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The ability to predict the behavior of Escherichia coli O157:H7 on contaminated field lettuce is essential for the
development of accurate quantitative microbial risk assessments. The survival pattern of the species was
assessed from several data sets derived from field-based experiments, which were analyzed by regression anal-
ysisfitting onemonophasicmodel (log-linear) and twobiphasic (Weibull and Cerf´smodel)models. Probabilistic
models were also simulatedwith @RISK™, integrating the fittedmonophasic and biphasicmodels in order to an-
alyze their impact on the estimate of the extent of die-off subsequent to a contamination event in the field. Re-
gression analysis indicated that E. coli O157:H7 followed a biphasic decay pattern in most cases, with the
Weibull and Cerf´s model showing similar good fit to individual and pooled survival data. Furthermore, results
from the stochastic analysis demonstrated that using the log-linear model could lead to different risk estimates
from those obtained with biphasic models, with a lower prevalence in the former scenario as no tailing is as-
sumed in this model. The models and results derived from this work provide the first suitable mathematical
base upon which to build probabilistic models to predict the fate of E. coli O157:H7 on field-grown leafy green
vegetable.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.
1. Introduction

Recurring outbreaks of foodborne illness caused by the verocytotoxin-
producing bacterium Escherichia coli O157:H7 have motivated attempts
to define the public health risks associated with consumption of lettuce
using a quantitative microbial risk assessment (QMRA) approach.
QMRA has been defined as the process of estimating the risk from
exposure to microorganisms by combining dose–response information
for the infectious agent with information on the distribution of expo-
sures (Haas, 1999). The Codex Alimentarius Commission (1999) has
proposed a framework for performing QMRA which consists of four
components including hazard identification, hazard characterization
(i.e. dose–response models), exposure assessment, and risk characteri-
zation. The accuracy of QMRAs is improved by the availability of mea-
surements related to the behavior of hazards in specific foods and the
development of mathematical models able to predict exposure due to
contamination at the various stages along the farm-to-consumption
).

r B.V. All rights reserved.
chain. QMRAs have been proposed for E. coli O157:H7 in leafy vegeta-
bles delivered through specific distribution systems (Franz et al.,
2010; Tromp et al., 2010; Pérez Rodríguez et al., 2011) or the complete
farm-to-consumption chain (Danyluk and Schaffner, 2011). In each
case, models were constructed to simulate behavior of the pathogen
at specific stages. The required predictive mathematical equations
were derived using data from a variety of sources that included previ-
ously published work, laboratory studies or measurements performed
in commercial settings. There also has been an attempt to develop a
mathematical model to predict the fate of E. coli O157:H7 in unpro-
cessed lettuce from harvest through retail display using survival or
growth data derived from laboratory investigations and temperature
profiles measured in a commercial distribution chain (Koseki and
Isobe, 2005).

Although these collective works have contributed important ad-
vances toward the development of QMRAs for leafy vegetables, all are
hampered by the lack of models that can simulate pathogen behavior
before harvest. Consequently, the risk of exposure associated with con-
sumption of field-grown crops is difficult to assess. This is a critical gap
given the anticipated significance of contamination and pathogen
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survival at this stage along the farm-to-consumption chain. The dearth
of field-based research on the behavior of specific human pathogens
on the edible portions of leafy vegetables has undoubtedly led to this
deficiency. However, recent investigations conducted with field lettuce
have yielded kinetic data that could be used to develop suitable quanti-
tative approaches in order to predict the fate of E. coli O157:H7 follow-
ing a contamination event (Erickson et al., 2010; Moyne et al., 2011;
Bezanson et al., 2012). A joint analysis of the available information al-
lows that more reliable and representative results could be generated
given the limitations inherent to these studies when treated individual-
ly (i.e. few data or restricted and variable experimental conditions)
(Vialette et al., 2005). Therefore, the purpose of this work was to use
the available data in the development of quantitative approaches and
models describing the fate of the E. coli O157:H7 species in field lettuce
to be included in QMRA studies.

