Although elevated CO\textsubscript{2} is often used to retard the senescence of fruits and vegetables, little is known about its mode of action on respiratory metabolism (Kader, 1986). We have recently reported (Kerbel et al., 1988), however, that exposure of pear fruit to 10% CO\textsubscript{2} for 4 days at 20°C resulted in a significant reduction in the activities of ATP:phosphofructokinase (PFK) and PP\textsubscript{i}:phosphofructokinase (PFP), and in levels of fructose 1,6-bisphosphate (F\textsubscript{1,6-P}) along with a discernible rise in the levels of fructose 6-phosphate (F\textsubscript{6-P}) and fructose 2,6-bisphosphate (F\textsubscript{2,6-P}). There was little change in the activity or levels of other glycolytic enzymes or intermediates.

As a means of facilitating further study of the effects of elevated CO\textsubscript{2} on glycolytic metabolism in pear fruit tissue, we examined the response of suspension-cultured pear fruit cells. Plant cell cultures have been used extensively in the study of carbohydrate metabolism with good evidence for the presence and operation of the glycolytic pathway (Fowler, 1978; Stafford and Fowler, 1983). Moreover, there is appreciable evidence (Romani, 1987) that senescent, cultured pear cells are useful in studying some specific aspects of whole-fruit physiology, including the respiratory response to limiting O\textsubscript{2} tension (Brady and Romani, 1988; Boersig et al., 1988). Of interest in this study was the metabolic response of the cultured cells to elevated CO\textsubscript{2}, and whether the response mirrored that observed in pear fruit.

Materials and Methods

Cell cultures. An established strain of ‘Passe Crassane’ pear fruit cells was grown in a complete medium of mineral salts and organic nutrients, as described in detail by Pech and Romani (1979), but containing 0.5 mg rather than 1 mg 2,4 dichlorophenoxyacetic acid (2,4-D) per liter. Cell suspensions were grown at 26 ± 1°C for 7 days and then for 7 days in medium lacking the hormone. During the latter incubation period, flasks containing the cells were flushed continuously with air at ≈ 60 ml·min-1. To achieve a senescent state the cells were then transferred to “aging” medium that consisted of one-fourth the concentration of nutrients found in the complete growth medium, no 2,4-D, but supplemented with 0.4 M mannitol and 0.015 M sucrose. Cell cultures were maintained on a rotary shaker at ≈ 110rpm.

Exposure to elevated CO\textsubscript{2} The cell suspension in aging medium was distributed into 250-ml Erlenmeyer flasks (125 ml of suspension per flask). Sterile millipore filters were attached to flask inlets and outlets to maintain sterility and each flask was supplied with continuous air flow at 55 ml·min-1. Following ventilation with air for 1 day, half the flasks were switched to air + 20% ± 0.5% CO\textsubscript{2}. The CO\textsubscript{2} level was attained by premixing measured streams of air and 100% CO\textsubscript{2} and tested daily using a Carle model 111 thermal conductivity GC. All flasks were shaken continuously at ≈ 190 rpm. The experiments were run for 4 days at 26 ± 1°C.

Oxygen uptake (respiration) was monitored daily on each of three flasks per treatment using an on-stream Applied Electrochemistry Oxygen Analyzer (Model S-3A) to measure O\textsubscript{2} in the incoming and effluent air. Samples of the effluent gas from the culture flasks were taken with a needle and syringe and injected into a Carle Model 211 FID gas chromatography equipped with an activated alumina column to measure C\textsubscript{2}H\textsubscript{4}.

Estimation of culture volume, cell weight, and percentage of living cells. Culture volume was estimated by placing 12 ml of cell suspension in a graduated, conical centrifuge tube and noting packed cell volume (PCV) following centrifugation at 600 x g for 5 min. Cell fresh weight was assessed after collecting the cells on the cheesecloth pad with gentle vacuum. The percentage of dead cells was estimated by actual count after selective staining with Evans blue (0.5%, w/v) (Puschmann and Romani, 1983).

