-0.053	0.75	-0.32	
55	122.27	69.02	9.3	2.0	63.2	0.18	92.6	7.9	20.7	52.6	11.5	10.8	27.3	-0.29	0.12	-0.050	0.73	-0.31	
60	120.12	68.13	8.9	2.3	62.1	0.18	90.6	7.5	20.1	51.8	11.1	10.5	26.0	-0.28	0.10	-0.048	0.70	-0.30	
65	117.88	67.20	8.4	2.5	60.8	0.17	88.5	7.1	19.4	50.9	10.7	10.3	24.5	-0.27	0.08	-0.045	0.68	-0.29	
70	115.54	66.23	7.9	2.7	59.6	0.16	86.4	6.6	18.7	50.0	10.2	10.1	23.0	-0.26	0.06	-0.043	0.66	-0.28	
75	112.99	65.18	7.3	3.0	58.2	0.16	84.0	6.1	18.0	49.0	9.7	9.8	21.4	-0.25	0.04	-0.040	0.63	-0.27	
80	110.17	64.01	6.7	3.3	56.7	0.15	81.4	5.6	17.2	47.9	9.2	9.5	19.6	-0.23	0.01	-0.036	0.60	-0.25	
85	106.87	62.64	6.0	3.7	54.9	0.14	78.3	5.0	16.2	46.7	8.6	9.1	17.5	-0.22	-0.02	-0.032	0.56	-0.24	
90	102.73	60.93	5.1	4.1	52.6	0.13	74.5	4.2	15.0	45.1	7.8	8.7	14.9	-0.20	-0.05	-0.027	0.52	-0.22	
95	96.60	58.39	3.7	4.8	49.3	0.11	68.8	3.0	13.2	42.7	6.6	8.0	10.9	-0.17	-0.11	-0.020	0.45	-0.19	
Avg	124.40	69.90	9.8	1.8	64.4	0.19	94.6	8.3	21.3	53.4	11.9	11.0	28.7	-0.30	0.14	-0.053	0.75	-0.32	

Historically not all cattle breeding objectives have been economic

Photo taken in 1949 at Red Bluff Bull Sale, CA.

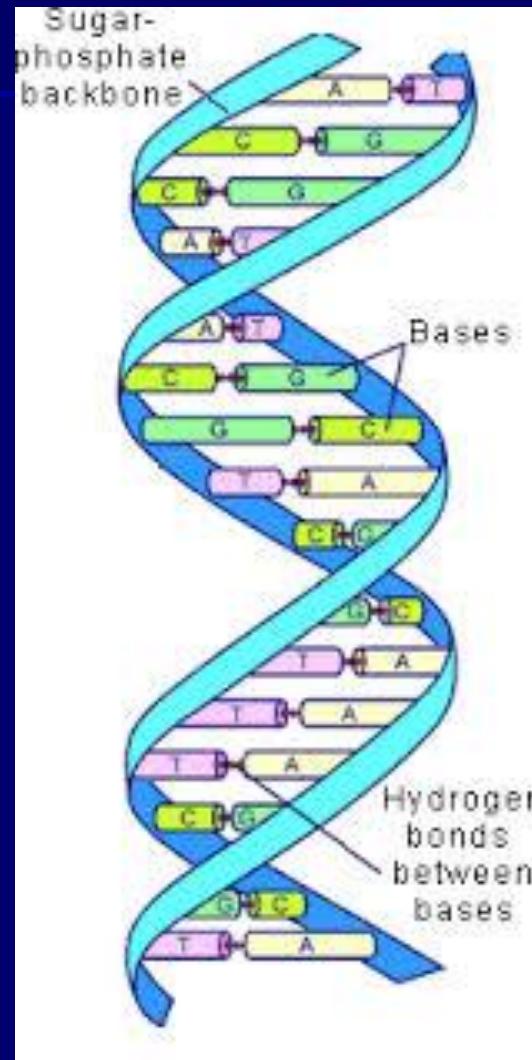
Kindly provided by Cathy Maas from Crowe Hereford Ranch, Millville, CA.

