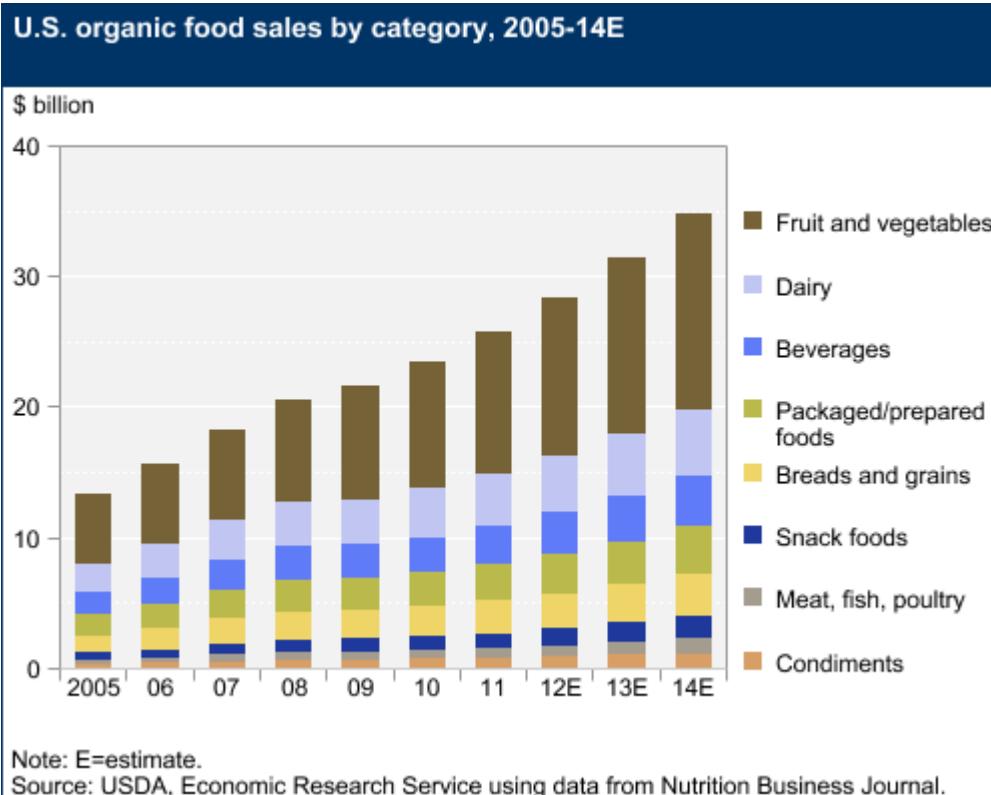


Organic Almond Production

by


Brent A. Holtz, PhD

County Director and Farm Advisor

San Joaquin County

Organic Sales Widen in All Food Categories

USDA does not have official statistics on U.S. organic retail sales, but information is available from industry sources. U.S. sales of organic products were an estimated \$28.4 billion in 2012—over 4 percent of total food sales—and will reach an estimated \$35 billion in 2014, according to the *Nutrition Business Journal*.

Organic Market Overview

The U.S. organic market in 2018 broke through the \$50 billion mark for the first time, with sales hitting a record \$52.5 billion, up 6.3 percent from the previous year, according to the 2019 Organic Industry Survey released Friday by the Organic Trade Association.

European Union

Japanese Agricultural Standard

University of California
Agriculture and Natural Resources

UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION
AGRICULTURE AND NATURAL RESOURCES
AGRICULTURAL ISSUES CENTER

2016

SAMPLE COSTS TO PRODUCE
ORGANIC ALMONDS

SAN JOAQUIN VALLEY - NORTH
SOLID SET SPRINKLER IRRIGATION

Brent A. Holtz

David A. Doll

Roger A. Duncan

Karen Klonksy

Daniel A. Sumner

Donald Stewart

Christine Gutierrez

UCCE Farm Advisor / County Director, San Joaquin County

UCCE Farm Advisor, Merced County

UCCE Farm Advisor, Stanislaus County

UCCE Extension Specialist, Department of Agricultural and Resource Economics, UC Davis

Director, Agricultural Issues Center, Department of Agricultural and Resource Economics, UC Davis

Staff Research Associate, Department of Agricultural and Resource Economics, UC Davis

Staff Research Associate, Department of Agricultural and Resource Economics, UC Davis

General Practices

- Start the orchard conventionally for the first 2-3 years, then transition to organic the next three.
- You will have a certified almond crop by your 6th or 7th leaf, just as you begin to reach your peak production years.

Why Start Conventionally?

- Because you will have a much more difficult time starting your almond orchard organically than conventionally.
- Weeds, nematodes, rodents, and fungal diseases can severely stress young trees and reduce their growth and canopy development!
- This early stress could slow production down by years.

Start Conventionally

- I have observed terrible weed control problems in orchards planted and started organically. Trees can be permanently stunted.

- First leaf almond trees in an orchard started organically

 University of California
Agriculture and Natural Resources

- Later in the season.

Young trees can be severely damaged with propane burning; young tree bark is thin and can be burned easily

 University of California
Agriculture and Natural Resources

Start Conventional--Weed Control

Use pre-emergent and contact herbicides down the tree row the first 2-3 years for weed control

 University of California
Agriculture and Natural Resources

Start Conventional

- Fumigate if you have high concentrations of plant parasitic nematodes or if your replanting a 2nd generation almond orchard

Fumigation
vs
control

Replant
Disease

- If you start conventional you can use baits and fumigates
- Get pests under control while you are conventional
- Pests are harder to control organically

Rodex 4000

- You can ignite propane and oxygen inside both squirrel and gopher burrows
- Owl boxes, traps

Start Conventional-Tree Nutrition

- You can supply necessary nutrients for the rapid tree growth
- It is easy to get behind nutritionally in an organic orchard.

After starting conventional for the first 2-3 years, it is much easier to transition to organic when the canopy is established and you shade out the weeds underneath!

Organic Weed Control

- The propane burner has been the most used and effective method to control weeds in organic almond orchards

Organic Weed Control

But weed control can run up to \$400 per acre in propane and tractor expenses, typically 12 applications per year