Preparation of extracts. Cell samples were extracted daily for analysis of glycolytic intermediates and enzymes. Cells contained in three individual 125-ml samples (flasks) per treatment were collected under mild vacuum on two layers of cheesecloth placed on a Buchner funnel. The filtrate was set aside for subsequent pH measurement. The mass of cells was quickly transferred into liquid N\textsubscript{2} and ground to a fine powder in a precooled mortar and pestle. The powder was extracted immediately for glycolytic intermediates and enzymes (Kerbel et al., 1988). The preparation of extracts was conducted at or below 4°C. Each final supernatant from the extractions was transferred to a 1.5-
ml microcentrifuge vial that was dropped into liquid N2 for 5 to 10 rein, stored at –75°C for 1 to 2 weeks, and then analyzed. Recovery experiments were done to estimate losses of metabolites and enzyme activities during extraction. Resultant recoveries ranged from 89% to 97%.

Assay of intermediates and enzymes. Glycolytic intermediates and aldolase, phosphoglucose isomerase (PGI), PFK, and PFP were assayed spectrophotometrically as described by Kerbel et al. (1988). All biochemical, including substrates and coupled assay enzymes, were obtained from Sigma (St. Louis, Me.). Extractable protein was estimated according to Bradford (1976) using BSA as the standard.

Two entirely separate experiments were conducted with triplicate samples for each variable and triplicates of each assay.

Results

Constancy of cell number and cell vitality. Essentially, no changes in PCV values were observed over the 4 days of the experiments, which confirmed that cells remained quiescent after transfer to aging media. Throughout these experiments, the percentage of living cells ranged between 88% and 92% and no significant differences were noted between air- and CO2-treated cells (data not shown).

Effects of CO2 on respiration rates and ethylene production. Exposure of the cultured cells to air + 20% CO2 substantially reduced O2 consumption (Fig. 1A). Ethylene production by CO2-treated cells decreased somewhat more rapidly than that of the controls, but the difference was relatively small (Fig. 1B).

Effects of CO2 on glycolytic intermediates and enzymes. The glycolytic intermediates and enzymes that showed significant changes in response to high CO2 were those that had demonstrated a notable change upon exposure of intact pear fruit to elevated CO2 (Kerbel et al., 1988). Elevated CO2 arrested the loss of F6P (Fig. 2A), and substantially reduced the levels of F1,6-P2 (Fig. 2B).

No significant differences were observed in the activities of aldolase or PGI between cells exposed to air or air + 20% CO2 (data not shown). However, a substantial reduction in the activities of PFK (Fig. 3A) and PFP (Fig. 3B) in aging cells was noted in extracts from CO2-treated cells.

A comparison of the response to elevated CO2 by the in vitro cellular system and that by intact pear fruit reported in a comparable study (Kerbel et al., 1988) is presented in Fig. 4.

Discussion

Measurements of PCV over time confirmed that cells that had been grown in media containing 0.5 mg 2,4-D/liter no longer underwent cell division when transferred to aging medium. The stability in cell number and vitality indicates that the observed > 50% reduction in the rate of respiration under elevated CO2 is an intrinsic metabolic response and not a reduction in the number of living cells. The rapid decline in ethylene production by aging cells makes it difficult to confirm what appears to be an accentuation of the decline by exposure to 20% CO2. In further studies, pear cells whose ethylene production has been enhanced by 1-aminocyclopropane-1-carboxylic acid (Puschmann and Romani, 1983), could be used to amplify the CO2 effect.
A rapid and substantial increase in the levels of F1,6-P2 and decrease in F6P, shown to accompany the respiratory climacteric (Solomos and Laties, 1974) or when plant tissue is transferred to anoxic conditions (Kobr and Beevers, 1971), have been attributed to an activation of PFK. By analogy, and based also on what we have observed with whole fruit (Kerbel et al., 1988), we propose that the accumulation of F6P (Fig. 2A) and the reduction of F1,6-P2 (Fig. 2B) indicate an inhibitory effect of elevated CO2 on PFK. Moreover, the reduction in PFK (Fig. 3A) and PFP (Fig. 3B) activities is consistent with this proposed effect of CO2.

