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1. INTRODUCTION

The human senses have always been used to assess food quality.
Although the senses of sight, hearing, taste, smell, and touch are
used daily in all aspects of our lives, their analytical applications
to evaluate food properties are relatively recent.1,2 The sensory
systems of Homo sapiens are the product of millions of years of
evolution where natural selection has resulted in our capacity to
detect a wide range of compounds present in the environment,
advantageous to our survival, allowing hedonistic evaluation of
our environment.2

Many features of food can be studied analytically using
sensory methods and techniques (e.g., taste, aroma, texture, and

color), and they can be integrated to provide the overall
sensory evaluation of food.1−15 Additionally, the human senses
have the ability to “focus” or concentrate on specific attributes
(e.g., sweetness or bitterness of a beverage). It is only recently
(compared to the evolutionary time scale) that instrumental
methods have reached a level of sophistication which enables
investigation of the properties of food. For example, recent
advances in chromatographic separation, coupled with sensitive
detection systems, can be used to obtain qualitative and
quantitative data to assess food composition.1,2,12−15

Overall two main types of methods for evaluation of the
quality of beverages and foods can be used, namely, subjective
and objective. Subjective methods are those based on human
assessment of the quality characteristics of the food.5−7,14

These methods involve perception of texture, flavor, odor,
color, and touch by a panel of experts or consumers.7,8,10,15

However, even though human evaluators can be highly trained,
their opinions might vary due to psychological and physical
variability.6,7 Subjective sensory methods are also time
consuming and susceptible to large sources of variation. By
nature, such assessments can be biased by individual
preferences and may be subject to day-to-day variations.7−10,15

In contrast, objective methods for assessment of quality
include instrumental analysis and could be very beneficial for
numerous reasons as they are nonsubjective, highly repeatable,
and reproducible and, most of all, the fact that instruments do
not suffer from fatigue or adaptation.7−15

Given the complex nature of alcoholic beverages, there are
many advantages to developing instrumental methods to
describe their quality or sensory profile. However, to be of
practical use by the beverage industry, instrumental methods
must be cost effective and provide rapid, reproducible results
with continuous operation.
To date, instrumental methods for sensory analysis have

lacked the ability to consistently perceive all of the key sensory
attributes of interest and have been inconsistent in predicting
relationships between sensory and instrumental measurements,
depending on the attribute and food matrix analyzed.7,8,10−15

Existing analytical methods used to measure wine and
alcoholic beverages composition and quality are not adequate
for the demands of production in a global market due to their
high cost and slow turnaround time. Factors like promptness
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and low cost of analysis, minimal sample preparation, and
environmentally friendly methods are of paramount importance
in the modern and sustainable wine and alcoholic beverage
industries.16

In order to enable the beverage (and other food applications)
industry to rapidly respond to the changing demands of both
consumers and the market, it is important to have a quantitative
means for assessing sensory properties by means of objective
measurements (e.g., analysis of volatile compounds) which can
provide reliable information about the quality of the food.17

However, many of these methods are unsuitable to be used or
adopted by the industry for rapid analysis of quality. For
example, analysis of volatile compounds in wine to assess wine
aroma by gas chromatography−mass spectrometry (GC-MS)
involves expensive instrumentation and time-consuming sample
preparation using solvents as well as analysis (from a few to
several minutes).7,10,12−14,17,18

In the last 20 years increasing interest on the use of rapid
screening techniques or instrumental methods to determine
quality characteristics of foods and beverages has been of great
interest to the food industry. These techniques are relatively
inexpensive and easy to operate, often require little or no
sample preparation, and can be used in-line or at-line to obtain
results quickly. Such techniques or sensors can be grouped into
electronic noses (EN),18−20 optical methods based in vibra-
tional spectroscopy (e.g., infrared, UV), and more recently the
so-called electronic tongue instruments that were developed to
characterize complex food or beverage samples in order to
replace or reduce the use of sensory analysis using human
subjects.

1.1. Aroma

Flavor is complex, and many different sensory modalities and
chemical compounds influence flavor perception. Aroma (or
smell) is the major contributor to overall flavor perception in
wine and other beverages, and it is largely related to the volatile
aroma compounds that contribute to the overall flavor of the
sample.10

Many of the analytical methods used to study aroma typically
involve preparation of an extract (or collection of volatiles on
traps) followed by chromatographic separation and detec-
tion.1,2,5,10−15 Other aspects of the analysis, such as the
temporal dimension of the eating/drinking process, which
includes the effect of release and transport of the aroma
compounds to the olfactory epithelium, are not considered in
such analyses, although the temporal dimension is a central
feature of the eating/drinking process.1,2,10−15

Typically, the human senses do not react to the absolute
intensity of a stimulus but to the rate of change in a stimulus.
The temporal dimension can be measured sensorially using
methods that can relate time and intensity odor of the
compounds, and mathematical models have been developed to
describe how perception is affected by temporal changes in
breath aroma concentration.1,2,10−15

Ideally, instrumental methods should be able to follow
changes in the temporal dimension, making objective measure-
ments that can be related to perception. In order to achieve this
fast, sensitive analytical systems which have a selectivity and
sensitivity comparable with the human olfactory receptor are
needed.1,2,10 For example, use of electroencephalography
(EEG) and magnetic resonance imaging (MRI) can both be
used to study brain activity directly but are not practical from
an industrial point of view.1,2,10

An alternative option is to use purely instrumental
techniques to follow changes in breath volatile concentration
during eating or drinking and to relate the patterns observed to
sensory perception. Examples of such instruments are the so-
called electronic noses (EN).15−23 EN employ arrays of sensors
(in much the same way as the olfactory epithelium has arrays of
receptors) which can be used to monitor volatile com-
pounds.1,2,10−15,22 All sensors have a certain amount of
specificity, such that one particular sensor may respond more
to esters than aldehydes, whereas the opposite might be true for
another type of sensor. However, the sensors do not respond in
a manner comparable with that of the human olfactory system.
They lack sensitivity (parts per million concentration) and
selectivity, while their slow response rate makes them
unsuitable for following rapid changes in breath volatile
concentration.14,20−27 Real-time detection of volatile concen-
tration can be achieved using an electron impact source with a
membrane separator between the source and the external
environment.1,2 The mass spectrometer has advantages
(relative to the electronic nose) owing to its fast response
rate and greater sensitivity. However, the membrane reduces
the overall sensitivity of the method, and its selective
permeability reduces its potential application. Other mass
spectrometer systems, atmospheric pressure chemical ioniza-
tion mass spectrometry (APCI-MS) and proton transfer
reaction mass spectrometry (PTR-MS), are being developed
and can be used for real-time detection of compounds at parts
per billion concentrations.1,2,22,29