2. Material and methods

2.1. Data selection

Data sets derived from published reports and additional data sets
collected by the authors through experimentation on the survival of
E. coli O157:H7 in field lettuce were used in the development of the
models described in the present work. To the best of our knowledge,
this comprises the sum of accessible field data available at the time of
writing. It should also be noted that data derived from controlled envi-
ronment chamber or greenhouse trials were not considered due to ap-
parent differences in behavior under such experimental conditions
(see, for example, Ottoson et al., 2011). Literature data were taken
from tables or digitized from graphs using Engauge digitizing software
(http://digitizer.sourceforge.net/). The data sets were derived from tri-
als conducted in different geographic regions, using different lettuce
cultivars and by variable experimental procedures. For example, the
study by Moyne et al. (2011) was carried out in California (USA) using
different inoculation procedures resulting in initial inoculum densities
ranging from 5–7 log cfu/g, in different seasons and on plants that
were either 2 or 4 weeks old. In contrast, Erickson et al. (2010) conduct-
edfield experiments in Georgia (USA) using inoculation procedures that
ensured inoculation of both abaxial and adaxial leaf surfaces. Hence the
data sets incorporate survival data obtained under awide range of envi-
ronmental conditions.

2.2. Data analysis and modeling

Survival data for E. coli O157:H7 were collected, tabulated and
standardized to represent ΔS = S0 − St where S0 is the cell density
(log cfu/g) at t = 0 and St is the cell density at a given time, t, in days.
Each independent data set was submitted to a regression analysis to
fit different mathematical functions describing survival or log decrease
over time to detect common or reproducible survival patterns. A similar
approach was followed after pooling of the data. Regression was per-
formed using the curve fitting tool provided in MATLAB 7.7.0 Software
(The MathWorks Inc. Natick, 2008). Constrains were applied to regres-
sion parameters to optimize the regression process. In order to assess
goodness of fit of each model, sum of square error (SSE), root mean
square error (RMSE), adjusted coefficient of determination (adj-R2), F-
test and the corrected Akaike Information Criterion (AICc) were used.
The mathematical functions selected to be fitted corresponded to two
Table 1
Mathematical functions and parameters of the survival models applied to describe E. coli O157

Model Name Model

Log-linear log(N/N0) = k3*t
Biphasic model log(N/N0) = log[f*exp(−k1 *t) + (1 − f)*exp(−k2*t)]
Weibull log(N/N0) = −[(t/a ^b]
inactivation models describing different inactivation kinetics. On the
one hand, the log-linear model describing first-order kinetics with pa-
rameter k3 (Bigelow and Esty, 1920), and on the other hand, the biphas-
ic model consisting of two log-linear phases: an initial log-linear
decrease (first-order kinetic; k1) undergone by the sensitive microbial
population, and an asymptote in which a more resistant microbial pop-
ulation (1− f) decreases at a lower decay rate (k2) (Cerf, 1977). In ad-
dition, the Weibull model defined by the parameters a and b (Peleg,
2006) was fitted to data. As its mathematical function is able to repre-
sent for biphasic and monophasic (b ~ 1) kinetics, it was deemed inter-
esting to assess the performance of the model with respect to its
potential application to represent different inactivation patterns. The
mathematical functions used for the fitting process are shown in
Table 1. The RMSE and the R2 were determined to assess the goodness
of fit of the estimated models. In order to enable comparison between
both fitted models, the AICc was computed. This parameter is particu-
larly suitable for comparing non-nestedmodelswith a different number
of parameters such as themodels studied here. In order words, AICc de-
termines the model with the fewest parameters that still provides an
adequate fit to the data, and the lowest AICc value corresponds to the
most adequate model.