Nickels Estate-Colusa County

es

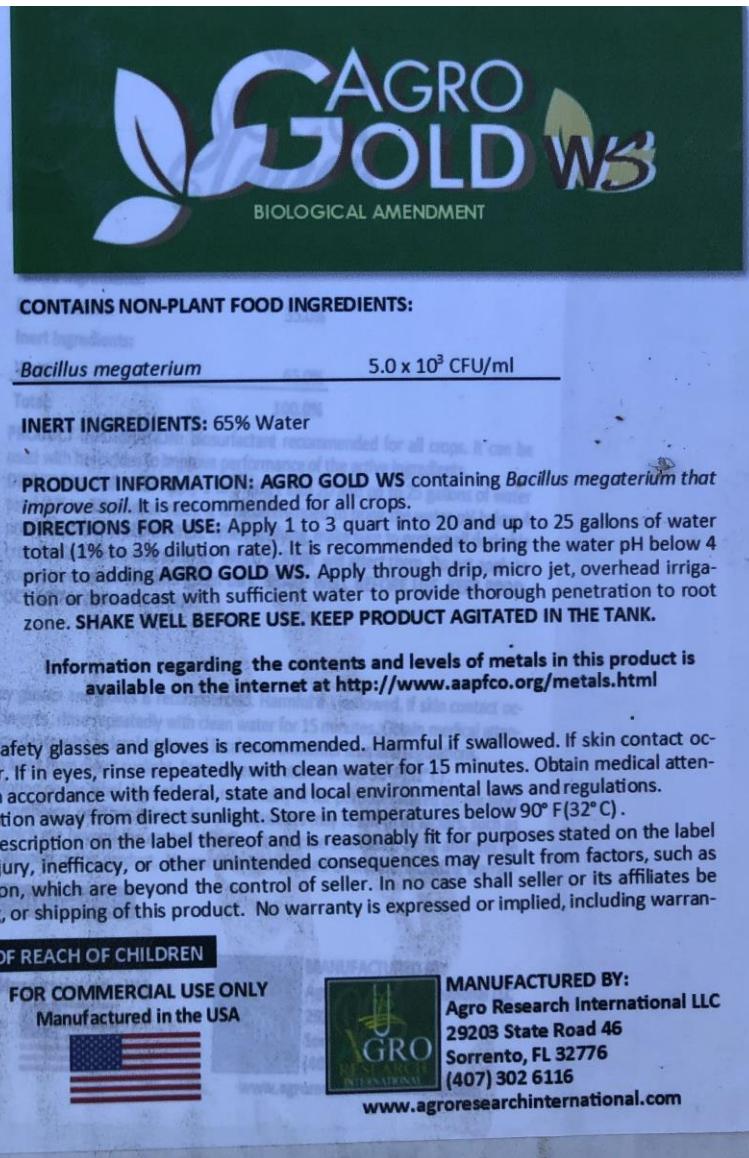
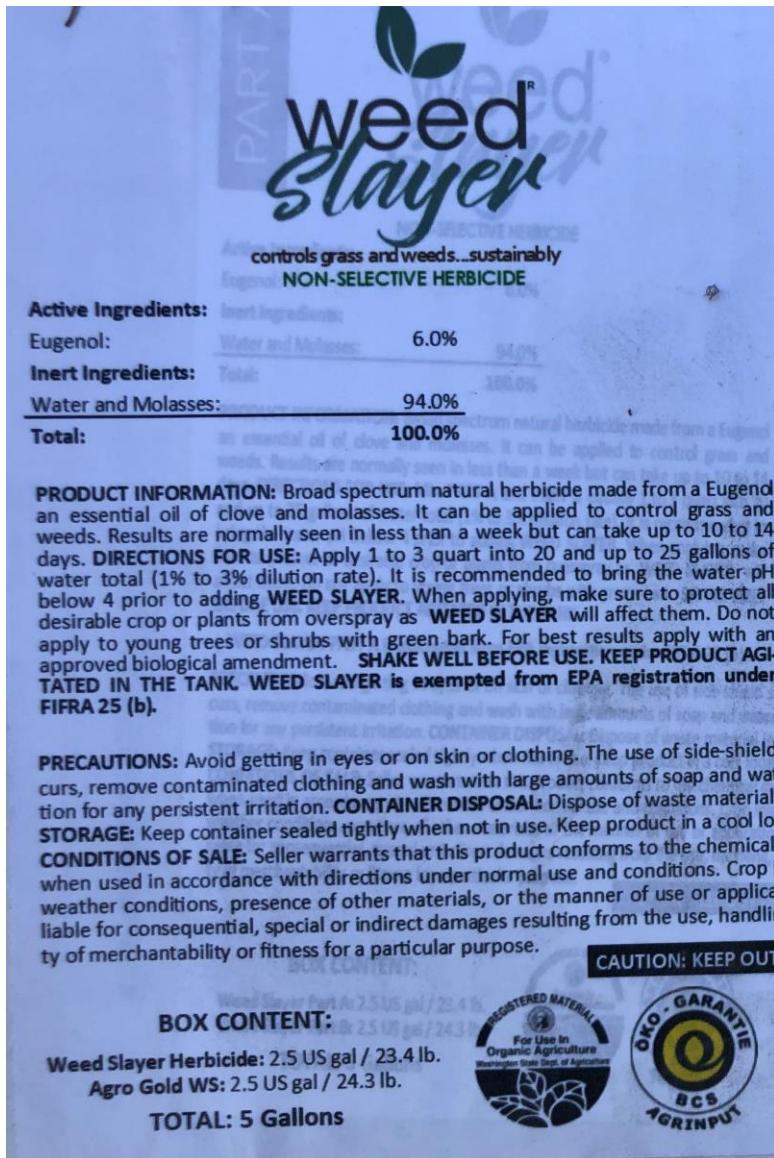
Mulches for weed control in organic pistachio

Hanging drip lines in the trees

 University of California
Agriculture and Natural Resources

Pop Up Rain Bird Sprinklers?

Some organic growers have considered putting in pop up sprinklers that they can mow over?

Subsurface drip irrigation at harvest

Subsurface drip irrigation on stone fruits.
You can convert after orchard establishment.

University of California
Agriculture and Natural Resources

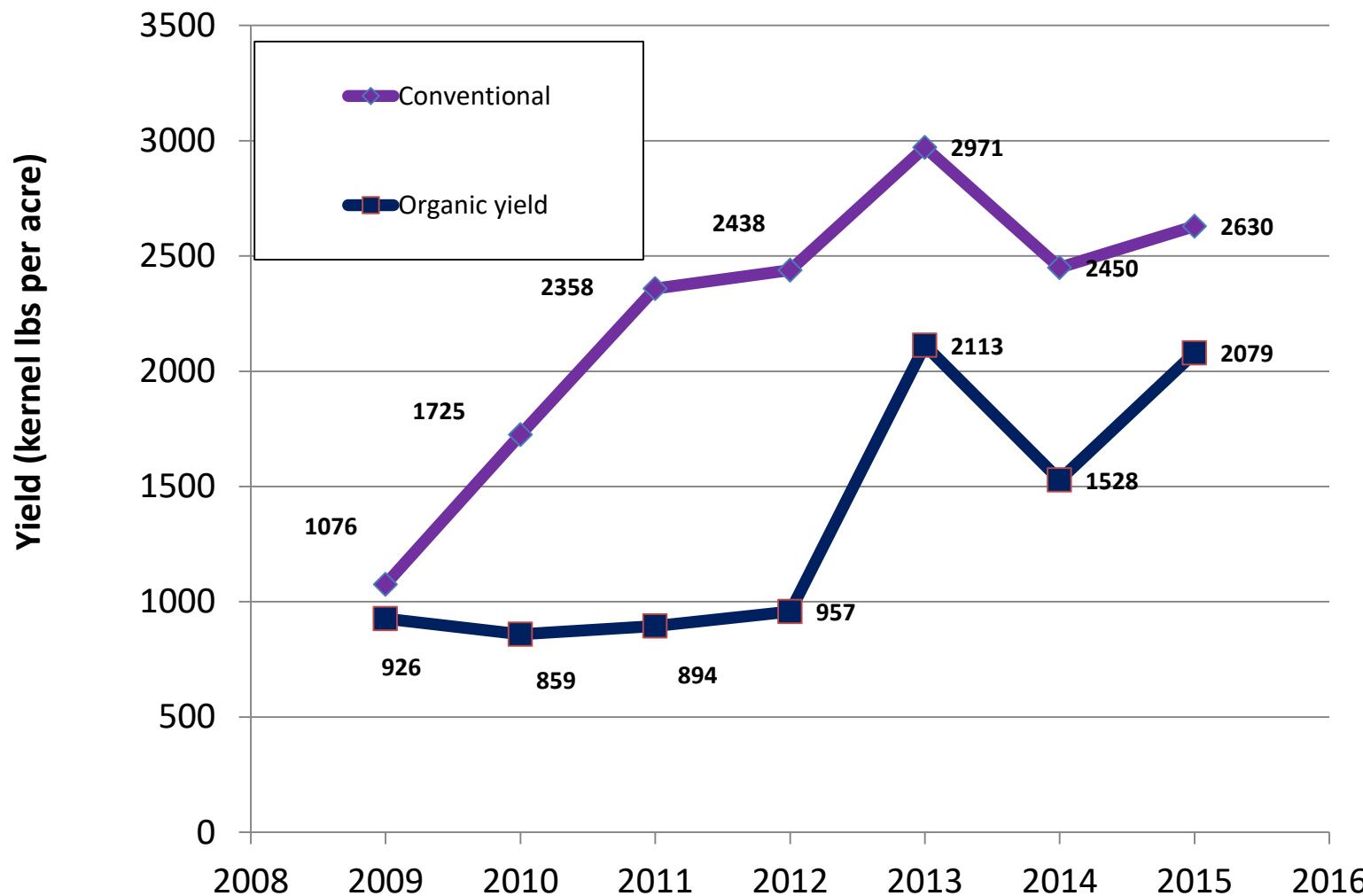
There are organic herbicides, but they are expensive, and results have been mixed.