1.2. Taste

Taste-related compounds (tastants) also show changes in
concentration over time, and their solubility will depend on the
release from the matrix and rate of clearance by saliva. Like
aroma compounds, tastants have different detection thresholds
and qualities, factors that need to be taken into account in
methods that assess taste.1,2,10 Typically, only rough estimates
of the acid/sugar balance are necessary for natural products.
However, increasing use of intense sweeteners and nonsweet
sugars in manufactured food products makes it difficult to
provide a simple analytical estimation of overall taste.5−7,10−15

It might prove easier to develop instrumental methods for
assessment of tastants owing to the fact that these compounds
are present at higher concentrations in food samples and have
fewer descriptors compared to aroma compounds. Instrumental
methods available for analysis of taste include the electronic
tongue, which is based on an array of lipid or polymer
membranes. In the presence of tastants the electrical properties
of the membranes changed, resulting in a modification in
electrical output relative to a reference electrode. Compounds
with similar taste properties typically produce patterns of
electrical output from the sensors which are also sim-
ilar.5−7,10−15

The electronic tongue can be used to discriminate between
the taste properties (e.g., bitter, sweet, sour, umami) of amino
acids. The electronic tongue appears to be a useful tool for
profiling of foods (particularly beverages); however, like many
analytical techniques, it does not measure the release and
persistence of compounds in vivo during eating or drink-
ing.5−7,20,24−30

This review discusses recent applications of instrumental
methods based in spectroscopy (e.g., infrared) and other sensor
systems (e.g., electronic noses and tongues) as tools to predict
taste and aroma in wine and other alcoholic beverages.
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2. ELECTRONIC NOSES

The most sensitive and broader range odor detector is
undoubtedly the mammalian olfactory system, whose high
complexity and efficiency derive from millions of years of
evolutionary development.22,25,27,29 The limits of traditional
instrumental techniques in the matter of odors have led to
growing attention to odor measurement procedures relying on
the use of the human nose as a detector, in compliance with the
scientific method.23,22,25,27,29

For many years sensory evaluation of smells by means of
panels of sensory trained evaluators has been the main odor
assessment and quantification tool in the beverage and food
industries called dynamic olfactometry.23,26−28 This is a
standardized method used for determining the concentration
of odors and evaluating odor complaints.23,26−28 This method-
ology is based on the use of a dilution instrument, called
olfactometer, which presents the odor sample diluted with
odor-free air at precise ratios, to a panel of human assessors.23

The examiners are selected in compliance with a standardized
procedure performed using reference gases; only assessors who
meet predetermined repeatability and accuracy criteria are
selected as panelists.
Perception of odors is a logarithmic phenomenon, and for

this reason, in this kind of measurement it is necessary to take
into account the fact that odor concentration is associated with
odor intensity though a defined logarithmic relation.23,26−31

Using other sensorial methods, subjective parameters, such as
the hedonic tone or the perceived odor strength, could be also
assessed.23,26−31

An improvement in odor determination consists of a GC-MS
coupled with olfactometric detection (GC-MS/O). Gas
chromatographic separation of an odorous air sample could
be useful for identifying specific odorant components. Use of
GC-MS/O allows a deeper understanding of the odorant
composition as concerns compound identification and
quantification, offering the advantage of a partial correlation
between the odorant chemical nature and the perceived
smell.10,15,23,26−31 This instrumental approach allows solving
the odor complexity issue, which is also the main reason for the
careful procedures required for sampling of odors in the
atmosphere or air.23 Overall, odor detection remains linked to
human perception. Although careful choice of panel members
and use of standard procedures for odorous sample collection
and analysis allow obtaining reliable and repeatable olfacto-
metric measures, thus overcoming the subjectivity due to the
human olfaction variability, increasing attention is being paid to
the availability of more objective odor evaluation meth-
ods.10,15,23,26−31

Discovery of materials with chemo-electronic properties has
provided the opportunity for development of artificial olfactory
instruments mimicking the biological system.19−21,23,26−31 In
the past decade a large field of scientific research has been
devoted to development of electronic noses (EN). These kinds
of sensors are the so-called olfaction instruments capable of
discriminating between a variety of simple and complex odors.
Like human olfaction, EN are based on an array of electronic-
chemical sensors with partial specificity to a wide range of
odorants and an appropriate pattern recognition sys-
tem.19−21,23,26−31 In contrast to the ideal gas sensors, which
are required to be highly specific to a single chemical species,
sensors for EN need to give broadly tuned responses like the
olfactory receptors in the human nose: in both cases odor

quality information and recognition is ensured by the entire
pattern of responses across the sensors array rather than the
response of any one particular sensor. Furthermore, mimicking
data processing in the biological systems, the incoming chemo-
electronic signals are processed through the use of data
reduction techniques (e.g., principal component analysis) in
both human and EN devices, the function of odor recognition
is finally achieved by means of some form of associative
memory for storage and recall of previously encountered
odors.19−21,23,26−31 A wide variety of competing sensor
technologies (conducting polymers, piezoelectric devices,
electrochemical cells, metal oxide sensors [MOX], and
metal−insulator semiconductor field effect transistors [MIS-
FETs]) are currently available: independent of the considered
device, sensor elements have to show fast, reproducible, and
reversible responses to odor samples.23,26−39

The classical EN, consisting of an array of sensors, is still the
most common approach, although new technologies have
recently entered the market.27,29,30 A diverse number of
technologies has been used such as metal oxide sensors
(MOX),31,32 mass spectrometry (MS), ion mobility spectrom-
etry (IMS), and gas chromatography (GS) sen-
sors.19−21,27,30,33−39