2.3. Monte Carlo simulation

Simulations of the survival models were obtained from 10,000 iter-
ations of the appropriate probability distributions for survival time, ini-
tial cell concentration and uncertainty on the regression parameters
from the Cerf and log-linear models, performed using @RISK™ 5.7 in
Microsoft® Excel (Palisade Corp., Ithaca, New York, USA, http://www.
palisade.com/decisiontools_suite/). A normal distribution was chosen
for initial cell concentration since bacterial counts in non-laboratory
systems are usually described by a bell-like distribution when values
are log-transformed. Time in the field was represented by an exponen-
tial distribution that is often used to describe time between events in
simulations. Uncertainty in the fitted overall Cerf model was represent-
ed through a triangular distribution defining the 95% prediction limits
which had been obtained during fitting of pooled data with the non-
linear regression procedure of GraphPad Prism version 5.04 for Win-
dows, GraphPad Software, San Diego, California, USA, www.graphpad.
com. Uncertainty on kmax from the log-linear model was determined
by fitting a normal distribution to the array of kmax values obtained
from the different individual data sets. Results from simulations were
examined by comparing the frequency distributions for surviving
E. coli O157:H7 populations under different modeling assumptions.

3. Results and discussion

3.1. Quantitative assessment of the survival pattern of E. coli O157:H7 on
field lettuce based on individual data sets

The fit of themodels to the different data sets and goodness of fit in-
dices are shown in Fig. 1 and Table 2, respectively. Although experimen-
tal conditions differed between studies, statistical indexes such as
RMSE, SSE and adj-R2 as well as graphical representation indicated
that in most cases the Cerf andWeibull models, representing a biphasic
behavior, better described E. coli O157:H7 survival. To confirm this re-
sult, the F-test was used as the biphasic and linear models are nested.
The F-test allows determination of the model best accounting for the
:H7 survival on leafy green vegetables in field.

Model Parameters References

k3 Bigelow and Esty (1920)
f, k1, k2 Cerf (1977)
a, b Mafart et al. (2002)

http://digitizer.sourceforge.net/
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observed survival pattern. The null hypothesis that the simpler model
(linear model) is correct, i.e. none of the parameters added in the ex-
tended model (biphasic model) significantly improve the fit, was
assessed at a significance level of 0.05. Since p ≤ 0.05 leads to rejection
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model was more correct. Furthermore, examination of the AICc values
enabled comparison of the biphasic model with the Weibull model,
since neither is nested. The results generally indicated that theWeibull
model was a better choice on the basis of a lower fitting error and the
parsimony principle. The Weibull model is often applied in predictive
microbiology as means to characterize different survival patterns such
as upward concavity, downward concavity and an initial shoulder
(Peleg and Cole, 1998; Fernández et al., 2002; Van Boekel, 2002;
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Aragao et al., 2007; Angelidis et al., 2010; Izquierdo and Gómez-López,
2011). Microbial inactivation as characterized by the Weibull distribu-
tion function may be viewed as a failure phenomenon where the
fraction of bacterial survivors progressively decreases in response to cu-
mulative lethal effects caused by harsh environmental conditions
(Peleg, 2006). Furthermore, this model can account for the existence



Table 2
Regression parameters and goodness-of-fit statistics obtained from the fitting of the Cerf model (1), Weibull model (2) and log-linear model (3) to different individual data sets describing E. coli O157:H7 survival on leafy green vegetables in field.

Reference Data Set Inoculum Model k3 a B f k1 k2 SSE R2 Adj-R2 RMSE fit parameters n AICc F-ratio p-value

Bezanson et al. (2012) 1 5.2 1 1.000 1.88 0.00 0.37 0.99 0.98 0.25 3.00 9.00 −10.75 172.16 0.00
2 0.277 0.394 0.37 0.988 0.983 0.85 2.00 10.00 −23.00
3 −0.33 21.55 0.81 0.78 1.64 1.00 9.00 13.86

2 5.4 1 1.000 2.77 0.13 0.88 0.97 0.96 0.38 3.00 8.00 3.69 78.15 0.00
2 0.08 0.317 2.51 0.91 0.90 0.60 2.00 8.00 2.73
3 −0.37 28.45 0.80 0.76 1.89 1.00 8.00 16.55