Selection Index

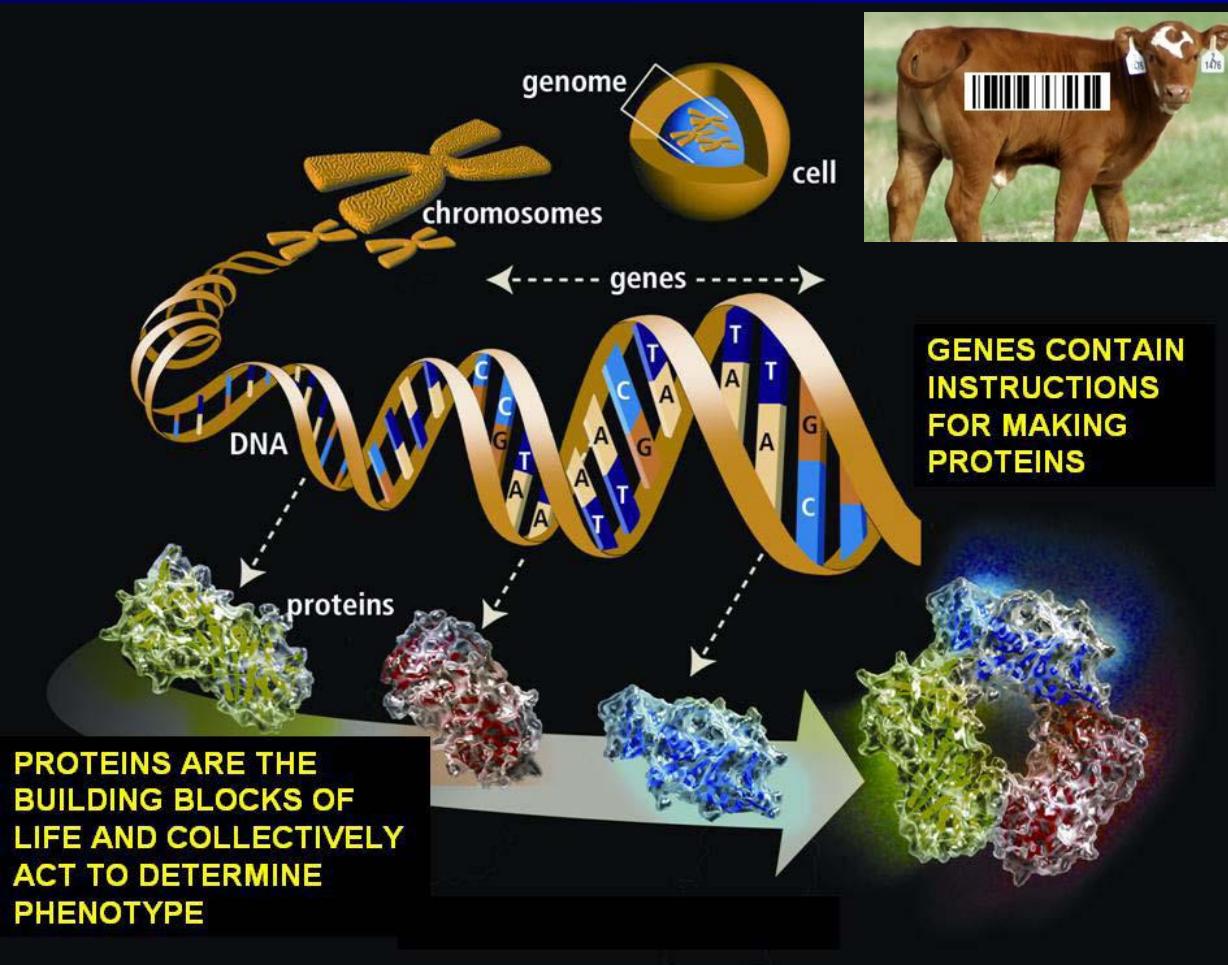
- Allows comparison on single value
- Weights traits according to economic importance
- Selection index
$$= a_1 EPD_1 + a_2 EPD_2 + \dots + a_k EPD_k$$

Selection Index

- Easy to use, selection based on one value
- Should be aware of EPD in index that is not of value to your beef operation
- If missing relevant EPDs, use SI in tandem with those EPDs


Many beef breeds have indexes which combine EPDs according to economics

TERMINAL	MATERNAL
\$B, \$F, \$G (Angus)	\$W, \$EN (Angus)
TI (Simmental)	API (Simmental)
CHB\$ (Hereford)	BMI\$, BII\$, CEZ\$ (Hereford)
MTI (Limousin)	HerdBuilder (Red Angus)
EPI and FPI (Gelbvieh)	\$Cow (Gelbvieh)
Charolais	\$M (Beefmaster)
GridMaster (Red Angus)	
\$T (Beefmaster)	\$Profit (Topline-Leachman Bulls)



Genomics

The bovine genome is similar in size to the genomes of humans, with an estimated size of 3 billion base pairs.

