- Author: Ian Grettenberger
- Author: Charlie Pickett
- Author: Brian Hogg
- Author: Frank G Zalom
- View More...
With warming weather come contemplations of bagrada bug. This is the time in the past when we start to find bagrada bug populations on flourishing shortpod mustard plants or patches of pepperweed in the Salinas Valley. We thought this would be a good time to update everyone on continuing work associated with long-term management of the bagrada bug, as we begin another year of a field study looking for resident natural enemies that target bagrada bug eggs in California. We also wanted to remind everybody to keep an eye out for bagrada bug and provide a quick reminder about where to look and what to look for. If you do find substantial bagrada bug populations or have problems with bagrada bug damage in your fields in the Salinas Valley, please reach out to Alejandro Del-Pozo (adelpozo@ucanr.edu, 831-759-7359). We'd love to get a better handle on the situation in the area to better serve you. We (Alejandro) have been scouting for bagrada bug on weeds near San Ardo for the past three weeks. Thus far, there have been no bugs or damage.
First, for an update on our work on biological control. As part of a grant from California Department of Food and Agriculture's federally funded Specialty Crops Block Grant Program, and support from Farm Bill funds, a number of researchers (CDFA, USDA-ARS, UC Davis, and UC Riverside) are surveying for resident parasitoid wasps that attack bagrada bug eggs. The long-term goal is to support the introduction of parasitoids from the bagrada bug's native range (e.g., Pakistan) in a classical biological control program that will suppress this pest across the landscape. As far as stink bugs go, the bagrada bug is a peculiar beast when it comes to laying its eggs. Rather than sticking them to leaves in clumps like other stink bugs, they instead lay the majority of them in the soil (Fig. 1, video below).
Video of a bagrada bug laying an egg into the soil
Before we introduce any parasitoids, we first need to know what parasitoids and predators already attack bagrada bug eggs in California. To address this, we are placing eggs glued to cards in the field both in the plant canopy and on the ground and in both patches of weeds (non-crop areas) and in cruciferous crop fields (Figs. 2-4). We put these sentinel eggs (generally freeze-killed) out for several days and then bring them back into the lab to allow any parasitoids in the eggs to develop and emerge. We also check the eggs for signs of predation because natural enemies such as ants, earwigs, or ground beetles could feed on the eggs and destroy them. Our survey sites cover a region from the Sacramento/North Bay area south to San Ardo and Fresno (Fig. 5).
What have we found? Thus far (2017), we have found very little parasitism by natural enemies in the Central Coast and in the Central Valley. Higher levels of parasitism have been recorded in southern California. We have recovered parasitized eggs from only four of the hundreds of cards we have deployed in central and northern California. We recovered one species, a member of the genus Ooencyrtus, from one card in the Davis area (Fig. 6, three individuals), another Ooencyrtus individual from near Winters, and Trissolcus erugatus (one individual) from the Petaluma area. For one of the cards at the same Davis site, eggs were parasitized, but adult wasps did not successfully emerge. Notably, work further south by Dr. Thomas Perring at UC Riverside has discovered greater levels of parasitism. Predation varied at our sites and ranged from none at all to nearly all eggs destroyed (Fig. 7). Time-lapse cameras at a few of our sites helped capture these predators in action (videos below). Many of these eggs were easily accessible on the cards (vs. buried in soil or crevices), so this is likely an optimistic estimate of natural levels of predation on bagrada bug eggs. However, covering eggs with 1 or 2mm of sand for some cards did not cause predation to drop off. There are clearly predators out there in the landscape that are willing and able to eat bagrada bug eggs.