University of California
Agriculture and Natural Resources

Frank Olagaray in Walnut Grove, developed this nice berm tiller for weed control, and started transitioning his almonds to organic in the second leaf. He will have first organic crop on his 5th leaf.

Irrigation tubing was attached to wire and run through tree canopy. The micro-sprinkler hangs down from the tubing to allow berm cultivation.

Nickel's Estate, Organic Trial established in 2008, by Franz Niederholzer



Standard

Organic

 University of California
Agriculture and Natural Resources

NP yields for conventional and organic treatments 2009-2015.

Good production (lbs/acre) under organic management has been achieved after rust controlled in 7th leaf.

Leaf	Year	Conventional	Organic	Org:Conv	%Leaf N (org)
7 th leaf	2012	2438	957	0.39	2.39
8 th leaf	2013	2971	2113	0.71	2.41
9 th leaf	2014	2450	1528	0.62	1.99
10 th leaf	2015	2630	2079	0.79	2.05
11 th leaf	2016	2198	1542	0.69	2.11
12 th leaf	2017	2217	1406	0.63	2.16
13 th leaf	2018	2542	2090	0.82	1.96

2016

SAMPLE COSTS TO PRODUCE
ORGANIC ALMONDS

Annual Yield Estimates

Year	Organic Kernel lbs.	Conventional Kernel lbs.
3	300	400
4	600	800
5	1,300	1,600
6+	1,800	2,200

Typically we project a 20% yield reduction

Cover Crops and Nitrogen

Vigorous cover crops can have many benefits, but they often produce seed and use nitrogen at a critical time of kernel development!

 University of California
Agriculture and Natural Resources

Native vegetation

Most organic growers do not plant a cover crop and they mow row centers to reduce frost potential.

 University of California
Agriculture and Natural Resources

- Organic growers may apply up to 10 tons of compost per acre per year in order to keep their trees from getting behind in nitrogen. In a compost that is 1.0 % N, then it will take 10 tons per acre to get the recommended 200 units of N we recommend for a mature almond orchard.
- Typically done in two applications.

Tree Nutrition- Potassium

- If you are applying up to 10 tons of compost per year in order to get your 200 units of N, you are also putting on potassium. Typically composts have more potassium than nitrogen.
- You can also get a lot of calcium, phosphorus, and organic matter from compost.

NEW ERA FARM SERVICE

www.newerafarmservice.com

COMPOST

COMPOSTED DAIRY MANURE

1.25 - 1.50 - 2.50

FOR USE WITH A STANDARD FERTILIZER PROGRAM

Helping Farmers Grow

NATURALLY

since 1974

Manufactured by:

New Era Farm Service, Inc.
2904 E Oakdale Ave
Tulare, CA 93274
559.686.3833

GUARANTEED ANALYSIS

Total Nitrogen (N) 1.25%

0.25% Water Soluble Nitrogen
1.00% Water Insoluble Nitrogen

Available Phosphoric Acid (P205) 1.50%

Soluble Potash (K2O) 2.50%

Derived from Composted Dairy Manure

SUGGESTED RATES OF APPLICATION

Commercial Crop Production

Use 3-10 tons per acre (43,560 square feet)

Professional Turf Application

Use 40-100 pounds per 1000 square feet

Trees, Shrubs & Ornamentals

One cubic foot of NEW ERA COMPOST will plant the following:

- 40 - One gallon size plants using 1 pound per plant
- 8 - Five gallon size plants using 5 pounds per plant
- 4 - Fifteen gallon size plants using 10 pounds per plant

Approximate ratio is one part NEW ERA COMPOST per six parts soil.

CONTENTS

Lot Number: _____

BULK _____

CU. FT. _____

CAUTION: KEEP OUT OF REACH OF CHILDREN

No immediate hazard if swallowed. If contact with eyes, skin and/or clothing occurs, flush with water and avoid further contact.

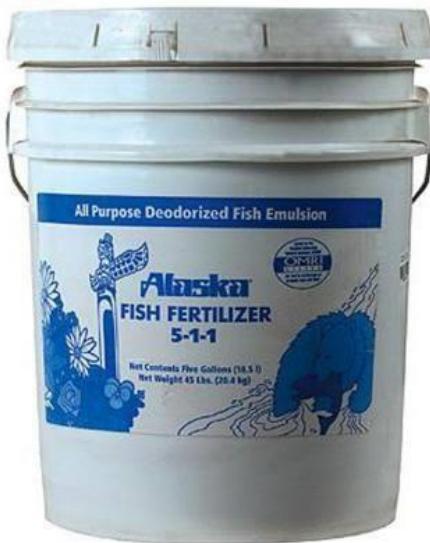
Non-toxic when spilled or leaked. Biodegradable Material

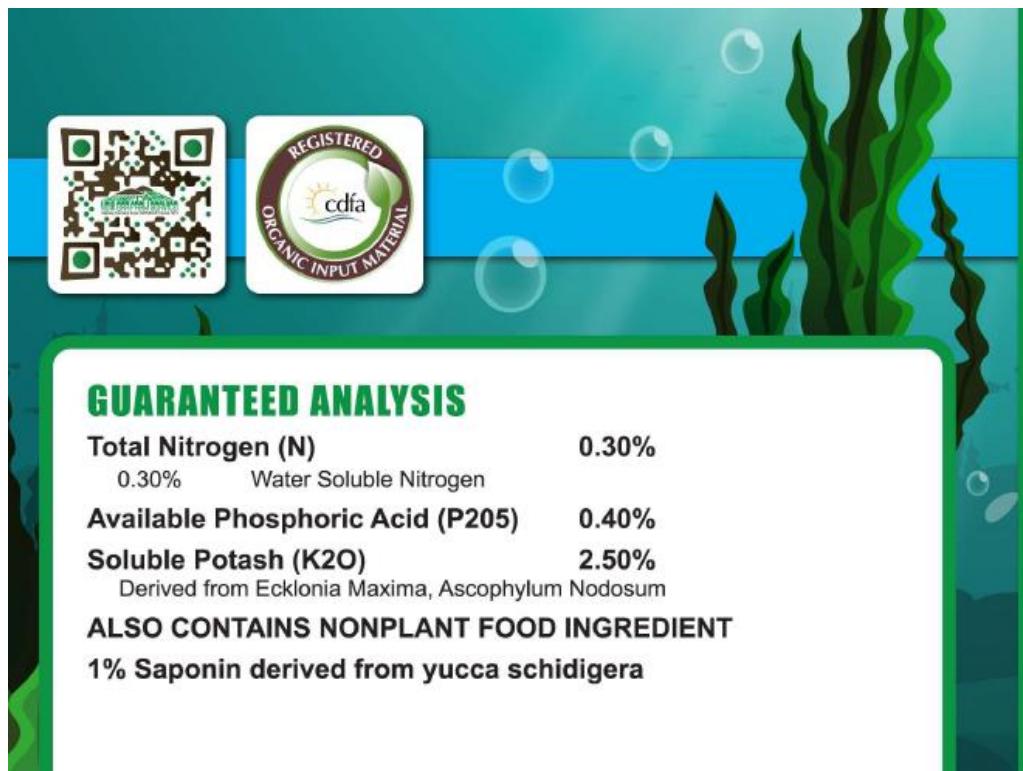
Seller makes no warranty expressed or implied, concerning the use of this product other than indicated on this label. Buyer assumes all risks of use and handling.