Human & cattle genomes are 83% identical

1000 Bull Genomes Run 6

2703 Sequenced Animals, 11x

~55 Breeds: Dairy, Beef, Dual Purpose, Crosses, Composites

$2703 \times 11 \times 3 \text{ billion} = 90,000,000,000,000$

1000 Bull Genomes Run 6

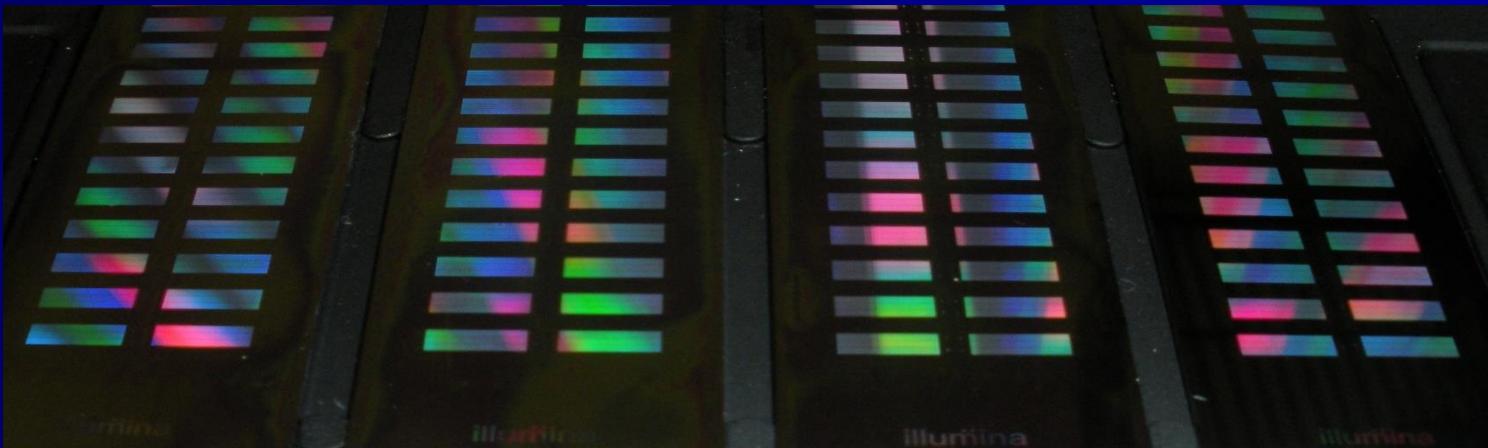
86.5 million single-nucleotide polymorphisms (SNPs) and 2.5 million small insertion deletions

Run 6 – Taurus only

**44.7 million filtered variants
43 million SNP, 1.7 million Indel**

Run 6 – Taurus Indicus

**86.5 million filtered variants
84 million SNP, 2.5 million Indel**



Hayes, B. J. & Daetwyler, H. D. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. *Annual review of animal biosciences*, doi:10.1146/annurev-animal-020518-115024 (2018).

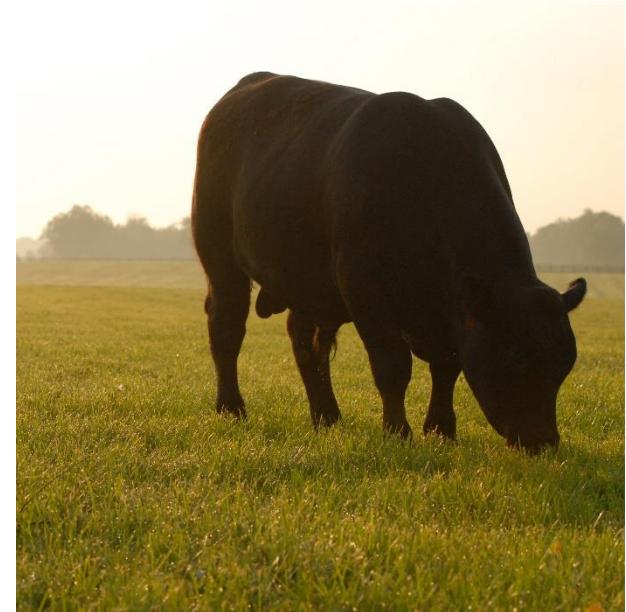
High-throughput genotyping technology enabled the development of high density “SNP chips”

The 2009 sequencing of the bovine genome allowed for the development of a 50,000 SNP chip, also known as the “50K”

We can use these SNPs for “genomic” selection?