Nowadays, EN instruments are extensively used to measure
the headspace of a food or beverage sample to obtain a
‘fingerprint’ measurement of the volatiles in the headspace and
relate this information to the volatile compounds which may be
responsible for the aroma sensory properties of that sample. A
number of food and beverage studies demonstrated the
relationship between EN measurements and the rating of
sensory properties by sensory panelists. The term EN is often
associated with detection of odors or an attempt to smell with
an electronic device.19−21,27 The EN offers the capability to
detect some gases with no odor activity and is not necessarily
adapted only to substances of importance to mammalian life
such as the scent of other animals, foodstuff, food ingredients,
and food samples or food spoilage.19−21,27

3. INFRARED SPECTROSCOPY
Chemical bonds present in the organic matrix of beverages
vibrate at specific frequencies, which are determined by the
mass of the constituent atoms, the shape of the molecule, the
stiffness of the bonds, and the periods of the associated
vibrational coupling.40−43 A specific vibrational bond absorb in
the infrared (IR) spectral region where diatomic molecules
have only one bond that may stretch (e.g., the distance between
two atoms may increase or decrease). More complex molecules
have many bonds; vibrations can also be conjugated, leading to
two possible modes of vibration: stretching and bending.
Despite these potential problems, absorption frequencies may
be used to identify specific chemical groups, and this capability
has traditionally been the main role of Fourier transform (FT)
midinfrared (MIR) (FT-MIR) spectroscopy.40−43 The MIR
region of the electromagnetic spectrum lies between 4000 and
400 cm−1 and can be segmented into four broad regions: the
X−H stretching region (4000−2500 cm−1), the triple-bond
region (2500−2000 cm−1), the double-bond region (2000−
1500 cm−1), and the fingerprint region (1500−400 cm−1).40−43

Characteristic absorption bands are associated with major
components of food. Water is a significant absorber in the MIR
spectral region and can interfere with determination of other
components present in beverages. Absorptions in the finger-
print region are mainly caused by bending and skeletal
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vibrations, which are particularly sensitive to large wavenumber
shifts, thereby minimizing against unambiguous identification of
specific functional groups.40−43 Even in this region, however,
the spectrum may be used as a fingerprint of a sample such as a
food product or food ingredient. Analysis of such fingerprints
forms the basis of many applications of MIR spectroscopy in
food analysis. Broad fields of application include constituent
quantification and qualification issues for food and food
ingredients; substance identification and authentication are
included in the latter field.40−43

Other types of sensors based on vibrational spectroscopy in
the IR region are those base sensors in the near-infrared (NIR).
In the last 40 years NIR spectroscopy has became one of the
most attractive and used methods of analysis which provides a
simultaneous, rapid, and nondestructive way to quantify major
components in many agriculture-related products and plant
materials.43 Use of NIR for analysis of beverages is
characterized by low molar absorptivities and scattering,
which leaves a nearly effortless evaluation of pure materials.
Although Herschel discovered light in the NIR region as early
as 1800, spectroscopist’s of the first half of the last century
ignored it in the belief that it lacked analytical interest.43−47

More than 100 years later, the NIR region of the electro-
magnetic spectrum has become one of the most promising
techniques in molecular spectroscopy.
Spectral ‘signatures’ in the MIR result from the fundamental

stretching, bending, and rotating vibrations of the sample
molecules, while NIR spectra result from complex overtones
and high-frequency combinations at shorter wavelengths.40−47

Spectral peaks in the MIR frequencies are often sharper and
better resolved than in the NIR domain; the higher overtones
of the O−H (oxygen−hydrogen), N−H (nitrogen−hydrogen),
C−H (carbon−hydrogen), and S−H (sulfur−hydrogen) bands
from the MIR wavelengths are still observed in the NIR region,
although much weaker than the fundamental frequencies in the
MIR. In addition, the existence of combination bands (i.e., CO
stretch and NH bend in protein) gives rise to a crowded NIR
spectrum with strongly overlapping bands.40−47

A major disadvantage of this characteristic overlap and
complexity in the NIR spectra has been the difficulty of
quantification and interpretation of data from NIR spectra. On
the other hand, the broad overlapping bands can diminish the
need for using a large number of wavelengths in calibration and
analysis routines. In recent years, new instrumentation and
computer algorithms have taken advantage of this complexity
and made the technique much more powerful and simple to
use. However, the advent of inexpensive and powerful
computers has contributed to the surge of new NIR
applications.40−47

4. ELECTRONIC TONGUES
Electronic tongues (E-tongues) are sensor arrays capable of
distinguishing very similar liquids employing the concept of
global selectivity, where the difference in the electrical response
of different materials serves as a fingerprint for the analyzed
sample.48−55 They have been widely used for analysis of wines,
fruit juices, coffee, milk, and beverages in addition to detection
of trace amounts of impurities or pollutants in waters.50,52−55

Among the various principles of detection, electrochemical
measurements and impedance spectroscopy are the most
widely used. With regard to the materials for the sensing
units, in most cases use is made of ultrathin films produced in a
layer-by-layer fashion to yield higher sensitivity with the

advantage of control of the film molecular architecture. The
concept of E-tongues has been extended to biosensing using
sensing units capable of molecular recognition, as in films with
immobilized antigens or enzymes with specific recognition for
clinical diagnosis.50,52−55 Identification of samples is basically a
classification there has been a trend to use artificial intelligence
and information visualization methods to enhance the perform-
ance of E-tongue devices.50,52−55

Briefly, the E-tongue is constituted by sensing units formed
by ultrathin films of distinct materials deposited on gold
interdigitated electrodes, which are immersed in liquid samples,
followed by impedance spectroscopy measurements.50,52,54,55

The E-tongue sensor is based on the global selectivity concept,
for example, materials forming the sensing units are not
selective to any substance in the samples; therefore, it allows
grouping of information into distinct patterns of response,
enabling distinction of complex liquid systems using conven-
tional polyelectrolytes such as poly(sodium styene sulfonate)
(PSS) and poly(allylamine) hydrochloride (PAH), chitosan,
and poly (3,4-ethylenedioxythiophene) (PEDOT).50,53−55

Table 1 summarizes the sensory modality measured (e.g.,
aroma or taste) and instrumental methods available, providing
an overall overview of how they operate.