New Era Compost-Typical Analysis

10 ton application

Nitrogen	1.25%	250 lbs
Phosphorus	1.50%	300 lbs
Potassium	2.50%	500 lbs
Calcium	2.60%	520 lbs
Sulfur	0.50%	100 lbs
Magnesium	1.16%	232 lbs
Sodium	0.40%	80 lbs
Organic matter	30.2%	6,040 lbs


(C:N ratio 14:1),


cost \$30 ton / \$300 per acre

New Era Composts-with analysis

- Dairy manure blend goes through a controlled thermophilic, bio-oxidative process, lasting from 90 to 120 days.
- The compost has reached a high temperature of 158° F and averaged a thermophilic temperature of 140 ° F from 90-120 days
- The compost tested negative for *Salmonella*, *E. coli*, and *Staphylococcus*
- With food safety concerns it is recommended that almond growers use tested compost rather than fresh animal manures

Organic liquid fertilizers \$\$\$ generally 10 X price of UN32...

University of California
Agriculture and Natural Resources

GUARANTEED ANALYSIS

Total Nitrogen (N) 3.0%

1.5% Water Soluble Organic Nitrogen
1.5% Water Insoluble Nitrogen

Available Phosphoric Acid (P2O5) 1.0%

Soluble Potash (K2O) 3.0%

Derived from fish solubles, seaweed extract, molasses, and montmorillonite

ALSO CONTAINS NONPLANT FOOD INGREDIENT

1% Saponin derived from *yucca schidigera*

NEW ERA FARM SERVICE

Manufactured by
New Era Farm Service, Inc.
2904 E Oakdale Ave • Tulare, CA 93274
559.686.3833

NUTRA-MIX I

3.0 - 1.0 - 3.0

NUTRA-MIX I is a formulation of essential plant nutrients, designed to aid the plant during periods of active growth.

Seller makes no warranty expressed or implied, concerning the use of this product other than indicated on this label. Buyer assumes all risks of use and handling.

University of California
Agriculture and Natural Resources

Tree Nutrition- Zinc and Boron

- Organic growers can use Zinc Sulfate 36% at label rates (10-15 lbs/acre) in the Fall if leaf analysis shows the orchard is low in zinc.
- Solubor can also be used by organic growers for supplying Boron.
- Always check with your certifier to make sure whatever you want to apply is organically approved—the rules keep changing.

Almond Varieties for Organic Production

- Some varieties are easier to farm organically than others.
- Many of us thought that the hard shell varieties would be easier to grow organically than soft shells because we wouldn't have to worry about insect and ant damage.
- We were wrong!

Hard Shells are susceptible to Brown Rot

- Varieties with tight flower clusters are more susceptible to brown rot (*Monilinia*) and jacket rot (*Botrytis*)

Nonpareil for Organic Production

- Nonpareil is susceptible to NOW and ant damage
- But Nonpareil is very resistant to brown rot when compared to other varieties
- Organic Nonpareil growers have been able to avoid brown rot and control NOW by using extremely rigid sanitation practices

Hard Shells for Organic Production

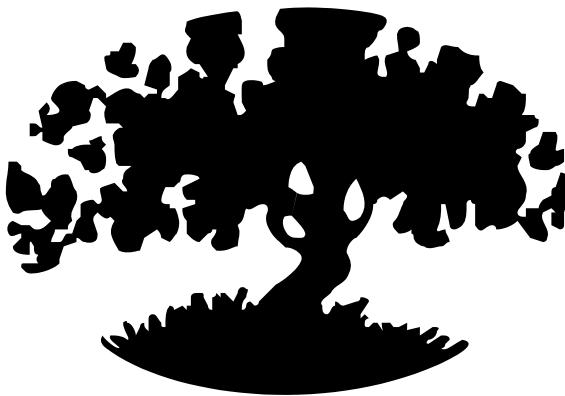
- The Hard shells are very resistant to NOW and ant damage
- But the hard shells are very susceptible to Brown Rot, Botrytis, and Scab diseases
- Many organic growers have pulled their hard shells out of organic production because of heavy loses to brown rot.

Nickel's Estate	F	N	N	N
	N	N	F	N
Organic growers have tried to increase the percentage of NP	N	N	N	N
	N	N	F	N
	F	N	N	N
	N	N	N	F
75 % Nonpareil	N	F	N	N
	F	N	N	N
25 % Fritz	N	N	F	N
	N	F	N	N
75% premium, resistance	N	N	N	N
	N	N	F	N

Ray Pool,
Madera

75 % Nonpareil
25 % Sonora
100% premium,
with resistance

N	N	N	N	N
	S	N	S	N
N	N	N	N	N
	N	S	N	S
N	N	N	N	N
	S	N	S	N
N	N	N	N	N
	N	S	N	N
N	N	N	N	N
	S	N	S	N
N	N	N	N	N
	N	S	N	S
N	N	N	N	N


Disease Management in Organic Almond Production

When almond trees are blooming their flowers are susceptible to a number of plant pathogenic fungi capable of causing disease.

**EFFICACY AND TIMING OF FUNGICIDES,
BACTERICIDES, AND BIOLOGICALS
for
DECIDUOUS TREE FRUIT, NUT,
STRAWBERRY, AND VINE CROPS
2009
(Updated June, 2009)**

www.ipm.ucdavis.edu

<i>ALMOND</i>	<i>PEACH/NECTARINE</i>
<i>APPLE/PEAR</i>	<i>PISTACHIO</i>
<i>APRICOT</i>	<i>PLUM</i>
<i>CHERRY</i>	<i>PRUNE</i>
<i>GRAPE</i>	<i>STRAWBERRY</i>
<i>KIWIFRUIT</i>	<i>WALNUT</i>

Jim Adaskaveg, Professor
University of California, Riverside

Doug Gubler, Extension Plant Pathologist
University of California Davis

Themis Michailides, Plant Pathologist
University of California, Davis/Kearney Agricultural Center

Brent Holtz, Farm Advisor
University of California Cooperative Extension, Madera County

ALMOND—TREATMENT TIMING

Note: Not all indicated timings may be necessary for disease control.

