- Author: Kathy Keatley Garvey
The event is free and open to the public and will be hosted by Jared Shaw of the UC Davis College of Letters and Science.
“It is actually going to be a very basic talk aimed at lay audiences and kids,” Attardo says. “I'll be talking about my background, how I became an entomologist and how I ended up working on tsetse flies. Then I am going to discuss the life history of tsetse flies, where they can be found, why they are of medical importance and how their reproductive biology differs so dramatically from other flies that people are familiar with. My plan is to go over their reproductive cycle, how they develop intrauterine larvae, the reproductive adaptations that allow them to perform this feat and then go over what we know about tsetse milk secretions and how they compare to mammalian milk in terms of nutritional content.”
“The aim is for it to be very informal, with very little scientific jargon and to be discussion-oriented so that there is lots of questions and answers. I am also bringing some items from the lab that can be passed around the audience for show and tell (homemade tsetse cages, the blood feeding system we use to feed the flies and some tsetse flies preserved in alcohol).
Attardo focuses his research on numerous aspects of the physiology of tsetse fly reproduction, with the goal to identify and understand key aspects of its reproductive biology. He joined the UC Davis Department of Entomology and Nematology in 2017 from the Yale University School of Public Health, New Haven, Conn., where he researched tsetse flies in the lab of Serap Aksoy.
Attardo considers the tsetse fly "one of the champions of the insect world."
"In addition to being vectors of a deadly disease, Trypanosomiasis, these flies have undergone amazing alterations to their physiology relative to other insects," he says. "Some examples of this are their ability feed exclusively on blood, their obligate relationship with a bacterial symbiont, the fact that they lactate and that they give birth to fully developed larval offspring."
Attardo is the co-author of Adenotrophic Viviparity in Tsetse Flies: Potential for Population Control and as an Insect Model for Lactation, published in January 2015 in the Annual Review of Entomology.
- Author: Kathy Keatley Garvey
The review, co-authored by Nansen and Norman Elliott of the U.S. Department of Food and Agriculture's Agricultural Research Service, Stillwater, Okla., explains remote sensing and highlights how it influences entomological research by “enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.”
“To most people, remote sensing refers to imaging-and reflectance-based surveying mounted on airborne devices and vehicles such as airplanes or satellites,” they pointed out. They rely on a broader definition: “The measurement or acquisition of information of some property of an object or phenomenon by a recording device that is not in physical or intimate contact with the object or phenomenon under study.”
“Consequently, even imaging through a microscope may be considered a type of remote sensing,” they wrote. “In many remote sensing applications, the data are collected in parts of the radiometric spectrum that are not detectable by the human eye…We wish to emphasize that entomological remote sensing is expanding in many directions and creating intriguing opportunities for collaborative research between entomology and disciplines such as informatics and electrical engineering. “
Remote sensing has been an established research discipline for more than four decades, Nansen related. “It was Isaac Newton who discovered that light could be separated into a spectrum of colors, and approximately 100 years later, James Clerk Maxwell discovered that light as we see it is part of a very wide radiometric spectrum.”
(See the Nansen/Elliott review at http://www.annualreviews.org/doi/abs/10.1146/annurev-ento-010715-023834)
The Annual Review of Entomology, launched in 1956, reviews significant developments in the field of entomology, including biochemistry and physiology, morphology and development, behavior and neuroscience, ecology, agricultural entomology and pest management, biological control, forest entomology, acarines and other arthropods, medical and veterinary entomology, pathology, vectors of plant disease, genetics, genomics, and systematics, evolution, and biogeography.
Nansen, who joined the UC Davis Department of Entomology and Nematology in 2015, is focusing on four major themes: host plant stress detection, host selection by arthropods, pesticide performance, and use of reflectance-based imaging in a wide range of research applications.
He is using his international expertise to zero in on more sustainable farming systems, better food production and fewer pesticides.
“The agricultural sector in California is so exciting, because of its diversity and economic importance,” said Nansen, whose agricultural entomology expertise encompasses seven countries including his native Denmark. “Secondly, there is a strong spirit of innovation in this region, and I hope to contribute to the development of highly advanced crop monitoring systems and decision support tools, so that farming practices can become less reliant on pesticides.”
Born and educated in Denmark, Nansen received his master's degree in biology from the University of Copenhagen in 1995 and his doctorate in zoology from the Royal Veterinary and Agricultural University in Denmark in 2000. He accepted positions in Portugal, Benin, United States, UK and Australia before joining the UC Davis Department of Entomology and Nematology in January as an assistant professor. Nansen previously held faculty positions at Texas A&M, Texas Tech, and most recently at the University of Western Australia.
His international experience also includes being an international exchange student at the University of Lisbon, Portugal and a visiting professor at Northwest A&F University, Yangling, China.
Related Link:
Christian Nansen's Website