5. CHEMOMETRICS AND DATA MINING
Chemical information contained in such instrumental methods
resides in the occurrence of peaks, band positions, intensities,
and shapes. The most successful approach to extracting
quantitative, qualitative, or structural information from such
spectra is to use multivariate mathematical analysis or
chemometrics.56−62 These powerful methods and the computer
technology necessary to use them have only become readily
available in recent years, but their use has become a significant
feature on the development of instrumental applications.
A broad range of techniques is now available including data

reduction tools, regression techniques, and classification
methods. Principal component analysis (PCA) is a commonly
used data compression and visualization tool, reducing a
spectral data set into a small (generally less than 20) number of
new, orthogonal (e.g., noncorrelated) variables on each of
which a score (or value) for each sample is calculated.56−62

Graphical display of these scores can often reveal patterns or
clustering within a data set because similar samples are expected
to locate close to each other; unexpected sample locations in
this hyperspace may alert the analyst to unusual or outlying
samples, which may be reanalyzed or, as a final resort, deleted
from the data set prior to further data processing. Principal

Table 1. Sensory Modality or Characteristic (Aroma and
Taste) and Generic Instrumental Method

sensory modality
generic instrumental
method or sensor principle

aroma electronic nose polymer sensor
metal oxides sensors
mass spectrometry
head space traps

taste electronic tongue voltametric
potentiometric
amperometric

aroma, taste and visual
characteristics (color)

near and midinfrared,
combination of sensors

molecular/
vibrational
spectroscopy
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component (PC) scores may be used in further mathematical
operations to classify samples into different, naturally occurring
groups.56−62 A number of procedures are available for sample
classification or discrimination; soft independent modeling of
class analogy (SIMCA) is an example of a popular class-
modeling method, while linear discriminant analysis (LDA),
hierarchical cluster analysis (HCA), factorial discriminant
analysis (FDA), artificial neural networks (ANN), and partial
least-squares (PLS) discriminant analysis (DA) are examples of
much used discriminant methods.56−62 Class-modeling meth-
ods focus on characterizing each of the classes of sample being
analyzed and involve calculation of a model and boundaries
within which samples of each particular type may be expected
to be found.56−62

Discriminant methods focus on characterizing the boundaries
between samples of different classes and do not involve
calculation of statistically robust confidence limits for each
class.40,41,56−62 Application of artificial neural networks (ANN)
is a more recent technique for data and knowledge processing
that is characterized by its analogy with a biological
neuron.57−59,61 When the firing frequency of a neuron is
compared with that of a computer, then for a neuron this
frequency is rather low.57−59,61 In the biological neuron the
input signal from the dendrites travels through the axons to the
synapse. There the information is transformed and sent across
the synapse to the dendrites of the next neuron.57−59,61 For
fuller coverage of chemometric tools and procedures, the
interested reader is referred to other sources.56−62

6. APPLICATIONS OF INSTRUMENTAL METHODS

6.1. Electronic Noses

The matrix of alcoholic beverages is made up of a complex
mixture of chemicals including water, alcohol, phenolic
compounds, organic acids, sugars, and volatile aroma
compounds, all of which can contribute to the sensory
characteristics of the food.11,15,47,63−66 Those components
responsible for aroma and flavor are not only involved in
complex interactions with each other, resulting in masking and
additive effects, but also involved in complex interactions with
nonflavor active components in alcoholic beverages matrix (e.g.,
water, alcohol, nonvolatile compounds). Due to these complex
interactions, it might not be simple to obtain a robust
prediction of sensory properties through measurement of just
a small number of volatile or chemical components, without
taking into account the matrix of beverages.11,15,16,47,63−66

Few studies have examined the use of EN or gas sensors to
characterize the aroma of wine, mainly due to major
compounds in the samples headspace, such as ethanol, causing
interference with the gas sensor.33−39,69,70 However, this
limitation does not exist with mass spectrometry (MS)-based
EN instruments where the alcoholic-based beverage headspace
is monitored and the whole spectra are analyzed.67−74 Recent
studies have shown that rapid analysis of wine volatiles by MS-
EN produces signals containing information that even without
chromatographic separation can be used to determine a
fingerprint of wine based on its aroma profile.67−74

A benefit of MS-EN instruments over other EN sensors is
that they detect mass fragments formed during ionization of
volatile compounds. Some of these volatiles can be directly
responsible for the sensory differences between samples, and
measuring the mass fragments of these compounds can provide
some understanding of the chemical basis for sensory

differentiation as well as basis for varietal discrimination.30,37

Furthermore, MS-EN instruments are based on the very well-
known and commonly used technology of MS, and the stability,
sensitivity, and reproducibility of this technique has long been
established.7

While the benefits of quick classification and differentiation
of wines without the need of determining the chemical
composition of the gaseous phase are undisputable, it has to
be taken into account that EN is a nonselective technique, that
is, it detects the major volatiles of the headspace regardless of
whether those volatiles are actively contributing to the aroma of
the wine or not.7,16 The volatile compounds responsible for the
characteristic aromas of wine are often not quantitatively the
major volatile components in the headspace of wine; rather
they are usually minor constituents present at microgram or
nanogram per liter levels.7 Consequently, those volatile
compounds at higher concentrations in the headspace, which
are not contributing to the aroma of the wines, may be
dominating the spectral data obtained from EN and introducing
noise to the regression models developed. Furthermore, the EN
method is not likely to be sensitive enough to detect all of the
most important volatile aroma compounds which are present at
trace levels which would further impact on the ability of the EN
profile to predict the sensory properties of the sample.
Metal oxide sensor (MOX) instruments were tested for the

ability to characterize Ontario-produced fruit wines.70 Both
fruit wines (blueberry, cherry, raspberry, blackcurrant, elder-
berry, cranberry, apple, and peach) and grape wines (red,
Chardonnay, Riesling, and ice wine) were obtained from several
Ontario wineries. Replicates of each wine sample were dried
onto membrane filters to remove ethanol and analyzed by a
commercially available instrument.70 Results show that MOX
sensors can discriminate between fruit and grape wines and
may become an important tool for standardization of wine
quality.70

Application tin oxide−array sensors for identification of
typical aromatic compounds present in white and red wines was
evaluated to detect different aroma attributes (e.g., fruity, floral,
herbaceous, vegetative, spicy, smoky).71,72 Comparison of both
PCA and LDA chemometric techniques shows that compounds
responsible for the aroma in red and white wines were clearly
separated. From the results obtained, the authors concluded
that the system evaluated could correctly discriminate the
aromatic compounds added to wine samples.71,72