Disease	Dormant	Bloom			Spring ¹		Summer	
		Pink bud	Full bloom	Petal fall	2 weeks	5 weeks	May	June
Alternaria	----	----	----	----	----	+++	+++	+++
Anthracnose ²	----	++	+++	+++	+++	+++	+++	++
Brown rot	----	++	+++	+	----	----	----	----
Green fruit rot	----	----	+++	----	----	----	----	----
Leaf blight	----	----	+++	++	+	----	----	----
Scab ³	++	--	--	++	+++	+++	+	--
Shot hole ⁴	+ ⁵	+	++	+++	+++	++	----	----
Rust	----	----	----	----	----	+++	+++	+ ⁶

Rating: +++ = most effective, ++ = moderately effective, + = least effective, and ---- = ineffective

¹ Two and five weeks after petal fall are general timings to represent early postbloom and the latest time that most fungicides can be applied. The exact timing is not critical but depends on the occurrence of rainfall.

² If anthracnose was damaging in previous years and temperatures are moderate (63°F or higher) during bloom, make the first application at pink bud. Otherwise treatment can begin at or shortly after petal fall. In all cases, application should be repeated at 7- to 10-day intervals when rains occur during periods of moderate temperatures. Treatment should, if possible, precede any late spring and early summer rains. Rotate fungicides, using different fungicide classes, as a resistance management strategy.

Efficacy: Tree Crops, continued

Fungicide	Brown rot	Jacket rot (Botrytis)	Shot hole	Powdery mildew	Rust	Scab		Anthracnose	Alternaria
	BIOLOGICALS, NATURAL COMPOUNDS, SARs								
Copper	+	+	++	---	---	++ ¹³	---	---	+/-
Cinnacure	---	---	---	++	---	---	---	---	---
JMS Stylet Oil	+/-	---	+/-	++	---	---	---	---	---
Kaligreen	---	---	---	++	---	---	---	---	---
Messenger	---	---	---	++	---	---	---	---	---
Oxidate	---	---	+/-	ND	ND	---	---	---	---
Perasan	---	---	+/-	ND	ND	---	---	---	---
Prev-am	ND	ND	ND	++	ND	---	---	---	---
Quiponin ^{4,6}	ND	ND	ND	++	ND	ND	ND	ND	ND
Regalia	+	-	ND	ND	ND	ND	ND	ND	ND
Serenade	+/-	+	+/-	++	ND	---	ND	ND	ND
Sonata	+/-	+	+/-	++	ND	---	ND	ND	ND
Sulfur	+	+	+/-	+++	+++	++	++	+	---
Trilogy	+/-	---	+	++	+/-	---	---	---	---
Sporan	+	---	+/-	++	+/-	---	---	---	---
Saf-T-Side	++	---	+/-	++	---	---	---	---	---
Valero	+/-	---	---	ND	ND	---	---	---	---

Rating: ++++ = excellent; +++ = very good; ++ = good; + = fair; +/- = minimal or often ineffective; - = ineffective; NR = not registered; ND = no data

* Not registered in California

Brown Rot Blossom Blight

Pathogen: *Monilinia laxa*; rarely *Monilinia fructicola*

- Flowers may become infected from pink bud to petal fall
- Tight clusters are susceptible

Evaluation of fungicides for control of brown rot, 2006

Treatment with Per acre Rate (Date of application) ^{zy}	Mean	Strikes/Tree ^x
Abound 2.08SC, 12.8 fl oz + BreakThru 0.125% (a,b,c)	0.8	a
Propimax EC 4 fl oz + BreakThru 0.125% (a,b,c)	1.2	a
V10116 50WDG + BreakThru 0.125% (a,b,c)	1.4	a
USF 2010 50WG 6 oz + BreakThru 0.125% (a,b,c)	1.6	ab
Orbit EC 5 fl oz + Abound 2.08SC 10 fl oz + BreakThru 0.125% (a,b,c)	1.8	ab
Orbit EC 4 fl oz + Abound 2.08 SC 8 fl oz + BreakThru 0.125% (a,b,c)	2.2	ab
V10135 50DF + V10116 50WDG (a,b); V10135 50DF + V10116 50WDG (c)	2.2	ab
Enable 2F 6 fl oz + BreakThru 0.125% (a,b,c)	3.2	ab
Trilogy 5.46L 1% + Rovral 4F 16.0 fl oz (a,b); Echo Ultimate 82.5WP 3.6 lb (c)	4.2	ab
Vangard 75WG 5 oz + BreakThru 0.125% (a,b,c)	4.2	ab
Gem 500SC 3 fl oz + BreakThru 0.125% (a,b,c)	4.6	ab
Laredo 1.67EW + BreakThru 0.125% (a,b,c)	5.2	abc
V10135 50DF 8 oz + BreakThru 0.125% (a,b); V10135 50DF 6 oz + V10116 50WDG 1.72 ©	5.6	abc
Topsin 70WDG 1 lb + Ziram 76DF 6 lb + BreakThru 0.125% (a,b); Ziram 76DF 8 lb + BreakThru 0.125% (c)	7.8	abcd
Echo Ultimate 82.5WP 3.6 lb (a,b,c)	8.6	abcde
Saf-T-Side 1% (a,b,c)	8.8	abcde
Topsin 70WDG 1 lb + Ziram 76DF 6 lb + BreakThru 0.125% (a,b); Ziram 76DF 6 lb + Microthiol Disperss 80	11.0	abcdef
MWS 6 lb (c)		
Trilogy 5.46L 1% + Rovral 4F 1 pt (a,b,c)	11.0	abcdef
Topsin 70WP 1 lb + Ziram 76DF 6 lb + BreakThru 0.125% (a,b); Ziram 76DF 6 lb + Microthiol Disperss 80		
MWS 6 lb	12.8	abcdefg
Captan 50WP 4 lb + Surfix 0.06% (a,b,c)	13.2	abcdefg
Cuprofix Ultra 40D 4 lb + Surfix 0.125% (a,b); Cuprofix Ultra 40D 1 lb + Surfix 0.125% (c)	13.2	abcdefg
Echo 6L 4 pt (a,b,c)	13.2	abcdefg
Sporan EC 3 pt + Captan 50WP 4 lb + BreakThru 0.125% (a,b,c)	13.6	abcdefg
Sporan EC 3 pt + BreakThru 0.125% (a,b,c)	15.8	abcdefg
Sporan EC 3 qt + BreakThru 0.125% (a,b,c)	16.2	abcdefg
Echo 6L 2 qt + Sonata ASO 96 fl oz (a,b,c)	16.4	abcdefg
Captan 50WP 4 lb + Sonata ASO 96 fl oz + Surfix 0.06% (a,b,c)	20.4	bcdedgh
Serenade Max 14.6WP 1 lb + Surfix 0.06% (a,b,c)	24.2	cdefgh
Microthiol Disperss 80 MWS 6 lb + Surfix 0.125% (a,b,c)	26.0	defgh
Stylet Oil 1% (a,b,c)	27.4	efgh
Liquid Lime Sulfur 10.6L 2 gal (a,b,c)	29.8	fgh
Trilogy 5.46L 1% (a,b,c)	31.4	gh
Trilogy 5.46L 1% + Sonata ASO 96 fl oz (a,b,c)	31.4	gh
Sonata ASO 96 fl oz + Surfix 0.06% (a,b,c)	38.0	hi
Oxidate 1%	57.0	ij
Control	67.1	j
Fisher's least significant difference (LSD, P<0.05) test ^w	19.1834	