TRAINING POPULATION

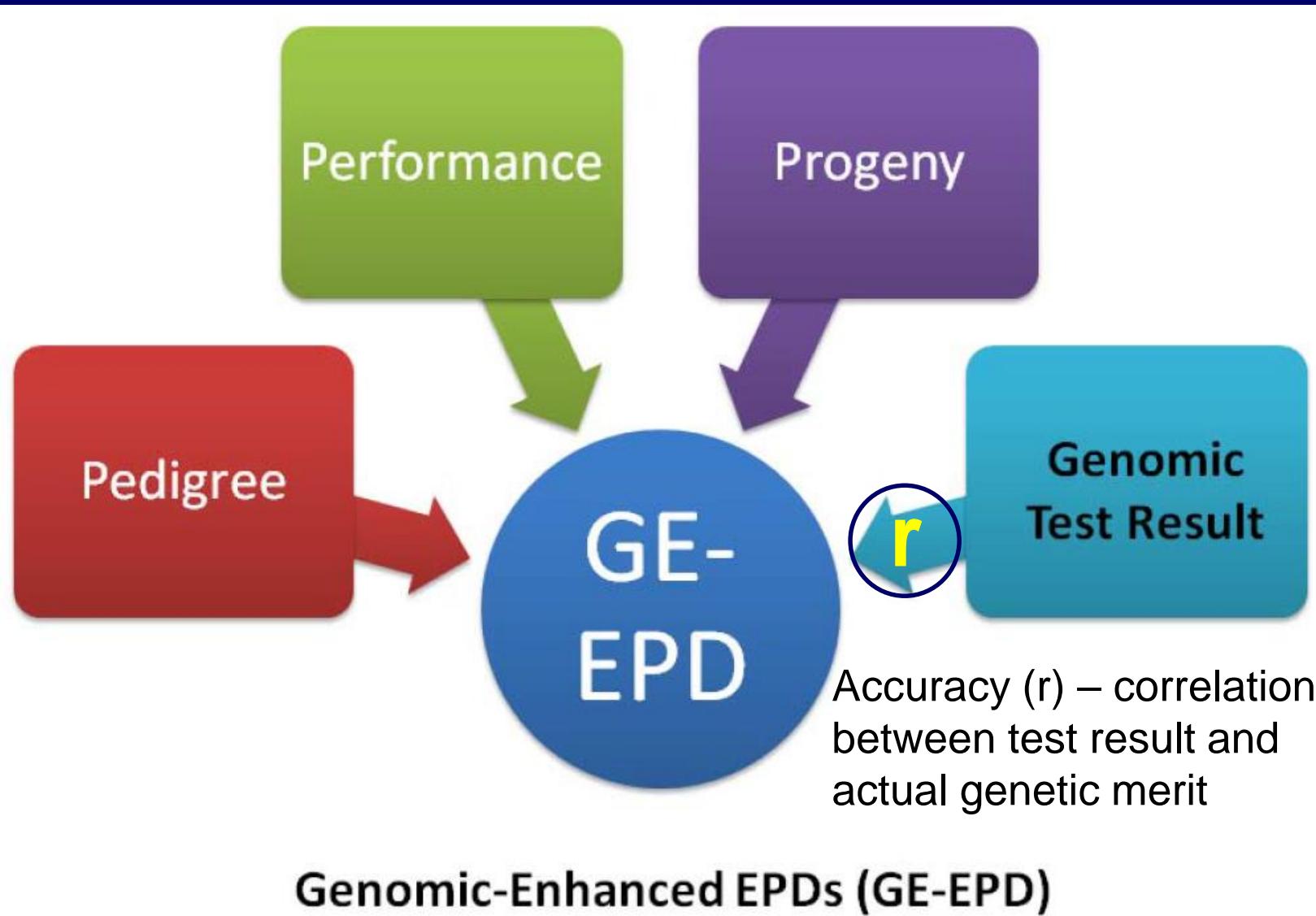
1,000s animals
– Phenotypes
– Genotypes


Training = estimate the value of every chromosome fragment contributing variation in a population with phenotypic observations

Prediction = the results of training can then be used to develop prediction equations to predict the merit of new animals (e.g. young bulls)

Angus: Current implementation size

- 7.7M birth weights
- 8.4M weaning weights
- 4.1M post-weaning gain records
- 1.5M heifer calving ease scores
- 112K carcass records
- 1.8M ultrasound records
- 19K individual intake records
- 237K docility scores
- 57K heifer pregnancy observations
- 199K mature cow weights



