- Author: Pershang Hosseini
- Author: Tong Zhen
- Author: Matthew Fatino
- Author: Brad Hanson
- View More...
Broomrapes (Orobanche and Phelipanche spp.) are obligate plant parasites with a broad range of agricultural crop hosts. In non-parasitic plant species, seeds generally initiate germination when exposed to favorable conditions of temperature, humidity, oxygen, and, occasionally, light. However, for obligate parasitic plants like broomrapes, a chemical signal from the host plant is essential. Germination of broomrape can only occur under appropriate soil conditions and when the seed receives a strigolactone chemical signal released from the roots of a suitable host. Strigolactones (SLs) are carotenoid-derived hormones that play a crucial role in various aspects of plant growth and development. Fertilizers can regulate the production of these plant hormones (Xie et al. 2010).
Fertilization can improve soil conditions and lead to reduced initiation of broomrape parasitism (Fernández-Aparicio et al. 2016). Studies have shown that heavy infestations of crenate broomrape (Orobanche crenata Forsk.) on faba beans are linked to lower soil fertility (Trabelsi et al. 2017), and parasitism of Egyptian broomrape on tomato occurs more frequently in low-nutrient conditions (Jain and Foy 1992). The application of fertilizers has been reported to suppress the occurrence of other parasitic plants such as Striga (Jamil et al. 2011) and Egyptian broomrape (Phelipanche aegyptiaca) (Jain and Foy 1992). Fertilizers can reduce parasitism and enhance crop tolerance both directly, through toxic effects, and indirectly by improving soil fertility and plant health.
Direct toxic effect of fertilizers
Nutrient management can enhance both resistance and tolerance to broomrape parasitism in crops at the pre-attachment and post-establishment stages. Increasing the levels of nitrogen (N) and phosphorus (P) in the soil through fertilizer application can reduce the germination and subsequent infestation rates of parasitic weeds (Jamil et al. 2011). Ammonium nitrate combined with potassium phosphate or the use of ammonium phosphate alone proved to be effective in reducing parasitism and promoting the growth of tomato plants compared to potassium sulfate (Jain and Foy 1992). The direct inhibitory effects of nutrients on broomrape seeds can occur during the preconditioning, germination, and seedling elongation stages. Preconditioning Egyptian broomrape seeds in the presence ofammonium salts, such as ammonium sulfate or urea, significantly inhibited their germination; in contrast, nitrate did not have the same inhibitory effect (Jain and Foy 1992). Increasing nitrogen rate (ammonium nitrate) decreased seed germination and radicle length of branched broomrape (Irmaileh 1994). Another experiment showed that nitrogen in the ammonium form resulted in greater inhibition than nitrate, and the inhibition mechanism was actually a reduction in radicle elongation rather than inhibition of germination (Westwood and Foy. 1999).
Down-regulating of Strigolactones (SLs)
Fertilization can protect crops from parasitism by downregulating the synthesis and exudation of strigolactones, which are the most potent germination-inducing factors for root parasites (Fernández-Aparicio et al. 2016). Plants release SLs in different situations, including the establishment of symbiotic relationships between plants and certain soil microorganisms (Besserer et al. 2006; Kapulnik and Koltai 2014) and during stress response (Kapulnik and Koltai 2014). It is likely that plants produce strigolactones as a "cry for help," which broomrape exploits to its advantage. The availability of nutrients, particularly nitrogen, can decrease plant stress and subsequently downregulate the production of strigolactones. Effects of N, P, and K deficiencies on SL production showed that both N and P deficiencies enhanced SL exudation in resistant genotypes of faba bean (Trabelsi et al. 2017) and red clover (Yoneyama et al. 2012), while K deficiency had no effect (Trabelsi et al. 2017). A similar positive effect of low phosphate levels on SL production was also observed in tomato (López-Ráez et al. 2008).