3 5.0 1 1.000 2.23 0.00 1.28 0.95 0.94 0.46 3.00 9.00 0.47 55.22 0.00
2 0.18 0.342 6.27 0.77 0.73 0.95 2.00 9.00 7.55
3 −0.31 24.90 0.76 0.73 1.76 1.00 9.00 15.16

4 5.3 1 1.000 4.16 0.06 3.71 0.80 0.73 0.79 3.00 8.00 15.18 20.08 0.00
2 0.00 0.174 4.72 0.74 0.71 0.82 2.00 8.00 7.77
3 −0.29 33.49 0.68 0.62 2.05 1.00 8.00 17.85

Unpublished data from Bezanson et al. 1 6.7 1 1.000 3.94 0.28 6.99 0.84 0.78 1.18 3.00 8.00 20.25 9.96 0.01
2 0.07 0.336 10.21 0.77 0.73 1.31 2.00 8.00 13.95
3 −0.43 34.84 0.81 0.78 2.23 1.00 8.00 18.17

2 6.2 1 1.000 5.00 0.13 1.98 0.95 0.93 0.63 3.00 5.00 NC 6.46 0.14
2 0.00 0.217 5.12 0.86 0.84 0.92 2.00 5.00 30.12
3 −0.94 14.78 0.83 0.78 1.92 1.00 5.00 15.42

Erickson et al. (2010) 1 2.3 1 0.943 1.54 0.12 0.01 1.00 1.00 0.05 3.00 4.00 −57.27 98.96 0.07
2 2.16 0.376 0.08 0.97 0.96 0.14 2.00 4.00 NC
3 −0.18 1.43 0.86 0.78 0.54 1.00 4.00 11.90

2 4.5 1 0.973 4.48 0.20 23.33 0.67 0.62 1.34 3.00 6.00 56.15 −1.17 NC
2 0.29 0.259 0.56 0.89 0.86 0.37 2.00 6.00 3.75
3 −0.25 5.12 0.77 0.71 1.01 1.00 6.00 7.05

3 5.5 1 0.998 40.56 0.28 0.04 0.99 0.98 0.20 3.00 6.00 18.17 243.25 0.00
2 0.00 0.107 0.02 1.00 1.00 0.10 2.00 6.00 −16.47
3 −0.86 6.79 0.77 0.71 1.50 1.00 6.00 8.74

4 2.7 1 0.996 30.41 0.08 0.27 0.95 0.92 0.30 3.00 4.00 −42.75 19.85 0.16
2 0.00 0.094 0.16 0.97 0.97 0.20 2.00 4.00 NC
3 −0.29 11.07 0.67 0.50 1.49 1.00 4.00 20.07

5 6.0 1 0.999 40.60 0.55 2.67 0.90 0.83 0.94 3.00 6.00 43.13 16.02 0.02
2 0.02 0.292 0.92 0.97 0.96 0.48 2.00 6.00 6.73
3 −0.57 31.13 0.74 0.67 2.50 1.00 6.00 17.88

6 7.1 1 0.999 30.21 1.79 2.01 0.93 0.78 1.42 3.00 4.00 −34.76 2.05 0.47
2 0.04 0.393 1.32 0.95 0.93 0.81 2.00 4.00 NC
3 −1.60 10.21 0.88 0.82 1.84 1.00 4.00 19.75

7 3.2 1 0.999 37.79 0.35 1.49 0.94 0.89 0.70 3.00 4.00 −35.96 5.25 0.31
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Reference

Data Set Inoculum Model k3 a B f k1 k2 SSE R2 Adj-R2 RMSE fit parameters n AICc F-ratio p-value

2 0.00 0.184 0.58 0.98 0.97 0.38 2.00 4.00 NC
3 −0.33 17.11 0.64 0.46 1.85 1.00 4.00 21.81

8 6.3 1 0.999 40.60 0.35 1.48 0.94 0.89 0.70 3.00 6.00 39.60 30.05 0.01
2 0.00 0.184 0.58 0.98 0.97 0.38 2.00 6.00 3.98
3 −0.57 31.13 0.74 0.67 2.50 1.00 6.00 17.88