Combination of an EN device based on resistive MOX
sensors, an E-tongue (based on voltametric sensors), and an e-
eye (based on CIE Lab coordinates) has been used to monitor
the aging of a red wine.73 The changes in the chemical
composition of wines that occur during maturing have
permitted the system to discriminate among wine samples
collected after 1, 3, 6, and 10 months of aging. The
discrimination capability of the electronic panel test obtained
by means of PCA, PLS-DA is even higher than the
discrimination achieved by means of traditional chemical
analysis. After 10 months of aging it has been possible to
discriminate between the wine aged in a French oak barrel and
the same wine soaked with oak chips of the same origin and
toasting level and treated with micro-oxygenation.73

An electronic panel created by an EN, E-tongue, and
electronic eye has been successfully used to evaluate the
organoleptic characteristics of red wines produced using
different extraction techniques and micro-oxygenation methods
and bottled using closures of different oxygen transmission
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rates (OTR).74 Use of PLS-DA has allowed one to establish
prediction models based on the type of closure, the polyphenol
content, or the effect of micro-oxygenation. The best
correlations were found using the e-eye and the EN related
to the OTR of the closure, while the E-tongue was more
sensitive to changes in the polyphenol content of the wine
samples analyzed. The discrimination and prediction capa-
bilities of the system are significantly improved when signals
from each module are combined. Overall, it was concluded by
the authors that the electronic panel can be a useful tool for
characterization and control of oxygen and antioxidant
capability of red wines.74

The ability of two EN systems (conducting polymer and
surface acoustic wave based) to differentiate volatiles of grapes
and wines treated with an aqueous ethanol spray (5% v/v) at
veraison was evaluated.75 EN evaluation of grape volatiles was
compared with Cabernet Franc and Merlot chemical
composition with the aroma of the wine measured by GC
(volatiles) and sensory data. Canonical discriminant and PCA
found that both EN systems and the chemical measures (e.g.,
Brix, TA, pH, color intensity and hue, total phenols, glycosides,
and berry weight) were able to discriminate between ethanol-
treated and untreated grapes and wines for both cultivars.
According to the authors, grape differences were due mainly to
variations in hue, phenolic-free glycosides, and total phenols.75

Aroma sensory evaluations using a consumer panel differ-
entiated between ethanol treatments and controls for Merlot
but not for Cabernet Franc wines.75

Some special sweet wines are obtained by partial
fermentation of musts from off-vine dried grapes containing
large amounts of sugars. This process is very slow and subject
to serious stop problems that can be avoided using osmo-
ethanol-tolerant yeasts.68 Musts containing 371 g L−1 of sugars
were partially fermented with selected Saccharomyces cerevisiae
strains, namely, X4 and X5, to 12% (v/v), and the wines
obtained with X5 strain exhibited a higher volatile acidity but
lower concentrations of higher alcohols, carbonyl compounds,
and polyols than those obtained with X4 strain.68 Use of PCA
of the data provided by an EN system afforded discrimination
between fermented and unfermented musts but not between
wines obtained with X4 or X5 strains. The PCA applied to the
major volatile compounds and polyols shows similar results, but
a clear discrimination between wines is obtained by removing
the polyols glycerol and 2,3-butanediol from the PCA models
developed.68

A comparative study between the perception and the
recognition thresholds of volatile components calculated from
an EN system and from a human sensory panel was reported.76

The EN system was home developed; based on a thin film
semiconductor a sensor was used, while the human sensory
panel is formed by 25 tasters with previous experience in wine
tasting. Both systems were trained in parallel to detect 17
volatile compounds involved in aromatic and off-flavor notes
(grouped under 9 aromatic descriptors) from the threshold
concentrations found in the literature (called T) to increasing
concentrations (T, 2T, and 4T). The results showed that the
perception level of the human nose was superior in comparison
to the results obtained from the EN system. However, the EN
system gave better results in the recognition threshold in some
aroma compounds associated with off-flavor notes in the set of
wine analyzed. According to these results, the authors
concluded that the EN system could be a useful complementary

tool to sensory human panels.76 Similar results were reported
by other authors.77

6.2. Infrared Spectroscopy

It has been demonstrated that wine-quality rankings (as the
score or allocation assigned to wines by sensory panels) for red
and fortified wines could be discriminated by visible (VIS) and
NIR spectroscopy.16,78−80 Studies carried out in a commercial
winery in Australia demonstrated that vis−NIR spectroscopy
can predict wine quality as judged by both commercial wine-
quality rankings and wine show scores.16,78−80 Correlations
between NIR spectra and sensory data obtained using wine
show samples were less significant in general in comparison
with the commercial grading data. The coefficient of
determination (R2) and the standard error in cross validation
(SECV) obtained to predict tawny port wine score were 0.84
and 0.97, respectively (see Table 2).78−80

Grading of wine by vis−NIR spectroscopy provides a rapid
assessment or prescreening tool to add to the range of analyses
available to winemakers. It could allow preliminary blend
allocation of large numbers of batches of wines prior to sensory
assessment. Winemakers may be able to develop ‘profiles’ for
their blends as in-house vis−NIR calibrations. Calibrations
based on sensory scores will tend to be difficult to obtain due to
variation between individual wine tasters and may not pick up
compounds that are present at low concentrations yet have
strong sensory properties. Nevertheless, interpretation of
spectral data may provide valuable insight into the more
abundant parameters affecting wine quality and highlight the
interactions that occur within the complex wine matrix in
governing sensory properties.78−80

Recent studies have demonstrated the ability of vis−NIR
spectroscopy to predict quality scores derived from a panel of
winemakers in a set of red wine samples. Most of the NIR
calibrations developed accounted for more than 70% (R2 >
0.70) of the variation described by the sensory panel.79,80 Use
of vibrational spectroscopy, in particular, use of vis−NIR to