Earwig feeding on sentinel egg
Rove beetle feeding on sentinel egg
Ants feeding on sentinel eggs
What to do with respect to scouting? We have recommended in the past that cruciferous weeds near fields be scouted for bagrada bug (see this previous post for more information about the association between bagrada bug and non-crop hosts). Now is the time of year to start doing this to get an idea of what kind of bagrada bug pressure you might be facing. We don't know exactly how far bagrada bugs will travel to invade fields, but checking likely areas within several hundred yards to a half a mile will give you a good idea of what is happening nearby. Shortpod mustard and perennial pepperweed are the two species to pay attention to, so look for areas with these plants. You want to mainly look for damage (Figs 8 and 9), but also for the insects themselves. Damage on leaves is often much easier to find than bagrada bugs. This is especially true at low population densities, although finding bagrada bugs will confirm it is not simply harlequin bug damage (damage is similar). For damage, you can scout at any time of the day. For the bugs, the warmer the better because they become more active at higher temps. See the weed post linked above for pictures of what these plants look like if you are not already well-acquainted with them and to see additional pictures of damage on weeds. Fresh damage consists of still-green starbursts, which will turn white as it ages. Obviously also keep an eye on your newly planted crops for damage, but this nearly goes without saying.
- Author: Ian Grettenberger
- Author: Larry Godfrey
- Author: Richard Smith
- Author: Shimat Villanassery Joseph
Bagrada bug (Bagrada hilaris) is an invasive stink bug that was first observed in the Salinas Valley in October-November 2013. We started monitoring bagrada bug populations in non-crop habitat up and down the Valley starting in January 2015 and have continued to do so since then. We have seen bagrada bug populations beginning to develop on the weeds in spring and summer months. Weeds are clearly a key factor for bagrada bug populations in our region. While cruciferous crops are available year-round in the valley, stands of weeds are typically where populations really build up during early- and mid-summer (Fig 1).
In the Salinas Valley, shortpod mustard (Hirschfeldia incana, or summer mustard; Figs. 2 and 3) and perennial pepperweed (Lepidium latifolium; Figs. 4 and 5) appear to be the two most important weeds for buildup of bagrada bug populations. We have found bugs (in extremely high numbers) on perennial wall rocket (Diplotaxis tenuifolia), a weed commonly found along Hwy 101 between Chualar and Soledad, but this was very late in the year when temperatures were cooling and after the time bagrada bugs are typically problematic. These three weeds are non-native and invasive, just like the bagrada bug.
For our survey, we have been surveying a number of sites that cover the length of the Salinas Valley (Salinas, Chualar, Gonzales, Soledad, Greenfield, King City, San Lucas, San Ardo, and Watsonville). These sites contain a stand of at least one of these weed species, although we focused on pepperweed and/or shortpod mustard at the majority of the sites. Each month, we search for damage and bagrada bugs on the weeds at each site for twenty-minutes or until insects are counted on five plants of each species. When leaves are actively growing and not already damaged and worn out, damage is often easier to detect than insects (Figs. 6 and 7). This is similar to scouting in fields, where checking plants for fresh damage is the recommended method of scouting (Palumbo 2015). Unfortunately, fresh damage can be hard to find on older weeds because old damage obscures fresh damage, leaves are extremely tough, and bugs feed on stems or seed pods, so we primarily rely on detection of actual bugs.
When we surveyed near the end of June this year, we did not find high populations of bagrada bugs or damage, although they were present at some sites. We were left wondering what would happen with bagrada bug populations this year. After our July sample date, how 2016 populations compare with 2015 is still not clear, although we have started finding small populations of bagrada bug, which suggests we won't be having a bagrada bug-free year. If anything, there may be a slight delay in bagrada bug movement into fields, although this is fairly speculative. The spring rainfall this year was definitely greater than in 2015, although what effect of rainfall had on winter and spring bagrada bug populations is not clear. In 2016, we added a number of new sites, so some sites have already been surveyed during one period of population peaks, while others have only been surveyed since the beginning of this year.