Moyne et al. (2011) 1 5.0 1 1.000 5.00 0.00 0.00 1.00 1.00 0.00 3.00 4.00 NC NC -
2 0.00 0.218 0.23 0.99 0.98 0.34 2.00 4.00 NC
3 −0.98 14.68 0.78 0.66 2.21 1.00 4.00 21.20

2 5.2 1 0.997 5.00 1.13 0.00 1.00 1.00 0.00 3.00 4.00 NC NC -
2 0.02 0.306 0.39 0.98 0.97 0.44 2.00 4.00 NC
3 −0.92 5.93 0.88 0.83 1.41 1.00 4.00 17.57

3 4.9 1 1.000 5.00 0.00 0.00 1.00 1.00 0.00 3.00 3.00 NC NC -
2 0.00 0.102 0.31 0.98 0.98 0.32 2.00 3.00 −24.80
3 −2.57 8.50 0.76 0.51 2.06 1.00 3.00 NC

4 5.2 1 1.000 5.00 0.00 0.00 1.00 1.00 0.00 3.00 3.00 NC NC -
2 0.00 0.116 - 0.41 0.98 0.97 0.45 2.00 3.00 −23.99
3 −2.71 8.26 0.78 0.56 2.03 1.00 3.00 NC

5 5.0 1 1.000 5.00 0.09 0.00 1.00 1.00 0.00 3.00 4.00 NC NC -
2 0.00 0.155 0.01 1.00 1.00 0.08 2.00 4.00 NC
3 −0.81 9.42 0.80 0.71 1.77 1.00 4.00 19.42

6 5.2 1 1.000 5.00 0.00 0.00 1.00 1.00 0.00 3.00 4.00 NC NC -
2 0.00 0.119 0.02 1.00 1.00 0.10 2.00 4.00 NC
3 −0.89 13.85 0.77 0.65 2.15 1.00 4.00 20.97

7 5.5 1 1.000 5.00 0.00 0.00 1.00 1.00 0.00 3.00 4.00 NC NC -
2 0.00 0.184 1.17 0.95 0.93 0.76 2.00 4.00 NC
3 −0.98 21.08 0.71 0.56 2.65 1.00 4.00 22.65

8 5.5 1 1.000 5.00 0.00 0.00 1.00 1.00 0.00 3.00 4.00 NC NC -
2 0.00 0.193 1.24 0.95 0.93 0.79 2.00 4.00 NC
3 −1.00 20.97 0.72 0.57 2.64 1.00 4.00 22.63

9 4.9 1 1.000 5.00 0.00 0.00 1.00 1.00 0.00 3.00 3.00 NC NC -
2 0.00 0.080 0.19 0.99 0.99 0.25 2.00 3.00 −26.36
3 −2.54 10.48 0.71 0.42 2.29 1.00 3.00 NC

10 4.9
-

1 53.000 5.00 0.00 0.00 1.00 1.00 0.00 3.00 3.00 NC NC -
2 0.00 0.097 0.03 1.00 1.00 0.11 2.00 3.00 −31.53
3 −2.33 - - - - - 8.81 0.71 0.42 2.10 1.00 3.00 NC - -
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of several bacterial subpopulations of variable sensitivity to lethal
stresses which could arise due to innate heterogeneity in resistance
within themicrobial population or to phenotypic responses that enable
long-term fitness under stressful conditions, for example the ability to
successfully colonize protective microenvironments on the plant sur-
face. Additional factors which could influence persistence include stress
adaptation during the survival process or physical protection within
inner leaves or by internalization as suggested by Ibekwe et al. (2009)
and Erickson et al. (2010). Examination of individual data sets present-
ed in Fig. 1 hinted at two distinct decay phases representative of a bi-
phasic survival pattern. However, variability in the data precluded the
development of a valid deterministic model and stochastic models are
suggested in their stead.