2016 Brown Rot Per 100 Flowers

Butte Variety

Treatment	Rates per acre	Brown Rot ^a
12 A19649B Experimental ^{1,2,3} , 5.13 fl oz	1.50	a
14 A20560C Experimental ^{1,2,3} , 6.84 fl oz	2.50	a
04 Aproach + Fontelis 1.67 SC ^{1,2,3} , 6 fl oz + 14 fl oz	3.25	a
16 R-106506 SC Experimental ^{1,2,3} , 5.08 fl oz	4.00	a
13 A20259E Experimental ^{1,2,3} , 13.7 fl oz	4.00	a
15 R-106506 SC Experimental ^{1,2,3} , 3.38 fl oz	4.50	a
11 Quadris Top ¹ , 14 fl oz, Bravo ² 4 pt (no DA), Inspire EC ³ , 7 fl oz	4.50	a
09 RON94-112 Experimental ^{1,2,3} , 43.4 fl oz (no Dyne-Amic)	4.75	a
05 Aproach + Fontelis 1.67 SC ^{1,2,3} , 8 fl oz + 16 fl oz	5.25	ab
20 Fontelis ^{1,3} , 20 fl oz, Regalia ² , 2 quarts	5.50	ab
08 RON94-112 Experimental ^{1,2,3} , 43.4 fl oz	5.50	ab
10 RON94-112 ¹ , 28.9 fl oz, RON94-374 Experimental ^{2,3} , 28.9 fl oz	6.50	ab
07 RON94-112 Experimental ^{1,2,3} , 28.9 fl oz	6.75	ab
06 Quadris Top ^{1,2,3} , 12 fl oz	9.00	abc
03 Aproach 2.08 SC ^{1,2,3} , 12 fl oz	9.00	abc
17 Timorex Gold ^{1,2,3} , 1.5 L/Ha	10.50	abcd
02 Aproach 2.08 SC ^{1,2,3} , 8 fl oz	15.75	bcd
01 Aproach 2.08 SC ^{1,2,3} , 6 fl oz	19.75	cde
19 Microthiol Disperse ^{1,2,3} , 20 lbs	21.00	de
18 Timorex Gold ^{1,2,3} , 2.0 L/Ha	29.75	e
21 Untreated Control	48.25	f
22 Untreated Control	49.50	f

^aBrown Rot = Brown Rot was rated on the Butte variety on March 21st, 10 limbs per tree and 10 blossoms per limb were rated for brown rot infections, determined per 100 blossoms. Means followed by the same letter are not significantly different.

¹First trial application was performed at 100% full bloom Butte variety (FB) on February 25th.

²Second trial application was performed 3 weeks after petal fall (3WPF) on March 16th.

³Third trial application was performed 5 weeks after petal fall (5WPF) on March 30th.

Almond Scab

Cladosporium carpophilum

Gray-black, oil-like soft looking spots form on leaves, fruit, and twigs.

Timing of Fungicide Treatments for Scab Control

Note: Not all indicated timings may be necessary for disease control.

Disease	Dormant	Bloom			Spring ¹		Summer		
		Pink bud	Full bloom	Petal fall	2 weeks	5 weeks	May	June	
Scab ³		++	---	---	++	+++	+++	+	---

Rating: +++ = most effective, ++ = moderately effective, + = least effective, and ---- = ineffective

³ Early treatments (during bloom) have minimal effect on scab; the 5-week treatment usually is most effective. Treatments after 5 weeks are useful in northern areas where late spring and early summer rains occur. Dormant treatment with liquid lime sulfur improves efficacy of spring control programs.

Dormant applications of copper and oil have shown efficacy against scab.

Micronized sulfur has done a great job of controlling scab at 2 and 5 weeks after petal fall.

Carmel Variety

Treatment	Rates per acre	Incidence ^a
6 Bravo (Chlorothalonil) ¹ 4 pt, Quadris Top ² 14 fl oz, Inspire Super ³ 20 fl oz	0.0	a
11 Rovral +oil +Topsin ¹ , 8 fl oz+1% v/v+10 fl oz, Quadris ² ,14 fl oz, Captan ³ , 5lbs	0.2	a
18 Microthiol Disperse ^{1,2,3} 20 lbs	0.4	a
3 Fontelis + Tebucon 45DF ^{1,2,3} , 20 fl oz + 8 oz	0.6	a
17 Merivon SC ^{1,2,3} 6.5 fl oz	0.6	a
7 Quadris Top ¹ 14 fl oz, Bravo (Chlorothalonil) ² 4 pt, Inspire Super ³ 20 fl oz	0.8	a
12 Rovral +oil+Topsin ¹ , 11.4floz+1%v/v+14 floz, Quadris ² ,14 floz,Captan ³ , 5lbs	0.8	a
13 Luna Sensation SC ^{1,2,3} , 6 fl oz	1.6	a
14 Luna Experience ^{1,2,3} , 6 fl oz	1.8	a
15 Luna Experience ^{1,3} , 6 fl oz, Gem+Serenade Optimum ² , 3.0 fl oz + 8 oz	2.8	ab
2 Fotelis + Bumper 3.6EC ^{1,2,3} , 20 fl oz + 8 fl oz	2.8	ab
10 Rovral + oil + Topsin ^{1,2} , 11.4 fl oz+1% v/v + 14 fl oz, Captan ³ , 5 lbs	6.8	b
9 Rovral + oil + Topsin ^{1,2} , 8 fl oz+1% v/v + 10 fl oz, Captan ³ , 5 lbs	7.0	b
16 Pristine ^{1,2,3} , 14.5 oz	16.6	c
5 Fotelis + Gem 4.05SC ^{1,2,3} , 20 fl oz + 2.9 fl oz	21.0	cd
4 Fotelis + Abound 2.0 8F ^{1,2,3} , 20 fl oz + 12 fl oz	24.2	d
8 Rovral + oil ^{1,2} , 16 fl oz+1% v/v, Captan 80 WG ³ , 5 lbs	24.6	de
1 Fontelis 1.67 SC ^{1,2,3} , 20 fl oz	29.4	e
19 Untreated Control	35.0	f
20 Untreated Control	35.4	f

^aIncidence = number of nuts that have scab lesions on 45 nuts randomly sampled per tree. Three people rated each tree (Cheryl, Scotty, and Stephen). Data was analyzed by ANOVA with means separated by Fisher's Protected LSD ($\alpha = 0.05$) test. Means followed by the same letter are not significantly different. The trial was rated on August 5th and 6th, 2014. All treatments significantly reduced the incidence of almond scab when compared to our two untreated controls.

The following trial applications are outlined above:

¹First application was performed 2 weeks after petal fall (2WPF) on March 20th.

²Second application was performed 4 weeks after petal fall (4WPF) on April 3rd.

³Third application was performed was 8 weeks after petal fall (8WPF) on May 1st.

Almond Rust

Tranzchelia discolor

- Rust occurs sporadically throughout almond-growing areas in California.
- It often is serious on young orchards where bloom sprays have not been applied.