In summary, effective nutrient management is a vital strategy in reducing broomrape parasitism and enhancing crop tolerance. By manipulating soil fertility and nutrient availability, it is possible to directly inhibit broomrape development and indirectly protect crops by downregulating strigolactone production. Appropriate fertilization and other stress-reducing management practices can reduce broomrape parasitism.
In addition to the indirect effects on broomrape, researchers in the Hanson lab are investigating the direct toxic effects of various fertilizers on broomrape seeds during three stages: preconditioning, germination, and post-germination (Figure 1). In future studies, we aim to explore the indirect effects of fertilization on broomrape parasitism, focusing on how nutrient management can influence the production of strigolactones and other related mechanisms. The ultimate goal of this work is to determine if manipulating fertilizer form, timing, or rates could directly inhibit branched broomrape and maximize tomato resilience to broomrape parasitism as part of an integrated management strategy.
a | b | c |
Figure 1: Branched broomrape seeds in different treatment conditions:
a) Germination (elongated radicle) observed in the control group.
b) No germination was observed when ammonium phosphate was applied at the germination stage.
c) Elongated radicle changed color when ammonium phosphate was applied post-germination.
References
Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., ... & Séjalon-Delmas, N. (2006). Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biology, 4(7), e226.
Fernández-Aparicio, M., Reboud, X., & Gibot-Leclerc, S. (2016). Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Frontiers in Plant Science, 7, 171714.
Irmaileh, B. A. (1994). Nitrogen reduces branched broomrape (Orobanche ramosa) seed germination. Weed Science, 42(1), 57-60.
Jain, R., & Foy, C. L. (1992). Nutrient effects on parasitism and germination of Egyptian broomrape (Orobanche aegyptiaca). Weed Technology, 6(2), 269-275.
Jamil, M., Charnikhova, T., Cardoso, C., Jamil, T., Ueno, K., Verstappen, F., ... & Bouwmeester, H. J. (2011). Quantification of the relationship between strigolactones and Striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Research, 51(4), 373-385.
Kapulnik, Y., & Koltai, H. (2014). Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiology, 166(2), 560-569.
Trabelsi, I., Yoneyama, K., Abbes, Z., Amri, M., Xie, X., Kisugi, T., ... & Kharrat, M. (2017). Characterization of strigolactones produced by Orobanche foetida and Orobanche crenata resistant faba bean (Vicia faba L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production. South African Journal of Botany, 108, 15-22.
Westwood, J. H., & Foy, C. L. (1999). Influence of nitrogen on germination and early development of broomrape (Orobanche spp.). Weed Science, 47(1), 2-7.
Xie, X., Yoneyama, K., & Yoneyama, K. (2010). The strigolactone story. Annual Review of Phytopathology, 48, 93-117.
Yoneyama, K., Xie, X., Kim, H. I., Kisugi, T., Nomura, T., Sekimoto, H., ... & Yoneyama, K. (2012). How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?. Planta, 235, 1197-1207.
/table>- Author: Pamela S Kan-Rice
Growers invited to discuss young almonds, pistachios, walnuts, olives and citrus orchards starting May 9
To help growers manage irrigation and nutrients for young and immature orchards, UC Cooperative Extension is offering workshops in Modesto, Merced, Fresno and Bakersfield.
The workshops will feature presentations by various experts and researchers focusing on best irrigation and nutrient management practices tailored specifically for young orchards in the San Joaquin Valley. They will cover almonds, pistachios, walnuts, olives and citrus.
“Attendees will gain insights into the irrigation and nutrient needs of young orchards, which are different from those applicable to mature orchards, and learn strategies for adjusting these practices as orchards mature,” said Moneim Mohamed, UC Cooperative Extension irrigation and soils advisor for Stanislaus, San Joaquin and Merced counties. “This knowledge aims to ensure healthier tree development, better resource use and more resilient orchards in the face of climate change.”