At the three sites we surveyed in 2015 with perennial pepperweed, we did not see populations jump until our survey time point in late August. This year, we have not seen populations increase appreciably, although we will have to see what we find at the end of August to compare to 2015. At some of the sites with shortpod mustard that we surveyed in 2015, we had already found a fair number of bagrada bugs by this time last year, including some large populations of nymphs (up to 3 to 5 adults per plant and 18 to 57 nymphs per plant). This year, we haven't seen the same populations yet at those sites.
Next, we have the sites that have only been surveyed in 2016. While the initial sites were chosen based on prior issues with bagrada bugs in nearby fields, the new sites were not necessarily chosen based on the same conditions. We chose these new sites to improve the coverage of our survey. Each site also contains at least one of the three weed species we have focused on (shortpod mustard, perennial pepperweed, or perennial wall-rocket). A few sites were chosen knowing that bagrada bugs were present in 2015. A few of these sites have plenty of weeds available for bagrada bugs, but as of yet, we haven't seen any bugs. Some sites do have developing bagrada bug populations. We found what appears to be growing populations of bagrada bugs on both shortpod mustard and perennial pepperweed at one site near San Ardo on our last survey date (July 25th/26th). In the foothills near Gonzales, we found 1 to 26 bagrada adults and 0 to 22 nymphs on shortpod mustard plants. In addition, we were able to easily find bagrada bugs (0 to 8 adults, 0 to 3 nymphs) on shortpod mustard plants growing along US-101 between Greenfield and King City (Fig. 8). As many of you that have driven this stretch of road may know, there are a lot of weeds there. This means that a handful of bagrada bugs on each plant can quickly add up to large populations when summed over thousands of plants. As the weeds senesce, bagrada bugs will likely concentrate on still-green plants, although this patch can only support the bagrada bugs for so long with plants continuing to senesce.
As we see it, the issue is when these growing populations of bagrada bugs run out of food in the patches of weeds, and then go in search of new food sources. At this point, they can start finding their way into fields of cruciferous crop. This time of year, much of the shortpod mustard in the Valley is starting to set seed and will soon completely dry up if it has not already. In many locations, the vast majority of plants are almost dry. In the same localized area, some shortpod mustard plants will be completely senesced, while others are still green and flowering (see Figs. 9-11). Differences in growing conditions at a fairly small scale can therefore be very important. If all of the plants dry up, bagrada bugs will be forced to disperse, possibly triggering infestations in crop fields. If green plants remain, they may retain bagrada bugs, shifting the risk of infestation. Perennial pepperweed can persist late into the fall, but this is dependent on availability of water, damage by bagrada bugs, and disease pressure (pepperweed is often afflicted by white rust; Koike et al. 2011). The timing and severity of bagrada bug infestations in fields seems to be closely tied to what is happening on the weeds, so a better understanding of population dynamics on weeds will be needed to better predict an influx of bagrada bugs.
The next step will be to figure out how to incorporate bagrada bug populations in weeds into management and scouting plans. It is already common for PCAs to check weeds for bagrada bugs and we believe this to be a useful tactic. At this point, we suggest checking weeds on the edges of fields and any large patches of weeds within ~ 0.5 miles that seem to be likely sources of bagrada bugs. Consider which sides of crop fields often get infested the most or earliest and search for weeds on that side of the field. The dispersal ability of bagrada bugs has not been well characterized, but cases in which fields are colonized even when no cruciferous weeds or only bare ground is nearby show that bagrada bugs can move significant distances. While often seen walking, bagrada bugs readily fly, especially when surface temperatures are above 100° F based on preliminary observations. When perennial pepperweed is green and leaves are growing, new or recent damage should be readily apparent. Damage on “old growth” shortpod mustard is not always readily apparent, so finding bagrada bugs themselves is necessary. Adults are often found feeding on flowers, buds, or seed pods, so these are the best plant structures to scan. We believe bagrada bugs on weeds are mainly a threat to crop fields once the quality of these plants starts to decline, so pay attention to weed phenology and damage severity on weeds from both bagrada bugs and disease.