Genetic Correlation between genomic prediction results and phenotypic AAA data

Trait	h^2	r	Progeny Equivalent
Calving Ease Direct	.20	.67	24
Birth Weight	.42	.69	13
Weaning Weight	.20	.56	19
Yearling Weight	.20	.68	24
Dry Matter Intake	.31	.73	17
Scrotal Circumference	.47	.80	16
Docility	.37	.68	11
Heifer Pregnancy	.13	.62	22
Milk	.14	.37	14
Carcass Weight	.38	.60	7
Marbling	.45	.65	8

Information sources for EPDs – DNA just one source of data for GE-EPD

Genomics in National Cattle Evaluation (NCE)

A vertical decorative element on the left side of the slide, showing a stained glass window with a spiral pattern of colorful glass pieces.

- Currently several breeds are using genomic information in their national cattle evaluation programs
 - Angus
 - Red Angus
 - Limousin
 - Simmental
 - Beefmaster
 - Hereford
 - Gelbvieh
 - Charolais
 - Santa Gertrudis
 - Brangus
- Other breeds are trying to incorporate genomic information
- Virtually only National Cattle Evaluation traits – only traits with enough data

How much do genetic tests cost?

- ~ \$13-20 for parentage testing
- ~\$20-\$30 per animal for a single mutation test for a disease or trait
- \$75-90 for the high-density SNP chips for genomic-enhanced EPDs.
- \$45-50 for the low-density imputation chips.

Breed associations work to include that genomic information to provide genomic-enhanced EPDs (GE-EPD) that have improved accuracy due to the inclusion of the genomic information in the EPD calculations.

If multiple tests can be performed on a single DNA sample or a large volume of samples is tested then the cost per test is reduced.

Additional costs can include the cost of DNA cards, sample collection, sample storage and shipping and sample processing, again depending on sample type, test and application.

There are several tests that are being marketed for use on commercial cattle that are not directly part of a breed association genetic evaluation program.

- **GeneMax Advantage** (\$39) and **GeneMax Focus** (\$17). Distributed by Angus Genetics Inc. (AGI) and marketed by Zoetis® for cattle that are at least 75% Angus.
- **PredicGEN** (\$19.50) is a test marketed by Zoetis® as “a heifer selection tool for straight-bred or crossbred British/Continental animals”
- **The Igenity Beef Profile** (\$29) marketed by Neogen® as “DNA profiles for crossbred and purebred cattle.” Predictions for weaning weight, yearling weight and hot carcass weight for a total of 16 traits scored on a 1–10 scale, plus two new selection indexes. “The Igenity profile was designed and validated for crossbred or straightbred cattle with backgrounds of **Angus, Red Angus, Simmental, Hereford, Limousin and Gelbvieh**
- **There aren't yet any independent, peer-reviewed papers documenting the field performance of these tests for commercial cattle.**

Crossbreed

- Should always be a consideration for commercial cattle producers
- Greatest benefit to reproduction and longevity
- Rule of thumb – no females with >75% one breed!

Website: eBEEF.org

YouTube: eBEEF

Twitter : @eBEEForg

Home Notifications Messages

Search Twitter

Tweet

eBEEF @eBEEForg

eBEEF is the beef genetics/genomics CoP with eXtension. We foster a research & outreach community, engage beef cattle producers & ag professionals.

ebeef.org

TWEETS 25 FOLLOWING 344 FOLLOWERS 76

Tweets Tweets & replies

Pinned Tweet

eBEEF @eBEEForg · Jun 18

eBEEF.org is live! One-stop site for beef cattle genetics and genomics information! #beef #cattle #genetics #genomics #agchat

eBEEF @eBEEForg · Jul 9

eBEEF site makes beef genetics easier to understand beefproducer.com/story-ebeef-si... @biobeef

eBEEF @eBEEForg · Jul 8

Easy-to-Understand Beef Genomics Now on eXtension Website - Wayne County Journal-Banner Online. Business waynejournalbanner.com/business/artic...

Who to follow · Refresh · View all

Stuart Somerville @StuTheF... Follow

Clumpy the Ranchhand @... Followed by VARS (Cody Cr... Follow

Gallagher N America @Gall... Follow

Find friends

Trends · Change

#VoteMoose

negroleaguesmuseum on Twitter

335K Tweets about this trend

#DescribeTwitterIn3Words

#DescribeTwitterIn3Words Is Creating The Best And The Worst Of...