Growers, certified crop advisers and other agricultural professionals are encouraged to attend. Workshop attendees may request one-on-one assistance from a UCCE farm advisor.
Speakers include UCCE advisors Mohamed, Mae Culumber, Tobias Oker, and Cameron Zuber, UCCE specialist Giulia Marino, Andre Daccache of UC Davis, Charles Hillyer and Shawn Ashkan of Fresno State.
The Young Orchard Irrigation and Nutrient Management workshops will be held in four locations:
May 9 (8 a.m.–12:30 p.m.)
UC Cooperative Extension, Room HI, 3800 Cornucopia Way
Register at https://ucanr.edu/orchardsmodesto
Merced
May 14 (8 a.m.–12:30 p.m.)
UC Cooperative Extension, 2145 Wardrobe Avenue
Register at https://ucanr.edu/orcharsmerced
Fresno
May 22 (8 a.m.–12:30 p.m.)
Fresno State, 5370 N. Chestnut M/S OF 18
Register at https://ucanr.edu/orchardsfresno
Bakersfield
June 5 (8 a.m.–12:30 p.m.)
UC Cooperative Extension, 1031 South Mount Vernon Avenue
Register at https://ucanr.edu/orchardsbakersfield
Workshops are free and include coffee breaks, lunch, workshop materials along with the presentations. Registration is required.
These workshops are supported by a grant from California Department of Food and Agriculture and sponsored by Almond Board of California, California Pistachio Research Board, WiseConn Engineering and Irrometer Company, Inc.
- Author: Michael Cahn
- Contributor: David Chambers
- Contributor: Noe Cabrera
Growers will need to implement best management practices that reduce nitrate leaching losses on the Central Coast to comply with Agricultural Discharge Order 4.0. The use of drip irrigation has allowed many growers to be efficient with both water and nitrogen fertilizer. Fertigating through the drip system allows for spoon feeding nitrogen in amounts matching the pattern of crop N uptake, and to place fertilizer in the root zone. Tools like the soil nitrate quick test and the online irrigation and nutrient management platform, CropManage, can help farm managers accurately determine the right amount of fertilizer to apply to satisfy crop N requirements without jeopardizing production.
Once the right amount of fertilizer to apply has been determined, it is important that irrigators have the tools that they need to accurately inject the correct volume into the drip system. Fertigation trailers usually consist of a nurse tank that can hold a maximum volume of 500 to 1000 gallons of fertilizer and are equipped with a small gas or electric pump used to inject liquid fertilizer into the drip system. Often irrigators rely on markings on the side of the nurse tank to determine the volume of fertilizer that they are injecting. These markings are usually not accurately calibrated nor have fine enough graduations to precisely measure out fertilizer volume. Furthermore, tank markings can be hard to read, especially if the trailer is not level.
A flowmeter could increase the precision of metering fertilizer into a nurse tank or for measuring the volume of fertilizer injected into the drip system. Using a flowmeter for metering fertilizer would also facilitate tracking the volume of fertilizer applied to each crop by either noting the meter readings or by interfacing the flowmeter to a datalogger that can record the application volumes.
We evaluated the accuracy of three models of flowmeters designed for metering liquid fertilizer: 1. Banjo FM100 meter, 2. Dura-meter, and 3. Blue White F-1000 (Fig. 1). Each model relies on a different mechanism to monitor fertilizer volume. The Banjo meter measures flow using a magnetic sensor, while the Dura-meter uses a nutating disk, and the Blue white meter uses a small propeller. The accuracy of the flowmeters was tested using 25 gallons of either water, ammonium nitrate (20% N), or urea-ammonium nitrate (32% N). A testing manifold was set up in the UCCE Monterey greenhouse that pumped a calibrated volume of each fluid through the flowmeters using an electric diaphragm pump. Five or more test runs were made for each meter and fluid. The average volume measured and standard deviation from the mean volume was calculated.