3.2. Quantitative assessment of the survival pattern of E. coli O157:H7 on
leafy vegetables based on the pooled data sets

One of the motivations for pooling data from different studies is to
overcome the limitations and consequent bias inherent to individual ex-
periments, such as limited data points (Garg et al., 2008). Consequently,
the available data setswere pooled and submitted to regression analysis
to examine overall trends in survival (Borenstein et al., 2009). The
models and parameters used in the analysis are shown in Fig. 2 and
Table 3. Multiple regressions carried out by different weighting
methods using standard error of themodel, number of data, etc., yielded
similar results (data not shown) and weighting was not applied in the
final analyses presented in this work. Both graphical analysis and calcu-
lation of goodness-of-fit indices hinted at a two-phase kinetic model
characterized by a pronounced initial decay followed by amore gradual
secondary decay and/or tailing phase (Fig. 2). In addition, results given
by the F-test and AICc indices clearly confirmed the biphasic pattern,
which hinted that theWeibull model was themost appropriate mathe-
matical function to represent survival of E. coli O157:H7 on field lettuce
(Table 3). This result was expected since the Weibull model is able to
represent biphasic patternswith only two regression parameters, unlike
the three regression parameter Cerf model yielding lower goodness of
fit indices due to the parsimony principle (Peleg, 2006). Nevertheless,
both models could be used to represent two-phase kinetics in this
case. The k1 and k2 parameters in the Cerf model provide more explicit
information about the reduction rate in each phase, which could make
this model preferable for stochastic modeling in quantitative risk as-
sessment studies when variables are coupled or certain dependences
between variables and factors are relevant to final risk estimate.

The tailing effect observed in bacterial populations undergoing envi-
ronmental stresses in the phyllosphere is a poorly understood phenom-
enon (see preceding section) but with important implications given the
low infectious dose for E. coli O157:H7. Tailing is defined in the Cerf
model through the term 1 − fwhose value corresponds to the propor-
tion of resistant cells in the population, and where f is the proportion of
cells in the sensitive population. Calculations for individual data sets
used in the present work yielded values for 1 − f that were always
b5% and in several cases ≪1%, while for the overall model 1 − f was
b0.01%. The existence of a relationship between k2 and the residual
population could be statistically confirmed for the data sets taken
from Erickson et al. (2010) through a positive correlation between log
(N0 * (1 − f)) vs k2 according to the Pearson correlation coefficient
(r = 0.92).

3.3. Rate of population decay of E. coli O157:H7 on field lettuce is affected by
initial inoculum level

The observed correlation between k2 and proportion of resistant
cells (i.e. 1 − f) prompted a more detailed search for possible environ-
mental influences on decay rates. The influence of initial inoculum
levels on the rate of population decay for E. coliO157:H7 on field lettuce
was examined by plotting the initial inoculum level against the slope of
the linear portion of the decay curve for each set of survival data. For this
simulation, the log-linear model was applied only to the initial linear
portion of the individual decay curves to give a series of kmax values
(compared to k3 parameter values which were derived from fitting to
complete individual data sets [Table 2]). As shown in Fig. 3 rates of pop-
ulation decay increased with inoculum level. A positive correlation was
confirmed by the application of Spearman´s rank correlation coefficient,
which yielded a value of 0.61 (p b 0.00). Such correlation is often appar-
ent in decay data derived from studies carried out with many bacterial
species, including E. coli, although the cause(s) of this effect remains un-
certain (Bazin and Prosser, 1998). Nevertheless, the importance of this
phenomenon should not be overlooked in quantitative risk assessment
since available data suggest that levels of contamination with E. coli
O157:H7 in fresh produce are very low. Consequently, decay rates in
commercial production systems may be considerably lower than those
reported in studies carried outwithhigh inoculum levels. A similar anal-
ysis applied to k1 and k2 did not showany significant dependence except
for the data sets from Erickson et al. (2010), in which a positive correla-
tion between log (N0 * (1− f)) vs k2 was observed, as described in the
preceding section.