118K Tweets about this trend

Federer

USDA NIFA

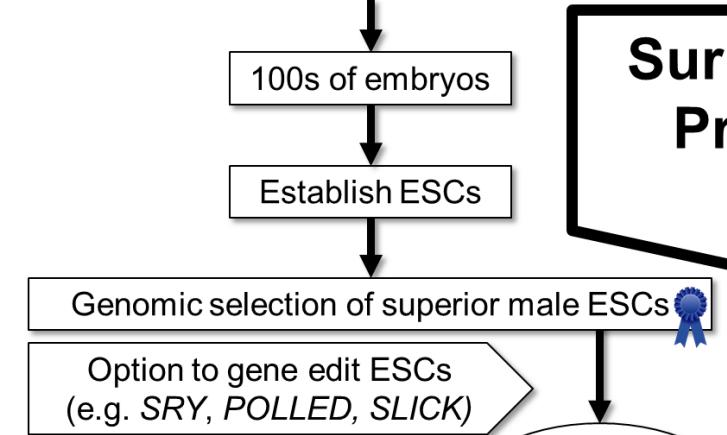
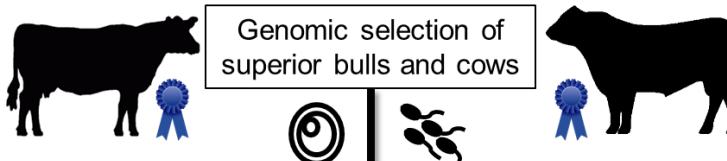
United States Department of Agriculture National Institute of Food and Agriculture

eBEEF was developed as part of USDA NIFA grants

2013-68004-20364

2011-68004-30367

2011-68004-30214

Take Homes

- DNA testing can be used to identify parentage, genetic defects, and to improve the accuracy of breed EPDs
- Tests have not been shown to work well in predicting genetic merit of crossbreds
- Economics of testing commercial cattle needs to be carefully considered – will depend on a number of factors – return greater on males than females

Germline: Efficient beef production (e.g. Angus)

(Gene edited)
superior male
ESCs

Germ cell
deficient,
male embryos

PCR selection of male embryos

Surrogate line: Environmentally adapted (e.g. Brahman)

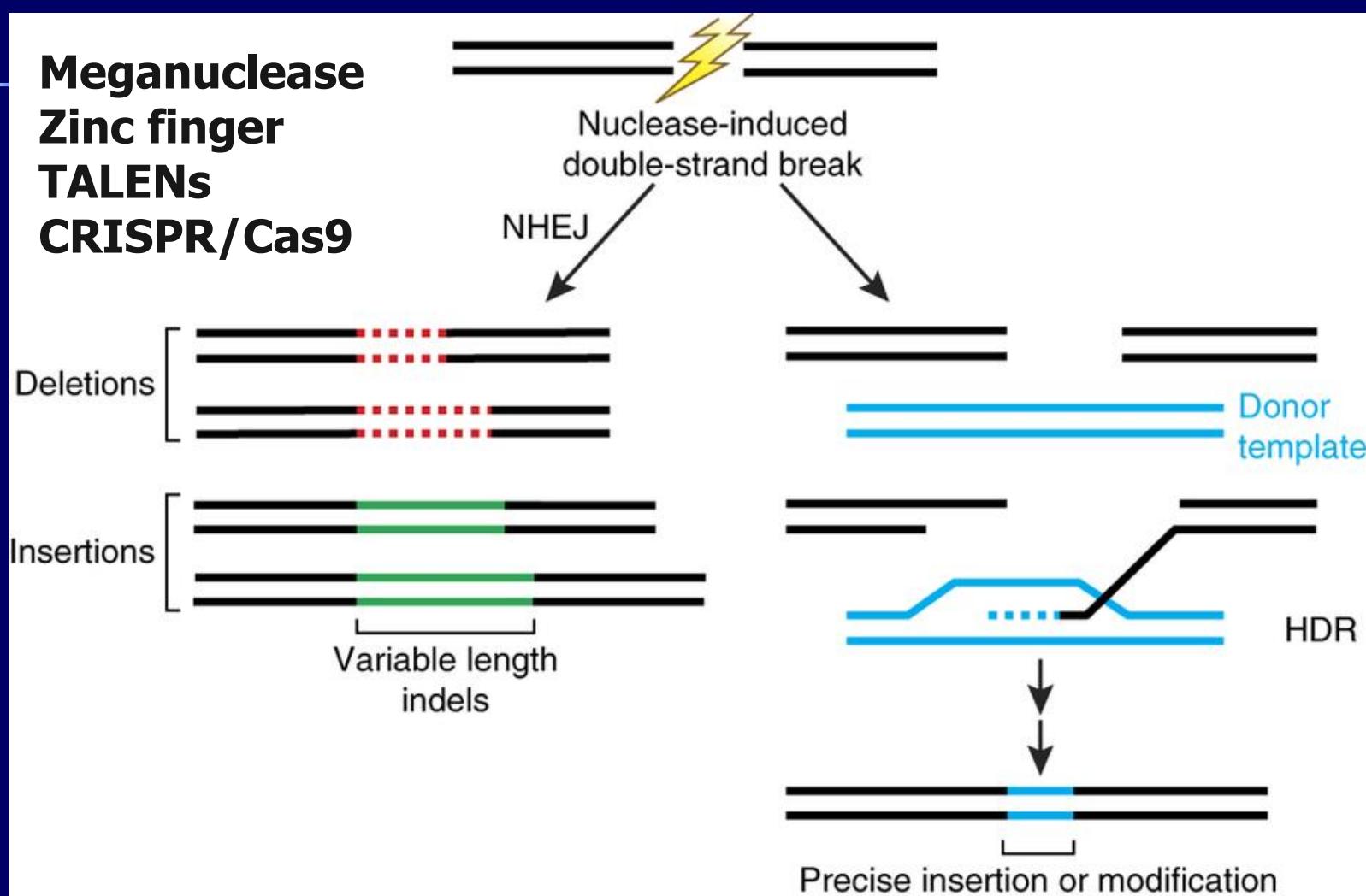
In vitro fertilization (IVF)