It is sometimes difficult, particularly with respect to tissues or cells undergoing physiological change, to differentiate between changes in enzyme activity and extractability. The fact that the same extract was assayed for the various enzymes and that there were no differences in the activities of aldolase or PGI between air and CO2-treated cells, whereas PFK and PFP activities decreased more than 40% under high CO2, suggests that the reduction in the activity of the latter enzymes was not artifactual.

A reduction of PFK and PFP activities by elevated CO2 could result from an inhibition of PFK and PFP synthesis or by inactivation of preexisting PFK and PFP. No differences in total protein content among air and CO2-treated cells were discerned (data not shown), but that does not rule out changes in the levels of specific proteins.

Regulation of glycolysis by PFK depends to a great extent on pH (Turner and Turner, 1980). Theoretical calculations and experimental data indicate that CO2 concentrations >5% will generally lower intracellular pH (Bown, 1985; Siriphanich and Kader, 1986). We did not observe changes in media pH as a result of exposure to CO2, but that may bear little reflection on cytoplasmic pH. As pointed out by Mitz (1979), CO2 can have direct effects on metabolic activities distinct from those mediated by changes in pH. He proposed that transient localized concentration changes of CO2 within parts of the cell can markedly influence cell metabolism through dynamic changes in constituents. High CO2 concentrations may allow certain intermediates and cofactors to accumulate to a point where secondary reactions can take place. Plant PFK can be inhibited, for example, by ATP, ADP, phosphoenol pyruvate, 2- or 3-phosphoglyceric acid, citrate, and malate (Rhodes, 1983; Turner and Turner, 1980). Carbon dioxide-responsive cell cultures would clearly facilitate future searches for the mediators of the CO2 effect on glycolysis.

A comparison of the effects of high CO2 on several responses of intact fruit and cell suspension is shown in Fig. 4. Some differences in magnitude aside, the trend and direction of these responses by intact fruit and cell suspensions were essentially the same. This similarity suggests that, although large differences undoubtedly exist between cells in situ and in vitro, the latter are useful for the study of specific aspects of fruit ripening and metabolism. However, extrapolations from data obtained with cells or with experimental conditions, i.e., 20% CO2 at 26C chosen to amplify cellular response, to practical postharvest technologies (e.g., preconditioning in air + 10% to 20% CO2 at 0 to 10C for 10 to 14 days) is problematic and must be done with caution and with further appropriate experimentation addressing concerns for injury and other physiological effects.

Not shown in the foregoing were the divergent response of cells grown in twice the level of 2,4-D; i.e., 1 mg·ml−1. When used as a test system, after being sub-cultured in 2,4-D-free medium for 1 week and transferred to aging medium, these cells exhibited respiratory and C2H4 responses to 20% CO2 very much like those shown in Fig. 1. However, accompanying changes in F6P, F1,6P2, PFK, and PFP, though similar in magnitude, were in the opposite direction (Kerbel, 1987) of those shown in Fig. 1.
Figs. 2 and 3. Another distinguishing characteristic of cell cultures held with the higher initial levels of 2,4-D was their growth; i.e., a measurable increase in PCV during the first 2 to 4 days after transfer to aging medium. Thus, it is likely that a significant portion of the cells was more juvenile than senescent during this period. With due regard for precaution in extrapolating from cultured cells to intact tissue, these observations nonetheless imply that 1) the cultured cells are amenable to physiological manipulation via phytohormone level much as originally proposed by Pech et al. (1975), and 2) gross metabolic responses of fruit cells—and possibly of fruit—to stressful atmospheric conditions may be the result of intracellular adjustments that vary appreciably with physiological state.

Literature Cited