3.4. Impact of using log-linear or biphasic models on the probabilistic
estimation of E. coli O157:H7 populations in field

Analysis of individual and pooled data sets indicated that E. coli
O157:H7was able to persist on field lettuce at low cell densities leading
to a tailing effect described by the Cerf andWeibull models (Figs. 1 and
2). For this reason, it was also important to consider the effect of tailing
on the predictive power of the stochastic model. Risk assessors may be
more inclined to use log-linear models to describe microbial reduction
in the field because they are less complex, or because the data suggest
monophasic rather than biphasic decay behavior, which can occur
when limited data points are available. However, the selection of one
model over another could result in different risk estimates. In this sec-
tion, log-linear (kmax) and biphasicmodels were compared in a stochas-
tic environment to assess the impact of both hypotheses on estimates of
final E. coli O157:H7 cell concentrations on field lettuce. The prediction
limits generated from the fitted models were included in this stochastic
analysis as truncated distributions to take into account, in the output,
the variability and uncertainty derived from models. In QMRA studies,
this type of information is crucial to more accurately assess and com-
pare models and scenarios in relation to their impact on the final risk.
The Cerfmodel developed in previous sectionswas simulated to achieve
this end, considering time and initial concentration as stochastic vari-
ables as well as variability and uncertainty from both deterministic
models using the 95% prediction limits for the Cerf model and the distri-
bution of decay rates (kmax) truncated at the minimum and maximum
values of kmax. As correlation was detected between initial concentra-
tion and values of kmax, both variables were coupled in the simulation
according the Spearman´s rank correlation coefficient described above.
In the case of the Cerf model, no correlation was applied since only
data from Erickson et al. (2010) showed certain correlation for k2 in
the second decay phase. Variables andmodels are shown in Table 4. Re-
sults indicated that the log-linear model under-predicted E. coli O157
survival, showing a pronounced left-tailing effect that yielded a left-
skewed distribution as observed in Fig. 4. In turn, for the biphasic
model, the distributions showed amore symmetric pattern,with amin-
imum and maximum value of −8.9 and 7.1 log cfu/g, in contrast with
the log-linear model values of −61.4 and 5.3 log cfu/g, respectively.
The two simulation approaches also gave different mean values: −2.6
and−1.0 log cfu/g for the log-linear and biphasic models, respectively.
Percentile analyses also indicated that the biphasicmodel predicts higher
cell concentrations, as illustrated by the following example. Assuming a
head of lettuce weighs 400 g, a positive unit of contamination would
result when cell concentration is ≥−2.6 log cfu/g (i.e. ≥1 cfu/400 g).
On the basis of this assumption, by applying the frequency values from
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the simulated final concentration distributions, the biphasic model
would estimate a total of 76% positive units while the log-linear model
would predict approximately 65% positive units.

These results suggest that using a log-linear model leads to a major
number of iterations with very low levels of the pathogen and conse-
quently a higher likelihood of predicting non-contaminated product.
Since the log-linear model was simulated with dependence between
the initial concentration and kmax while the Cerf model was done
without correlation, some discrepancies could arise when comparing
these different approaches. Therefore, an additional simulation was
performed to assess the effect of disregarding the correlation for the
log-linear model and enable comparison between models in similar
simulation conditions. Although the final concentration distributions
for log-linear model varied with respect to the simulation with correla-
tion, notably on theminimum value which corresponded to−87.0, the
maximum and mean were practically similar with values of 5.7 and
−2.6 log cfu/g. In addition, following the same assumption for lettuce
size, the number of positive units was 64%, only one point below the
result obtained in the simulation with correlation. We might have pre-
dicted a greater influence of correlation, but under the simulation con-
ditions and assumptions here, correlation had a less than expected
influence on the outcome of the simulation. Nevertheless that could
be different in other models or for other assumptions; hence this aspect
should be specifically evaluated in each case when stochastic models
are built.