ALMOND—TREATMENT TIMING

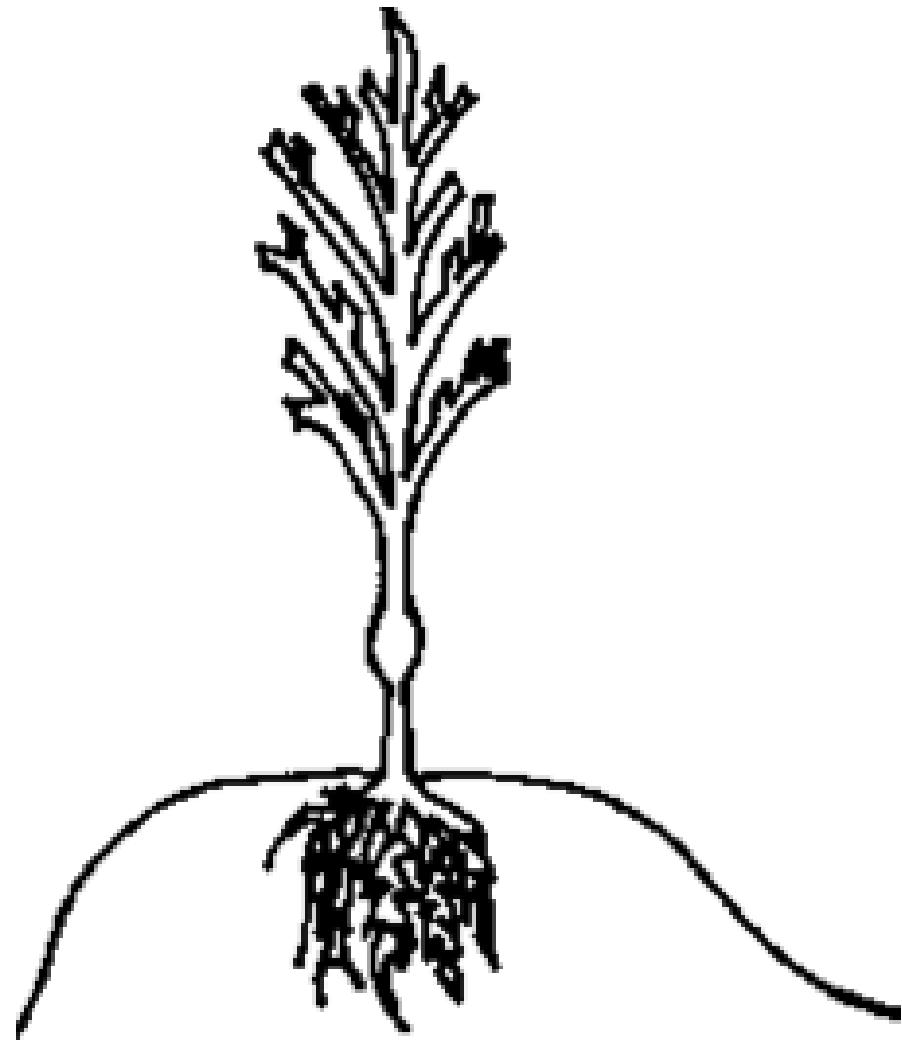
Note: Not all indicated timings may be necessary for disease control.

Disease	Dormant	Bloom			Spring ¹		Summer	
		Pink bud	Full bloom	Petal fall	2 weeks	5 weeks	May	June
Rust	----	----	----	----	----	+++	+++	+

Rating: +++ = most effective, ++ = moderately effective, + = least effective, and ---- = ineffective

⁶ Treatment in June is important only if late spring and early summer rains occur.

Micronized sulfur will also show excellent efficacy against Rust


Phytophthora-Control

- Phosphorous acid has been shown to provide almond trees resistance to *Phytophthora* but may not yet be OMRI approved?

Phytophthora-Prevention

- Plant trees high on the berm and make sure that the graft union is not buried or touching the soil line

Crown Gall Control

- *Agrobacterium radiobacter K-84* (Galltrol) is a biological control agent that can be sprayed on roots before planting as a preventative

Crown Gall Control

- In orchards with established crown gall infections I would replant with potted trees in the hopes of having less root wounds and entry sites for crown gall

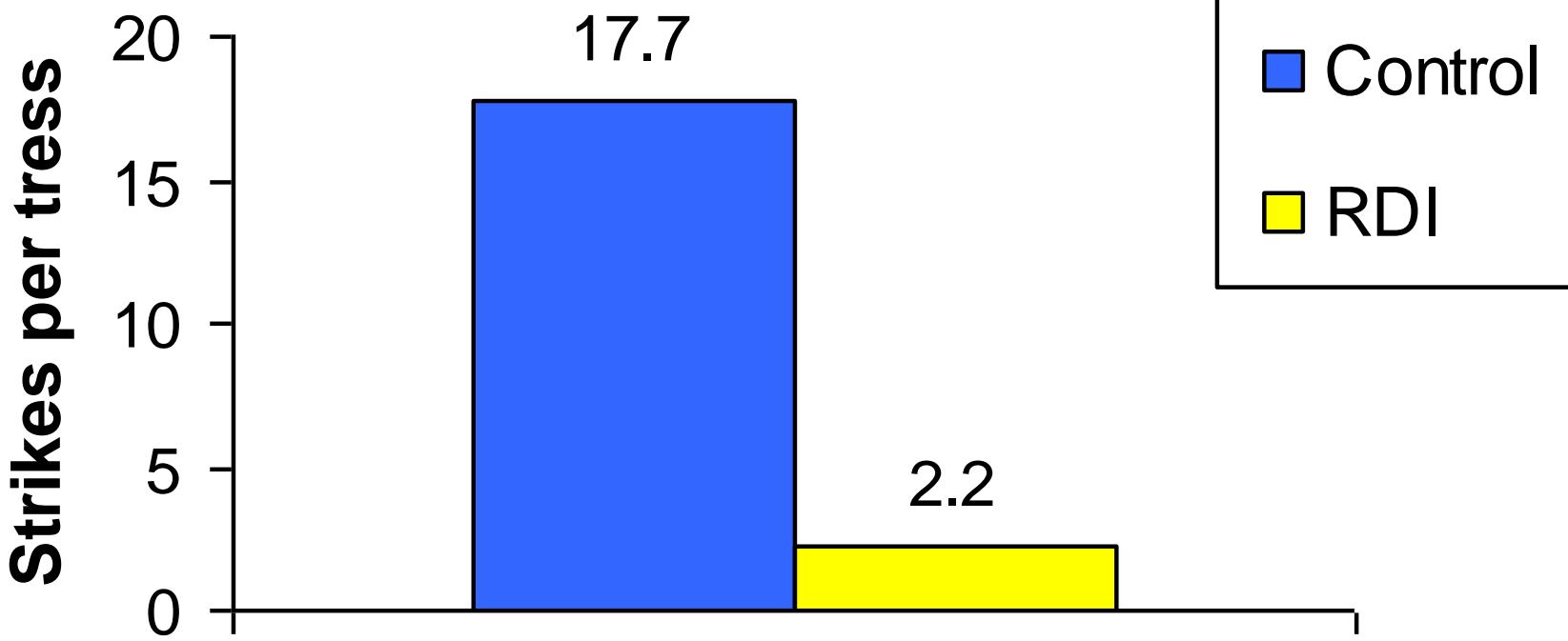
Bacterial Canker

- Pre-plant fumigation is important
- Peach/Almond hybrid root-stocks are prone to bacterial canker