100s of embryos

Gene edit embryos to
be germ cell deficient

Surrogate Sire Production Model

Germline complementation


Embryo transfer to recipient cow

Gestation & maturation

Environmentally adapted (e.g. Brahman) bull with
superior beef production (e.g. Angus) sperm

Will gene editing allow an additional inflection point in rate of livestock genetic gain?

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. *Nat Biotech* 2014;32:347-355.

Animal Biotechnology and Genomics Education

Gene Edited Polled Calves

Naturally-occurring bovine allele at polled locus

Carlson DF, Lancto CA, Zang B, Kim E-S, Walton M, et al. 2016. **Production of hornless dairy cattle from genome-edited cell lines.** Nat Biotech 34: 479-81

Precision Breeding Offers New Alternative to Dehorning Cattle

https://www.youtube.com/watch?v=-Qks_LMmodw

Editing is the Cherry on Top of Breeding Sundae

It will be able to introduce useful alleles, and potentially bring in useful novel genetic variation to improve livestock rapidly, without “linkage” drag

Genome Editing

Somatic cell nuclear transfer cloning

Genomic Selection

Embryo Transfer

Artificial insemination

Progeny testing

Performance recording

Development of breeding goals

Association of like minded breeders

Cracking the genetic code for complex traits in cattle

20 February 2018

A massive global study involving 58,000 cattle has pinpointed the genes that influence the complex genetic trait of height in cattle, opening the door for researchers to use the same approach to map high-value traits including those important for beef and milk production.