The survival time simulated in themodel reached 9 days at 95th per-
centile, however if longer periods were considered the divergence be-
tween results from both models would be even greater. In order to
illustrate this effect, a set of simulations were performed with different
values for the mean time that lettuce was held in field (1–6 days). Note
that according to the exponential distribution properties (distribution
used formodeling time) amean time of 6 days implies that 95th percen-
tile is equal to 3 × 6= 18 days. The percentage (per 1) of contaminated
units, assuming a weight of 400 g as before, are represented in Fig. 5A,
where it can observed that as time increased differences between
bothmodels becamegreater, yielding lower percentages of contaminat-
ed units in the log-linear model. These results are not unexpected since
the absences of a tailing effect in the log-linear model together with an
increasing time unavoidably result in a higher log-decrease in the E. coli
O157:H7 population, thus reducing the number of positive units. How-
ever, when an analogous analysis was performed for the mean initial
concentration, the effect of changing concentration yielded less evident
differences between both modeling approaches as observed in Fig. 5B.
These observations illustrate that the selection of a realistic model is
crucial to obtain accurate estimates of E. coli O157:H7 survival on field
lettuce.
4. Conclusions

The present work provides statistical evidence that E. coli O157:H7
survival on field lettuce follows a biphasic pattern that is revealed by
the application of two quantitative approaches for the analysis of indi-
vidual survival data sets and pooled data from different studies. Results
from the stochastic analysis of the different predictive models indicated
that using the monophasic model (i.e. log-linear model) could lead to
different risk estimates from those obtained with biphasic models (the
Weibull and Cerf models). Thus, a log-linear approach yielded left-
skewed distributions for the survivor numbers, in addition to a lower
prevalence as no tailing is assumed in this model. Therefore, biphasic
models are proposed as suitable predictive models to describe E. coli
Fig. 2. The log-linearmodel (A), Cerfmodel (B) andWeibullmodel (C) fitted to the pooled
data sets describing E. coli O157:H7 survival on leafy vegetables in field and prediction
limits associated to each model and residuals obtained from each model fitting.



Table 3
Regression parameters, confidence intervals and goodness-of-fit statistics obtained from the fitting of the Cerf model, Weibull model and log-linear model to the pooled data sets from
different studies describing E. coli O157:H7 survival on leafy green vegetables in field.

Model Model parameters SSE R2 Adj-R2 RMSE AICc F-ratio

K3 (95% CI) a (95% CI) b (95% CI) f (95% CI) k1 (95% CI) k2 (95% CI)

Log-linear 0.41 (0.46, 0.36) 734 - - 2.31 235.39
Cerf 0.9999

(1.0000, 0.9998)
4.45
(3.61, 5.29)

0.06981
(−0.08, 0.22)

236.28 0.57 0.56 1.33 83.27 56.13 (0.00)

Weibull 0.00124
(−0.00, 0.01)

0.1663
(0.11, 0.22)

- - 208.63 0.62 0.62 1.25 63.78
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Fig. 3. Graphical representation of the relationship between the decay rate (kmax) of the
linear region of the survival curves (i.e. slope) and the initial concentration obtained
from different analyzed data sets.
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Table 4
@RISK™ model structure implemented in Excel spreadsheet for a stochastic model simulating

Cell Structure Formula or Value

B4 Model inputs 2
B5 1
B6 9
B7 RiskNormal(B4,B5, risktruncate (,B6), RiskCorrmat(
B12 3
B13 RiskExpon(B12)
G19 Cerf model (biphasic model) 0.00007642
H19 4.45
I19 0.06981
J19 2.82
B14 Log(1 − G19)⁎EXP(−H19⁎B13) + G19⁎EXP(−I19
B15 min (0,B14 + RiskTriang(−J19,0,J19))
B16 B7 + B15
B17 Log-linear model

(monophasic model)
RiskNormal(−1.564,0.655,RiskTruncate(−2.87, −0

B18 B17⁎B13
B7 + B18

⁎ RiskCorrmat(NewMatrix2,1) and RiskCorrmat(NewMatrix2,2) are @RISK™ functions used
correlation coefficient calculated on pooled survival data sets (−0.61).
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Fig. 4. Simulated survival of E. coli O157:H7 populations on leafy vegetables in field obtained from the stochastic model implemented in @RISK™ based on the log-linear model
(i.e. monophasic pattern) and Cerf model (biphasic pattern).
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