All three models of flowmeters accurately measured water and fertilizer volumes (Table 1). Measurement errors were generally less than ±2% of the true volume. The Dura-meter which uses a nutating disk to measure volume was the most accurate flowmeter of the three models and had an overall average absolute error of -0.2 gallons per 25 gallons measured, and a coefficient of variation of ±0.3%. The Blue White meter, which uses a paddle wheel to measure volume, was least accurate and had an overall absolute error of 1 gallon per 25 gallons measured and a coefficient of variation of ±1.3%. The type of liquid metered affected the accuracy of the Banjo and Blue White meters more than the Dura-meter.
Table 1. Accuracy of flowmeter measurements of water and two types of liquid fertilizer (AN20 and UAN32).
Although the Dura-meter was most accurate of the three flowmeters, it did require an initial calibration before testing began. The other meters could not be manually calibrated. The nutating disk mechanism directly measures volume of a liquid which may explain why the Dura-meter was not affected by the density of the liquid tested. Both the paddle wheel and the magnetic sensor mechanisms used in the Blue-White and Banjo meters indirectly estimate flow rate. Another advantage of the Dura-meter was that it was the cheapest of the three meters when the tests were conducted. Another version of the Dura-meter can be used to turn off an injection pump when a specified volume of fertilizer has been injected. This version is available as part the auto batch system (Dura-ABS™). The Banjo meter is also available in a model (MFM100) the can output an electrical pulse proportional to flow rate so that volume of fertilizer injected can be recorded on a datalogger.
Conclusions
Three commercially available flowmeters were demonstrated to accurately measure fertilizer. Either of these meters could help irrigators more precisely apply the intended volume of fertilizer to a crop as well as verify and maintain records of the fertilizer volumes used to grow each crop. Depending on the practices of the growing operation it may be more efficient to install the meters on either the nurse tank trailer or the main fertilizer tank. If the nurse tank is used for injecting fertilizer at several fields during the day, then installing the meter on the trailer would be logical, but if the nurse tank is only filled for a single field at a time, the flowmeter could be installed on the main fertilizer tank.
- Author: Emily C. Dooley, UC Davis
Discovery could reduce nitrogen pollution, save farmers billions
Researchers at the University of California, Davis, have found a way to reduce the amount of nitrogen fertilizers needed to grow cereal crops. The discovery could save farmers in the United States billions of dollars annually in fertilizer costs while also benefiting the environment.
The research comes out of the lab of Eduardo Blumwald, a distinguished professor of plant sciences, who has found a new pathway for cereals to capture the nitrogen they need to grow.
The discovery could also help the environment by reducing nitrogen pollution, which can lead to contaminated water resources, increased greenhouse gas emissions and human health issues. The study was published in the journal Plant Biotechnology.
Nitrogen is key to plant growth, and agricultural operations depend on chemical fertilizers to increase productivity. But much of what is applied is lost, leaching into soils and groundwater. Blumwald's research could create a sustainable alternative.
“Nitrogen fertilizers are very, very expensive,” Blumwald said. “Anything you can do to eliminate that cost is important. The problem is money on one side, but there are also the harmful effects of nitrogen on the environment.”
A new pathway to natural fertilizer
Blumwald's research centers on increasing the conversion of nitrogen gas in the air into ammonium by soil bacteria — a process known as nitrogen fixation.
Legumes such as peanuts and soybeans have root nodules that can use nitrogen-fixing bacteria to provide ammonium to the plants. Cereal plants like rice and wheat don't have that capability and must rely on taking in inorganic nitrogen, such as ammonia and nitrate, from fertilizers in the soil.
“If a plant can produce chemicals that make soil bacteria fix atmospheric nitrogen gas, we could modify the plants to produce more of these chemicals,” Blumwald said. “These chemicals will induce soil bacterial nitrogen fixation and the plants will use the ammonium formed, reducing the amount of fertilizer used.”