Management of weeds is another option to limit the population growth potential of bagrada bugs. Sanitation of both weeds and crops has been a recommended cultural management tactic in the pest's Old World range (Palumbo et al. 2016). By removing nearby weeds, you may be able to prevent an economically significant infestations. If weeds are managed, the timing will be important. For shortpod mustard, if it is possible to successfully manage weeds when they are still small, this may prevent build up of bagrada populations from the very beginning. However, resurgence of the weeds may happen with sufficient soil moisture early in the year. A more efficient tactic may be to manage shortpod mustard once it has bolted and is flowering later in the season (~ late April to May). This will help prevent resurgence of weeds but will still intercept bagrada bug populations before they have a chance to build to a significant degree. Managing weeds later and once bagrada bug populations have developed could push insects into crop fields. The timing of weed management could also be tied to the susceptibility of nearby crops, which could help if bagrada bugs are already present on the weeds. Adult bagrada bugs moving into a 40 day-old broccoli field because the weeds they were on were mowed or disced would likely not cause economic damage. However, managing weeds near a newly planted field could make matters worse and create a pest problem. Even if nearby weeds don't harbor bagrada bugs early in the season, they may serve as an intermediate bridge between the crop fields and weeds that are further away. Unfortunately, it is likely impossible to manage weeds far enough out from fields to eliminate the threat of bagrada bugs. The landscape context is important, but exercising control over the entire landscape is not possible. Perennial pepperweed is a trickier weed to deal with given its phenology and ability to rapidly re-sprout. These weed species are not about to disappear from the landscape in the Salinas Valley, so they will continue to play an important role for developing bagrada bug populations.
References
Koike, S. T., M. J. Sullivan, C. Southwick, C. Feng, and J. C. Correll. 2011. Characterization of white rust of perennial pepperweed caused by Albugo candida in California. Plant Disease 95:876.
Palumbo, J. C. 2015. Association between Bagrada hilaris density and feeding damage in broccoli- implications for pest management. Plant Health Progress 16:158–162.
Palumbo, J., T. Perring, J. Millar, and D. A. Reed. 2016. Biology, ecology, and management of an invasive stink bug, Bagrada hilaris, in North America. Annual Review of Entomology 61:453–473.
- Author: Shimat Villanassery Joseph
Save the Date!
Bagrada bug meeting: First Announcement
Friday, December 11, 2015
9:30 AM to 3:00 PM
County of Monterey Agricultural Conference Center
1432 Abbott Street, Salinas, California 93901
This seminar will provide an overview of bagrada bug biology and management for both organic and conventional vegetable production. The presentations will cover the approaches taken by the researchers and strategies adopted or practiced by the growers to manage bagrada bug. The major goals of the seminar are to identify knowledge gaps and prioritize the shorter and longer-term research needs. The presentations can be viewed through a webinar and growers can interact with the speakers.
Organizers: Bagrada bug working group: California Department of Food and Agriculture (CDFA), California Certified Organic Farmers (CCOF), University of California Cooperative Extension (UCCE), University of California-Davis (UCD), University of California-Riverside (UCR), University of Arizona (UA) and United States Department of Agriculture (USDA).
Please pre-register here. Sign-in is from 9:30 to 10:00 AM on 11 December 2015. There is no registration fee for this meeting. Lunch will be provided. Please call ahead (at least 24 hours) for arrangements for special needs; every effort will be made to accommodate full participation. For more information, contact Shimat Joseph (831-229-8985; 1432 Abbott Street, Salinas, California 93901).
It is the policy of the University of California (UC) and the UC Division of Agriculture & Natural Resources (UC ANR) not to engage in discrimination against or harassment of any person in any of its programs or activities (Complete nondiscrimination policy statement can be found at http://ucanr.edu/sites/anrstaff/files/187680.pdf ) Inquiries regarding ANR's nondiscrimination policies may be directed to Linda Marie Manton, Affirmative Action Contact.