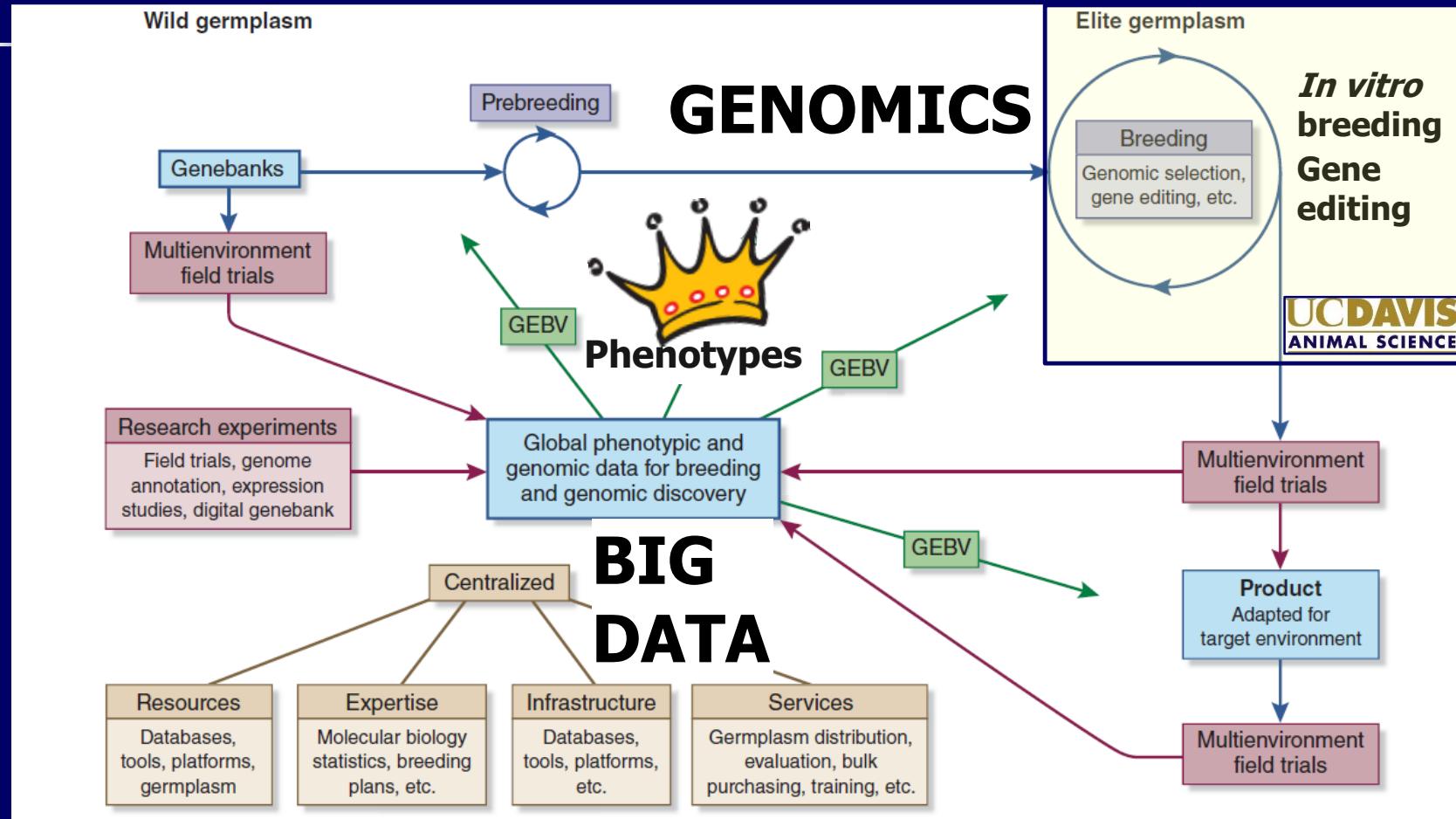
The University of Queensland's [Professor Ben Hayes](#), who heads the global 1000 Bull Genomes Consortium of 57 researchers from 30 institutes, said it had previously been a major challenge to identify variants in the genome affecting complex traits, due to variations within multiple genes, and behavioural and environmental factors.

"To overcome this issue, the consortium pooled large genomic datasets and phenotypes collected from 58,000 cattle around the world to gain the clearest picture so far of their genetics," Professor Hayes said.

"We needed access to vast resources of data in order to demonstrate that the genes affecting a complex trait like height can be accurately identified.

"By applying the same collaborative big data approach, it may now be possible to identify genes associated with high-value complex traits that are really important to the industry, such as beef and milk production, feed efficiency and reduced methane emissions."

The 1000 Bull Genomes Consortium's findings on height were confirmed by analysing the genetic material of miniature cattle and the DNA sequenced from a 6500-year-old wild auroch bone.


"Aurochs are an extinct species of large wild ox – which were domesticated by ancient humans about 10,000 years ago and bred to be shorter – and are the ancestor to all cattle breeds," Professor Hayes said.

"From analysing the DNA of this animal, we could predict its height, and then verify our prediction with the fossil records of auroch skeletons."

Bouwman AC, et al. 2018. **Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals.** Nat Genet. Feb 19. doi: 10.1038/s41588-018-0056-5. [Epub ahead of print] PubMed PMID: 29459679.

Strategy to combine big data and genomic selection as a unifying approach to deliver innovative “step changes” in the rate of genetic gain at scale

Hickey et al., 2017; Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery.
Nat Genet. 49:1297-1303.

Thanks for inviting me!

My laboratory receives public funding support from the National Institute of Food and Agriculture and the Biotechnology Risk Assessment Grant (BRAG) program, U.S. Department of Agriculture, under award numbers 2011-68004-30367, 2013-68004-20364, 2015-67015-23316 and 2015-33522-24106.

United States
Department of
Agriculture

National Institute
of Food and
Agriculture