Table 2. Examples on the Application of Electronic Noses,
Electronic Tongues, and Other Instrumental Methods To
Quantify Aroma and Taste Characteristics in Beveragesa

aroma or taste
characteristic method range R RMSEP ref

pencil shaving E-tongue 0.3−3.95 0.83 0.81 99
vegetal 1.3−3.75 0.85 0.39
spice 0.98−3.92 0.90 0.47
4-EG EN 0−290

(μL−1)
0.51 38.8 32

4-EP 0−1710
(μL−1)

0.52 241.3

estery NIR 1.1−4.8 0.64 0.55a 78
lemon 0.6−3.2 0.50 0.48
passionfruit 0.1−5.2 0.45 0.98
honey 0.4−4.3 0.70 0.58
developed NIR +

EN
0.91 0.66 65

floral 0.73 0.84
green 0.66 0.64
tropical 0.43 0.98

aR2: coefficient of determination. RMSEP: root mean square of the
standard error of prediction. SEP: standard error of prediction. EN:
electronic nose. NIR: near-infrared. 4-EG: four ethylguaiacol. 4-EP:
four ethylphenol.
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measure aroma (honey, estery, lemon, caramel, toasty,
perfumed floral, passionfruit) and palate properties (overall
flavor and sweetness) in commercial available bottles of
Australian Riesling and unwooded Chardonnay wines was
reported (see Table 2).78 The results showed good correlation
between spectra and sensory properties (R > 0.70) for estery,
honey, toasty, caramel, perfumed floral, and lemon, while poor
correlations (R < about 0.55) were found in most of the cases
for passionfruit, sweetness, and overall flavor.78

As in other foods, it is likely that no single compositional
characteristic explains the differences in sensory properties
between wines; rather a combination of different variables such
as grape- and yeast-derived compounds (e.g., volatile and
nonvolatile compounds), oxidation products, and other
constituents present in the wine matrix should be used.
However, no information is currently available concerning
possible correlations between spectral data and volatile
components in the wine varieties analyzed. Therefore, these
methods (vis, NIR, and MIR) might indirectly explain the
variations in the sensory characteristics of the wines analyzed.
Taking into account the nature of the characteristics measured,
such calibrations might be useful as rapid instrumental
screening tools when a large number of wines need to be
rated for quality prior to formal sensory analysis in order to
reduce the cost and resources required for such analyses,
particularly for those assessments where the purpose is to assess
the degree and incidence of bottle aged development in a set of
wines.78−80

Use of FT-MIR spectroscopy in combination with multi-
variate data analysis has been introduced for quality and
authenticity assessment of spirit drinks and beer in official food
control. PCA was applied to the FT-MIR data from a reduced
set of authentic Mexican tequilas (n = 14) and commercially
available samples purchased in Mexico and Germany (n = 24)
of the same spirit beverage. Use of FT-MIR allowed a rapid
screening of density and ethanol as well as the volatile
compounds methanol, ethyl acetate, propanol-1, isobutanol,
and 2-/3-methyl-1-butanol using PLS regression (SEP ranging
from 5.3% to 29.3%), while using PCA a differentiation
between tequila derived from “100% agave” (Agave tequilana
Weber var. Azul, Agavaceae) and tequila produced with other
fermentable sugars (“mixed” tequila) was possible.81

Overall, the practical implications for the alcoholic beverage
industry are that instrumental measurements such as vis, NIR,
and MIR spectroscopy are complementary to sensory analysis
and can facilitate the task at early stages of product
development, making high-throughput screening of novel
products feasible or able to maintain the consistency of high-
value products. Alternatively, spectroscopy may be useful as a
rapid screening method for determination of approximate
quality category estimation as a prescreening mechanism (low,
medium, and high) of some sensory properties in wine
shows.16,79,80

6.3. Electronic Tongues

An electronic tongue system based on poly(3,4-ethylendiox-
ythiophene)-modified electrode has been reported as a
potentially useful amperometric sensor to use either alone or
in the frame of a set of sensors bearing complementary
information.82 The sensor was proposed in blind analysis of red
wines from Italy (Sangiovese, Primitivo, and Montelpuciano)
for classification and calibration purposes.82 Data obtained from
voltametric measurements have been treated using PLS

regression. A calibration procedure has been performed to
correlate results from analyses of wines, analyzed with
traditional analytical methods, with the corresponding volta-
metric responses. Results showed that development of
electrochemical sensors also allows fast identification of samples
exceeding threshold limits of meaningful parameters for quality
control in the wine industry, such as SO2, color intensity, and
total polyphenols.82 Application of the system within a sensor
array (electronic tongue) to a fast prescreening routine control
procedure is proposed.82

A low-cost method was also proposed to classify wine and
whisky samples using a disposable voltammetric electronic
tongue that was fabricated using gold and copper substrates and
a pattern recognition technique such as PCA.83 The proposed
device was successfully used to discriminate between expensive
and cheap whisky samples and to detect adulteration processes
using only a copper electrode. For wines, the electronic tongue
was composed of copper and gold working electrodes and able
to classify three different brands of wine and make distinctions
regarding the wine type (dry red, soft red, dry white, and soft
white brands).83

A voltammetric E-tongue system was developed to
discriminate between Chinese rice wines. Three types of
Chinese rice wine with different marked ages (1, 3, and 5 years)
were classified by the E-tongue by PCA and CA analysis.84 The
E-tongue systems consisted of six working electrodes (gold,
silver, platinum, palladium, tungsten, and titanium) in a
standard three-electrode configuration.84 Multifrequency large
amplitude pulse voltammetry (MLAPV), which consisted of
four segments of 1, 10, 100, and 1000 Hz, was applied as the
potential waveform. The three types of Chinese rice wine could
be classified accurately by PCA and CA, and some interesting
regularity is shown in the score plots with the help of PCA.
Partial least-squares (PLS) and a back-error propagation-
artificial neural network (BP-ANN) were used to predict
wine age. Regression results showed that the marked ages of the
three types of Chinese rice wine were successfully predicted
using PLS and BP-ANN.84

Use of a voltametric E-tongue system formed by five
modified graphite−epoxy electrodes in the qualitative and
quantitative analysis of cava wines was reported.85 Different
samples were analyzed using cyclic voltammetry without any
sample pretreatment. Recorded data were evaluated using PCA
and discrete wavelet transform in order to compress and extract
significant features from the voltametric signals.85 The
preprocessed information was evaluated by ANN, which
accomplishes qualitative classification.85