La División de Agricultura y Recursos Naturales (UC ANR) de Universidad de California prohíbe la discriminación o el hostigamiento de cualquier persona en cualquiera de sus programas o actividades. (Se puede leer la versión completa de la declaración de política antidiscriminatoria en http://UC ANR.edu/sites/anrstaff/files/187682.pdf ) Las preguntas sobre la política antidiscriminatoria de ANR pueden dirigirse a: Linda Marie Manton, Affirmative Action.
- Author: Richard Smith
1st Announcement- Save the Date
2015 Salinas Valley Weed School
Thursday, November 12
8:00 a.m. to 12:00 noon
Agricultural Center Conference Room
(1432 Abbott Street, Salinas)
This meeting will cover a number of new techniques for controlling weeds in vegetable crops. In addition the effect of weeds on bagrada bug populations and new mechanical tools will be discussed.
4.0 Continuing education credits have been applied for. Please call ahead for special accommodations.
For more information call Richard Smith (831) 759-7357
See attached file for full agenda.
/h2>/h2>/h2>/h2>/h1>/h1>2015 Weed School Agenda
- Author: Shimat Villanassery Joseph
Bagrada bug, Bagrada hilaris (Fig. 1) continues to be a major pest of brassica crops in the Salinas Valley and Hollister causing severe crop losses for both organic and conventional growers alike. Organic growers are struggling because there are very limited options at disposal to suppress the bagrada bug populations in the field. Conventional growers on the other hand are relying heavily on pyrethroid and neonicotinoid insecticides and are going with more number of applications than normal during early stages pf crop development (Cotyledon to four true leaves stage). This tactic (multiple applications) benefit the young seedlings as insecticide residues protect the plants from bagrada bug feeding especially, on the growing point or apical meristematic tissue. Feeding injury to meristematic tissue would cause “blind” head (no head) and multiple shoots on heading brassica crops such as broccoli, cauliflower or cabbage. With couple of insecticide applications at early stages of brassica crop, conventional growers are facing 5-30% loss from bagrada bug feeding injury. Some growers finding noticeably high mortality of cotyledons forcing them to skip thinning operation to maintain a decent crop stand.
Bagrada bug is taking a huge toll on leafy brassica crops such as Chinese cabbage (Pak Choi or Bak Choi), Arugula, Mizuna, Totsoi and Kale. These crops become unmarketable from direct feeding injury on the leaves (Fig. 2). These crops are like “magnets” for bagrada bugs. Bagrada bugs can precisely detect the seeds planted in the soil and most of the seedlings emerge with bagrada bug feeding injury. Sometimes, severe feeding at young stages cause plants die upon emergence (Fig. 3).
Two field trials were conducted in Hollister seeking organic insecticide options for bagrada bug management. The insecticide products chosen were Surround (Kaolin clay), Pyganic, Aza-direct, Entrust and M-pede. Surfact 50 was added when the Pyganic and Aza-direct were used alone. These organically approved insecticides were combined with other insecticides based on certain assumptions. For example, when insecticide Surround is sprayed, it forms a thin particle film on the leaf surface without affecting light transmission or photosynthesis. As bagrada bugs crawl on the Surround treated surface, the particles could stick to their body possibly cause irritation and force them to crawl off from the treated surface. This phenomenon if occurs, it could reduce the incidence of bagrada bug feeding injury. Moreover, it is possible that combining insecticides such as Pyganic and Aza-direct with Surround may increase insecticide exposure as bagrada bugs groom to remove the clay particles stuck on their body using their legs or wings.