Hull Rot

Monilinia fructicola or Rhizopus stolonifer

a
rces


HULL ROT MANAGEMENT

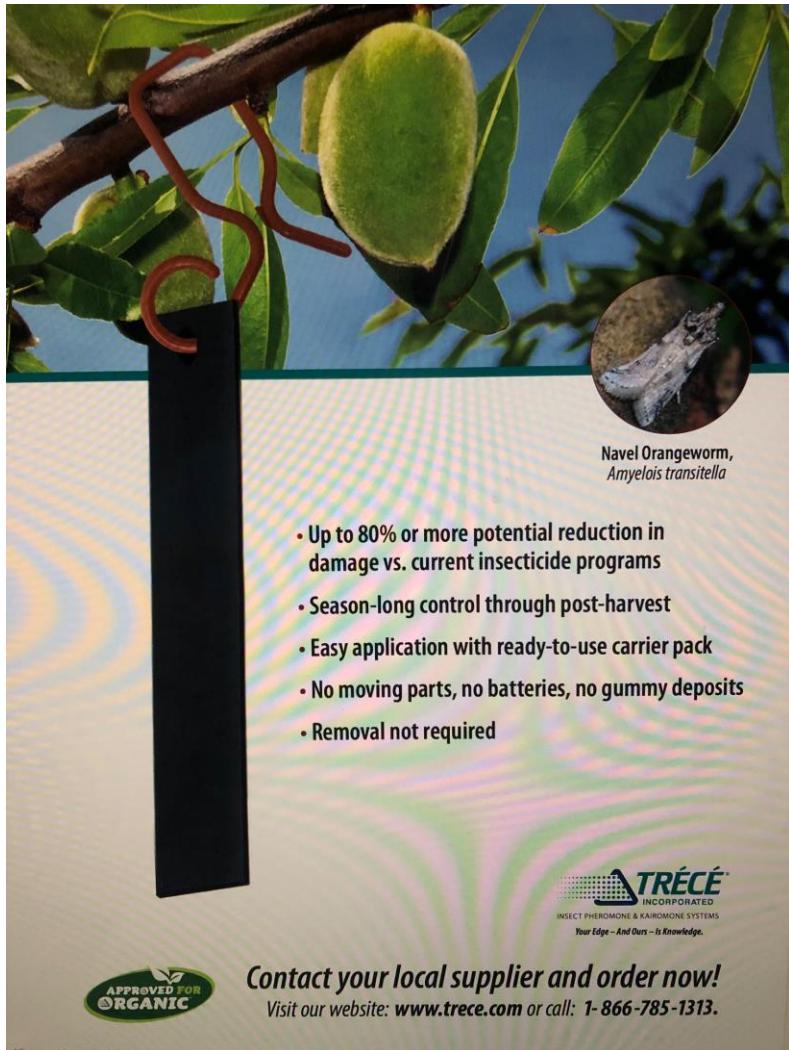
IRRIGATION

- MAINTAIN ORCHARD AT -7 to -9 BARS
- AT FIRST HULL SPLIT, STOP WATER
- RESUME IRRIGATION AT -14 TO -18 BARS

Effect of RDI on Hull Rot 2003

Navel Orangeworm Control (NOW)

- Organic growers must diligently practice winter sanitation to destroy over-wintering mummies in order to control NOW



NOW Control

- Winter sanitation typically involves winter mechanical tree shaking, hand poling after shaking, and blowing tree rows at a cost of \$100-125/acre

NOW Control

**Navel Orangeworm,
*Amyelois transitella***

- Up to 80% or more potential reduction in damage vs. current insecticide programs
- Season-long control through post-harvest
- Easy application with ready-to-use carrier pack
- No moving parts, no batteries, no gummy deposits
- Removal not required

TRÉCÉ[®]
INCORPORATED
INSECT PHEROMONE & AROMONE SYSTEMS
Your Edge – And Ours – Is Knowledge.

Contact your local supplier and order now!
Visit our website: www.trece.com or call: 1-866-785-1313.

APPROVED FOR
ORGANIC

- Mating Disruption may become a control measure than organic growers will be able to use in the future.
- Meso emitters have been approved in organic orchards.

University of California
Agriculture and Natural Resources

Mite Control

- Summer oils (OMRI approved) at 2.5 % or 5-6 gals in 200 gallons of water per acre has been a good organic mite treatment
- Oils will also knock down apple leaf hopper

UC Statewide IPM Project
© 2000 Regents, University of California

- The release of predator mites and predatory Thrips are an important mite control strategy for organic growers

You can control Peach Twig Borer with sprays in order to avoid strikes on shoots that could become your primary scaffolds, especially in the first year.

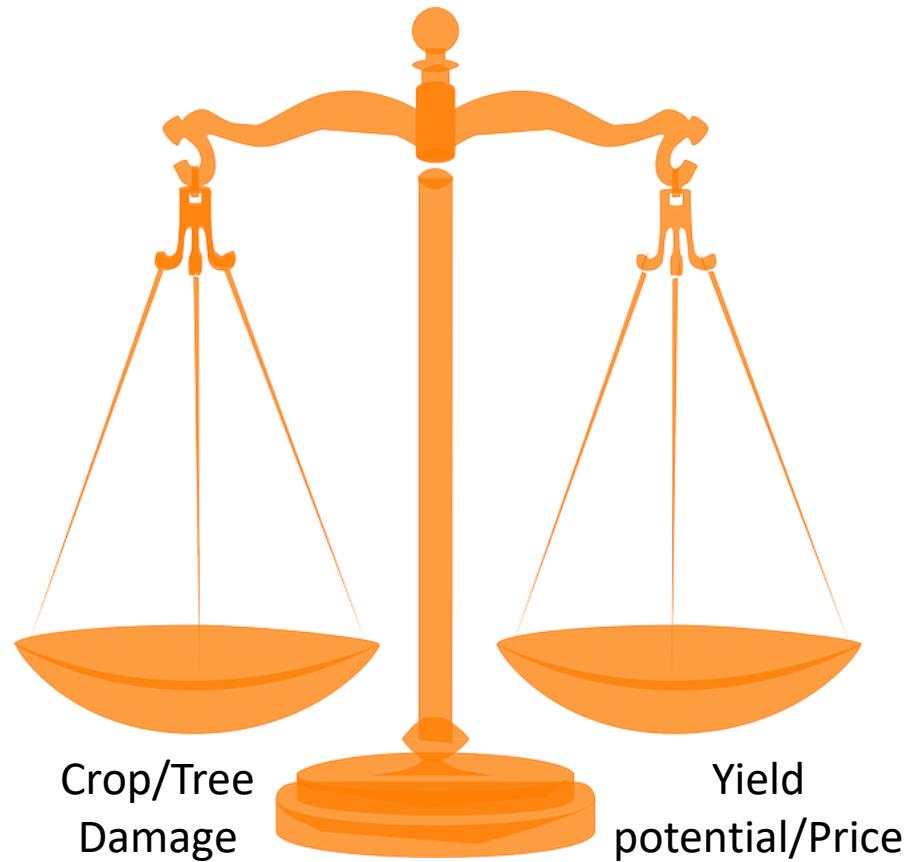
Bacillus thuringiensis at bloom, or spinosad (Entrust) after bloom are organically acceptable

Organic Almond Production—a trade off

UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION
AGRICULTURE AND NATURAL RESOURCES
AGRICULTURAL ISSUES CENTER

2016

SAMPLE COSTS TO PRODUCE
ORGANIC ALMONDS



SAN JOAQUIN VALLEY - NORTH
SOLID SET SPRINKLER IRRIGATION

Brent A. Holtz
David A. Doll
Roger A. Duncan
Karen Klonsky

Daniel A. Sumner
Donald Stewart
Christine Gutierrez

UCCE Farm Advisor / County Director, San Joaquin County
UCCE Farm Advisor, Merced County
UCCE Farm Advisor, Stanislaus County
UCCE Extension Specialist, Department of Agricultural and Resource Economics, UC Davis
Director, Agricultural Issues Center, Department of Agricultural and Resource Economics, UC Davis
Staff Research Associate, Department of Agricultural and Resource Economics, UC Davis
Staff Research Associate, Department of Agricultural and Resource Economics, UC Davis

University of California
Agriculture and Natural Resources

Thank you!
Good Luck!