Blumwald's team used chemical screening and genomics to identify compounds in rice plants that enhanced the nitrogen-fixing activity of the bacteria.
Then they identified the pathways generating the chemicals and used gene editing technology to increase the production of compounds that stimulated the formation of biofilms. Those biofilms contain bacteria that enhanced nitrogen conversion. As a result, nitrogen-fixing activity of the bacteria increased, as did the amount of ammonium in the soil for the plants.
“Plants are incredible chemical factories,” he said. “What this could do is provide a sustainable alternative agricultural practice that reduces the use of excessive nitrogen fertilizers.”
The pathway could also be used by other plants. A patent application on the technique has been filed by the University of California and is pending.
Dawei Yan, Hiromi Tajima, Howard-Yana Shapiro, Reedmond Fong and Javier Ottaviani from UC Davis contributed to the research paper, as did Lauren Cline from Bayer Crop Science. Ottaviani is also a research associate at Mars Edge.
The research was funded by the Will W. Lester Endowment. Bayer Crop Science is supporting further research on the topic.
Editor's note: Blumwald is affiliated with UC Agriculture and Natural Resources through the Agricultural Experiment Station at UC Davis.
/h3>/h3>- Author: Ben Faber
Fertilizers and Plant Nutrition Workshop, Ventura (English)
This workshop in English will present information for nursery and greenhouse growers, managers, and personnel on plant nutrition and fertilizer management with a focus on crops in containers. With demonstrations and hands-on activities. Topics discussed include:
• Plant nutrition
• Fertilizer types
• Uses of fertilizers
• Developing fertilizer programs
• Monitoring fertilizer status
Date:
August 9, 2022
8:00 am to 5:00 pm
Check-in starts at 7:30 am
Location:
UC Cooperative Extension Ventura County
669 County Square Dr. Suite 100
Ventura CA 93003
Registration:
$45 early registration before July 10 using the coupon code BZKMQHUTBJ at registration.
$55 after August 7th.
Box lunch, morning and afternoon refreshments provided
Cancellation Policy:
If you cannot attend on the day of the workshop, you may request a refund. Refunds may take 30 days or more to post.
For questions please contact:
Loren Oki lroki@ucdavis.edu
Organized and Sponsored by:
University of California Nursery and Floriculture Alliance
This event is made possible by funding from the CDFA Fertilizer Research and Education Program and support from the Plant California Alliance
Link:
Taller de Fertilizantes y Nutrición Vegetal, Ventura (Español)
Este taller en español presentará información para productores, gerentes y personal de viveros e invernaderos sobre nutrición vegetal y manejo de fertilizantes con un enfoque en cultivos en contenedores. Con demostraciones y actividades prácticas. Los temas discutidos incluyen:
• Nutrición vegetal
• Tipos de fertilizantes
• Usos de fertilizantes
• Desarrollo de programas de fertilizantes
• Supervisión del estado de los fertilizantes
Fecha:
10 de Agosto de 2022
8:00 am a 5:00 pm
El check-in comienza a las 7:30 am
Ubicación:
UC Cooperative Extension Ventura County
669 County Square Dr. Suite 100
Ventura CA 93003
Registro:
$45 por registro anticipado antes del 7 de Agosto utilizando el código de cupón NXADZYPUZC en el registro.
$55 después del 7 de Agosto.
Box lunch, refrigerios por la mañana y por la tarde proporcionados
Política de cancelación:
Si no puede asistir el día del taller, puede solicitar un reembolso. Los reembolsos pueden tardar 30 días o más en publicarse.
Si tiene preguntas, comuníquese con:
Loren Oki lroki@ucdavis.edu
Jared Sisneroz jasisneroz@ucdavis.edu
Organizado y patrocinado por:
University of California Nursery and Floriculture Alliance
Este evento es posible gracias al financiamiento de la CDFA Fertilizer Research and Education Program y apoyo de la Plant California Alliance