The field where the trials were conducted had enormous bagrada bug pressure. Bagrada bugs were everywhere that one would easily kill “thousands of bugs” just by walking over the beds. All stages of bagrada bug were present in the field at the time of insecticide applications. The applications were targeted to protect the plants from feeding injury and not particularly to kill the bugs. The first trial was conducted in Mizuna field and the second trial was conducted in Arugula field. In both the trials, the products were applied four times at three-day interval until harvest between 7 AM and 9 AM. The water volume used was 40 gal per acre. The products were applied using the pneumatic sprayer or back pack sprayer. The details of the products, active ingredients and the rates used for the trials are shown in the Tables 1 and 2. The design of experiments was Completely Randomized Block Design with four replications (Fig. 4). Plant samples were collected twice a week and were evaluated for bagrada bug feeding injury on the true leaves (Fig. 5).
In trial 1, the bagrada bug feeding injury was numerically lower on Mizuna plants that received higher rate of Surround (alone) and Surround combined with Pyganic or Aza-direct than on untreated plants (Fig. 6). When the percentage change in bagrada bug injury on true leaves was calculated (taller the histogram, better the product performance), the plants treated with higher rate of Surround, and Surround combined with Pyganic or Aza-direct had greater reduction of bagrada bug feeding than untreated plants (Fig. 7). In trial 2, none of the treatments showed any indication of suppression when compared with untreated plants (Fig. 8).
Basically, these studies did not provide definite answers to the questions posed or problem but provided some trends. It appears that combining Pyganic or Aza-direct with Surround may have some value rather than applying alone. The Surround rate 20 lb per 40 gal of water is maximum rate for this product. Because Surround could clog the spray tanks, it requires rigorous agitation before application. Also, because Surround easily comes off from the leaf surface with sprinkler irrigation, reapplications are warranted if irrigated at closer intervals especially during the early stages of the crop. The rate of M-pede used in the study was 2% of the water volume. Typically, 2% of M-pede is considered as a high rate and increasing the rate (> 2%) may cause phytotoxicity (burning of leaves).
Then, can we manage bagrada bug?
Few thoughts:
- Perhaps, we should approach this problem differently. Bagrada bug is a landscape scale pest that they could reproduce and build-up to huge populations if the food is available in plenty, and warm and dry conditions persist. So far, we learned that their population build-up starting late July to December in the Salinas Valley and Hollister. The warmer conditions favor rapid reproduction and several overlapping generations of bagrada bug would develop in short period.
- We observed that their population pressure vary across landscapes and is a serious problem where the control options are limited. For example, bagrada bug problem is less severe when the management is aggressive such as conventional fields where growers have effective products that could suppress or knock down their populations at least in the crops grown. Organic growers on the other hand have limited options to fight bagrada bug and its population rapidly grows into uncontrollable size.
- We also noticed that initially these bugs invade the plants in the edge of the field from the surrounding fields or risk zones (e.g. ditches).
- These facts suggest that this is a landscape level problem rather than a field level problem. Bagrada bug management approach probably should include the management of various kinds of hosts that function as reservoir (e.g. brassica weeds) and aid to sustain their populations (brassica crops).
- Cultural management: Avoid planting brassica crops back-to-back pattern or staggered pattern. This would provide opportunity for bagrada bug to utilize the continuous supply of food to reach uncontrollable population size in short period of time. If somehow, the growers could disrupt the ecology of bagrada bug by not growing brassica crops in succession for a period instead rotate with non-brassica hosts, their population might crash and reach to a controllable levels.
- Weed management: Aggressive weed management especially brassicaceous weeds along with tight cultural management would disrupt the food supply and prevent escalation of population size.
- Bagrada bugs have demonstrated the ability to survive on non-brassica hosts especially solanaceous crops such as tomato, potato or pepper but would rarely reach to the levels we are seeing in brassica fields.
For further reading on bagrada bug please click on the following links (UC IPM pest note or blog articles).
http://www.ipm.ucdavis.edu/pestalert/pabagradabug.html
http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=14915
http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=11632
http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=11591
Please contact me (Shimat Joseph) by email at svjoseph@ucanr.edu or phone at 831-229-8985 if you have any questions or comments.