An E-tongue system based on potentiometric chemical
sensors was assessed as a rapid tool for quantification of
bitterness in red wines. A set of 39 single-cultivar Pinotage
wines comprising 13 samples with medium to high bitterness
was obtained from the producers in West Cape, South Africa.86

Samples were analyzed with respect to a set of routine wine
parameters and major phenolic compounds using MIR
spectroscopy and HPLC, respectively. A trained sensory
panel assessed the bitterness intensity of 15 wines, 13 of
which had a bitter taste of medium to high intensity.86 Thirty-
one wine samples including seven bitter-tasting ones were
measured by the E-tongue system. Influence of the chemical
composition of wine on the occurrence of the bitter taste was
evaluated using one-way analysis of variance. It was found that
bitter-tasting wines had higher concentrations of phenolic
compounds (catechin, epicatechin, gallic, and caffeic acids and
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quercetin) than nonbitter wines.79 Sensitivity of the sensors of
the array to the phenolic compounds related to bitterness was
studied at different pH levels. Sensors displayed sensitivity to all
studied compounds at pH 7 but only to quercetin at pH 3.5.
On the basis of these findings, the pH of wine was adjusted to 7
prior to measurements. Calibration models for classification of
wine samples according to the presence of the bitter taste and
quantification of the bitterness intensity were calculated using
PLS-DA regression. Statistical significance of the classification
results was confirmed by the permutation test. Both the E-
tongue system and chemical analysis data could discriminate
between bitter and control wines with correct classification
rates of 94% and 91%, respectively. Prediction of the bitterness
intensity with good accuracy (root-mean-square error of 2 and
mean relative error of 6% in validation) was possible only using
data generated by the E-tongue system.86

A multiparametric system capable of characterizing and
classifying white wines according to the grape variety and
geographical origin was developed based on the E-tongue
system.87 Besides, it quantifies specific parameters of interest
for quality control in wine.87 The system, known as a hybrid
electronic tongue, consists of an array of electrochemical
microsensors-six (ISFET) based sensors, a conductivity sensor,
a redox potential sensor, and two amperometric electrodes, a
gold microelectrode, and a microelectrode for sensing electro-
chemical oxygen demand and a miniaturized optofluidic
system.87 The test sample set comprised 18 monovarietal
white wines from four different grape varieties from Spain and
two Croatian monovarietal white wines and seven bi- and
trivarietal mixtures prepared from the Spanish varieties.
Different chemometric tools were used to analyze and interpret
the data generated by the sensors including PCA and PLS-DA
analysis. Results demonstrated the usefulness of the multisensor
system for analysis of wine.87,89

6.4. Combination of Sensors

One of the aims of flavor chemistry is to create mathematical
models that allow establishment of the existing relationships
between the content of the product aroma-active compounds
and the sensory properties of the sample.16,79,80 In recent years,
use of multivariate statistical techniques (chemometrics) on
chemical and sensory data has gained increasing attention as a
means to classify wines from different geographical regions and
to describe similar and discriminating sensory and chemical
characteristics. Knowledge about the identity of the volatile
compounds that contribute to the characteristic flavor of a
given style of wine is now one of the most challenging tasks for
the wine industry. A great number of noninvasive and
nondestructive instrumental techniques are currently available
for determining the composition of food and food ingredients.
Those analytical techniques are rapid and relatively inexpensive
and can be applied to fundamental research in control
laboratories and online. Those methods combined with
multivariate data analysis such as PLS regression can be related
to “hidden” chemical information.16,79,80 However, such
methods can not eliminate the need for more detailed
laboratory analysis, but they may help to screen samples that
require further examination.16,79,80

Interpretation and analysis of combining such complex and
different instrumental techniques (NIR, MS-EN, E-tongue) is
possible by use of multivariate statistical techniques.16,79,80,88

The advantages of the combination of different rapid
instrumental techniques include the possibility of obtaining

and combining information from different parts of the matrix,
where the ultimate results will be the “fingerprint” of a given
food under analysis. This allows the information present in the
whole matrix to be unrevealed by the help of chemometrics.
However, the main disadvantages of this kind of approach are
that we will have the overall fingerprint; it and will be difficult
to identify or relate a particular change, sensory attribute with
an individual chemical compound. Few reports are found in the
literature in relation to the combination of several techniques to
be used together to analyze food. It has been reported by other
authors that the predictive information related to a specific
sensory attribute and a rapid instrumental technique did not
seem to be related to a specific chemical moiety in the sample,
and it is not clear which relevant information in the matrix was
related to a specific sensory attribute. This is an important issue
for sensory characteristics where the relationship between the
sensory attributes (score) and specific chemical compounds in
wine are still not clearly understood.16,79,80,88

Good correlations between NIR spectroscopy and scores for
the sensory attributes might be caused by collinearity between
other variables (e.g., ethanol, sugars), between wavelengths, or
between other sensory properties (e.g., honey and
toasty).16,79,80 It is well known that many sensory attributes
are not strictly associated with an identifiable chemical entity in
the NIR region, requiring the use of a large number of
seemingly redundant wavelengths to develop calibration
models for prediction of sensory score.16,79,80 On the other
hand, the MS spectra based EN gives information related with
the volatile compounds in the wine (headspace). Although this
approach cannot give an answer about which volatile
compound is responsible for the aroma of a given wine, it
can be used as a rapid technique to classify or monitor changes
in the wine related to aroma characteristics. Whether these
changes in the wine matrix are representative of the overall
changes in the wine is still unclear. In the future, combination
of rapid instrumental techniques coupled with chemometrics
will give the possibility to build a library of wines based on their
quality attributes, in other words to build the fingerprint of a
given wine. It has been demonstrated that the use of rapid
instrumental techniques such as MS-based EN, vis-NIR,
spectroscopy or the combination of both could be used to
predict panel scores for some sensory characteristics in a set of
Australian Riesling wines (Table 2).65 These results proved that
the relationship between MS-based EN and vis-NIR and
sensory properties in wine exists. However, the relationships
between chemical compounds, sensory properties, and the
instrumental method were not explored. The limited number of
samples and wine types available for the present study lead us
to be cautious about the conclusions made from spectral data
analysis.78 Furthermore, the prediction ability of the PLS
models needs to be evaluated with a new set of samples.65

Casale and collaborators reported the use of combining NIR,
UV−vis, an EN, and an electronic tongue as a method to
fingerprint Italian red wines.88 Combination of such sensors
with pattern recognition techniques such as LDA and PCA
allow identification of red wines produced from two distinctive
Italian grape varieties, namely, Barbera d’Alba and Dolcetto
d’Alba.88 Recently, combination of E-tongues with optical
electromechanical microsensors was reported to control and
monitor wine quality.88 Their work demonstrated that the
concatenation of sensors combined with chemometric analysis
can be used to characterize and classify wine samples.88
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Innovative analytical techniques, such as an amperometric E-
tongue and a commercial EN, were used together with
spectrophotometric methods to predict sensorial descriptors
of Italian red dry wines of different denominations of origin.90

Genetic Algorithms were employed to select variables and build
predictive regression models. On the selected models, an
accurate validation technique (the Bootstrap procedure) and a
procedure for detection of outliers (Williams plot) were
applied. Results obtained demonstrate the possibility of using
these innovative techniques in order to describe and predict
sensorial information from a panel. However, the authors
reported that it was not possible to build an acceptable
regression model for sourness.90

Effective fermentation monitoring is a growing need due to
the rapid pace of change in the wine industry, which calls for
fast methods providing real-time information in order to ensure
the quality of the final product.91 The objective of the work was
to investigate the potential of nondestructive techniques
associated with chemometric data analysis to monitor time-
related changes that occur during red wine fermentation. Eight
microfermentation trials were conducted in the Valtellina
region (Northern Italy) during the 2009 vintage and monitored
using the combination of a FT-NIR and a FT-MIR
spectrometer with an EN and E-tongue system. The
spectroscopic technique was used to investigate molecular
changes, while EN and E-tongue systems evaluated the
evolution of the aroma and taste profile during the must-wine
fermentation.91 Must-wine samples were also analyzed by
traditional chemical methods in order to determine sugars
(glucose and fructose) consumption and alcohol (ethanol and
glycerol) production. Use of PCA to the data generated by the
instrumental methods, as an exploratory tool, allowed one to
uncover molecular, aroma, and taste changes in the samples
during the fermentation process.92 Furthermore, the chemical
data and PC1 scores from spectral, electronic nose, and
electronic tongue data were modeled as a function of time to
identify critical points during fermentation. The results showed
that NIR and MIR spectroscopy are useful to investigate
molecular changes involved in wine fermentation, while EN and
E-tongue systems can be applied to detect the evolution of taste
and aroma profile.92 Moreover, as demonstrated through the
modeling of data generated by the NIR, MIR, EN, and E-
tongue systems, these nondestructive methods are suitable for
monitoring of must during wine fermentation, giving important
information about the quality of the final product in agreement
with chemical parameters.91 Although in this study measure-
ments were carried out in off-line mode, in the future these
nondestructive techniques could be valid and simple tools able
to provide in-time information about the fermentation process
and ensure the quality of wine.91

Other examples on the use of instrumental methods, alone or
combined, are shown in Tables 2 and 3.

7. ADVANTAGES AND LIMITATIONS OF
INSTRUMENTAL METHODS

During the past two decades, considerable effort has been made
to explore the possibilities offered by instrumental methods or
sensors to monitor and predict changes related with aroma and
taste in alcoholic beverages.
Quantitative knowledge in relation to the main components

of beverages and food products is necessary but not sufficient to
predict the technological and organoleptic properties of
individual labels or brands. Increased research efforts in the

field of instrumental techniques or sensors is addressing some
of the challenges of such measurements of food products and
alcoholic beverages and further explore the physicochemical
changes that are (i) mostly not fully understood using
traditional chemistry and (ii) responsible for modification of
the stability, organoleptic, and/or typicality of food products.
Development of chemometric tools combined with instru-

mental methods and sensors will allow the use of these
methods in the near future as a tool for online determination of
the overall quality of complex food systems or matrices such as
beverages (Figure 1). Even though the present review focused
on the alcoholic beverage industry, the principles are broader
and generally applicable to other food ingredients and products.
The potential savings, reduction in time and cost of analysis,

and environmentally friendly nature of the technology
positioned rapid instrumental techniques as the most attractive
techniques with a bright future in the field of analysis of
alcoholic beverages.
There is no doubt about the great potential of instrumental

techniques and sensors as a tool for rapid screening and
measurement of quality parameters of alcoholic beverages. This
relatively new approach to analysis of aroma and taste leads to
an aromatic profile (e.g., aroma or taste fingerprint) of the
whole, undivided into singular components of the gaseous and
liquid phase of the sample. It can be used as a rapid technique
to classify or monitor changes. However, more extensive data
pretreatment and care in chemometric analysis is required
mainly due to expected collinearity among variables, different
scale of signal, and possible instrument drift and baseline shifts.

Table 3. Examples of the Application of Electronic Noses
and Tongues for Determination of Aroma and Taste in
Alcoholic Beveragesa

application beverage
method/
technique ref

aging during storage red wine Electronic panel/
gas sensor

73

aging wines in barrels red wine E-tongue 93, 95
aging port wine,

wine
E-tongue, EN 114, 115

geographical origin of wine
based on aroma profiles

white
wine

MOS and MS 105

classification chinese wine E-tongue 110
wine aroma profiles E-tongue and EN 94
analysis of taste compounds cava wine E tongue 85
deterioration during storage wines E-tongue and EN 97
wine discrimination based on
taste profiles

red wines E-tongue, vS and
cP

98

profile of italian barbera wines red wine EN and E-tongue 92
antioxidant activity beer E-tongue 100
aging fingerprinting beer EN 101, 111
taste attributes (e.g., bitterness) beer E-tongue 103, 106,

108
aroma beer MS-EN 113
industrial applications beer EN 109, 111
contamination with methanol whisky 102
micro oxygenation and aging red wine E-tongue 96, 99,

107
effect of temperature on the
fingerprint

wine MS-EN 104

avS: voltametric sensor. cP: conducting polymer. EN; electronic nose.
E-tongue: electronic tongue. MS: mass spectrometry. MOS; metal
oxidise sensors. HS: head space.
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