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Ascorbic acid: metabolism and functions of a multi-facetted 
molecule 
Nicholas Smirnoff 

Ascorbic acid (vitamin C) is the most abundant antioxidant in 

plants. Its biosynthetic pathway via GDP-D-mannose and 

L-galactose, which was proposed only recently, is now 

supported by molecular genetic evidence from Arabidopsis 

thahna and transgenic potato plants. Except for the last step 

(which is located on the inner mitochondrial membrane) the 

pathway is cytosolic, sharing GDP-sugar intermediates with 

cell-wall polysaccharide and glycoprotein synthesis. Ascorbate 

peroxidase is emerging as a key enzyme in the fine control of 

H,O, concentration; its expression being controlled by redox 

signals and H,O,. Convincing evidence of the involvement of 

ascorbate in cell division and growth is also accumulating. Its 

role as a cofactor in the synthesis of cell wall hydroxyproline- 

rich glycoproteins is one mechanism for this function. 
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Abbreviations 
A0 ascorbate oxidase 
APX ascorbate peroxidase 
GAL L-galactono-1,4-lactone 
GDP guanosine diphosphate 
GSH glutathione 
GUL L-gulono-1,4-lactone 
HL high light 
HRGP hydroxyproline-rich glycoprotein 
LL low light 
MDHA monodehydroascorbate 
PMI phosphomannose isomerase 
VtC vitamin C 

Introduction 
Longevity in invertebrates and mice is associated with 
resistance to oxidacive stress, and with mutations that pre- 
vent programmed cell death in response to such stress [l]. 
As a result, there is great public interest in the health-pro- 
moting effects of antioxidants, particularly a-tocopherol 
(vitamin E) [Z] and ascorbic acid (vitamin C), which are 
required in the diet. Plants are the major sources of these 
vitamins and of other ‘nutriceutical’ antioxidants such as 
flavonoids and carotenoids. In plants, antioxidants provide 
protection against reactive oxygen species created both 
metabolically and in the environment; although the modu- 
lar growth pattern of plants (with the exception of seeds) 
makes the issue of life span less relevant for plants than for 
animals. It is also becoming apparent that the mosr preva- 
lent soluble small-molecule antioxidants, ascorbate and 
glutathione (GSH) [3], are multifunctional and also have 

roles in photosynthesis, redox signalling, pathogen defence, 
metal and xenobiotic detoxification, and growth regulation. 

Ascorbate is quancitacively the predominant antioxidant in 
plant cells, it is found in aH subcellular compartments, 
including the apoplast, and has an average cellular concen- 
tration of 2-25 mM or more in the chloroplast stroma. 
Ascorbate is oxidised by oxygen, superoxide, singlet oxy- 
gen and H,O, to the monodehydroascorbate (MDHA) 
radical [4-61, which disproporcionates to form ascorbate 
and dehydroascorbate. The enzymes and processes 
involved in ascorbate redox reactions and transport are 
shown in Figure 1 [7-91. 

Interest in ascorbate has increased in recent years and this 
review covers advances in our understanding of irs metab- 
olism and functions. The evidence for a recently-proposed 
biosynthesis pathway is assessed and its link with cell-wall 
synthesis is emphasised. Strong evidence is emerging that, 
in some species, ascorbate is the major precursor of oxalate 
and could be linked to calcium homeostasis. Ascorbate 
peroxidase (APX) mediates the scavenging of HZ02 by 
ascorbate. Ic is apparent that APX has numerous isoforms 
in various cell compartments rhac are differentially respon- 
sive to redox status and that control H,O, concentration. 
The role of ascorbace in protecting plants against oxidative 
stress is also highlighted by the hypersensitivity of the 
ascorbate-deficient vtc (vitamin c) mutants of Arabidopsis 
thaliatra. Finally, the proposed roles of ascorbace in cell 
growth and cell division are assessed. 

Ascorbate and cell wall polysaccharide 
synthesis compete for GDP-mannose 
A biosynthetic pathway for ascorbare in plants, which is 
consistent with all of the available evidence, was proposed 
recently [lO,l l,lZ’]. Ascorbate is synchesised from guano- 
sine diphosphace (GDP)-mannose and the pathway shares 
GDP-sugar intermediates with the synthesis of cell-wall 
polysaccharides and those glycoproteins that contain 
D-mannose, L-fucose and L-galactose (Figure 2). The bio- 
chemical evidence of the involvement of GDP-mannose 
pyrophosphorylase is supported by molecular-genetic 
analysis of the ascorbate-deficient vtcl Arabidopsh thaliana 
murant and cransgenic potato plants. The VTCI gene 
encodes GDP-mannose pyrophosphorylase [13,14”]. 
When vtcl plants were transformed with the wild-type ver- 
sion of the VTCI gene, foliar ascorbate concentration was, 
restored to the wild-type level. In potatoes, antisense sup- 
pression of GDP-mannose pyrophosphorylase activity 
reduced ascorbate content and a close correlation between 
this activity and ascorbate pool size suggests that this 
enzyme exerts significant control over pathway flux [15”]. 
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Redox reactions and transport of ascorbate 
(AsA). For clarity, only reactions in the 
cytosol and transport across the plasma 
membrane are shown. (a) Hydrogen 
peroxide reduction by ascorbate is 
catalysed by cytosolic ascorbate peroxidase 
(cAPX). (b) The oxidation product, 
monodehyroascorbate radical (MDHA), is 

reduced to ascorbate by NAD(P)-dependent 
MDHA reductase (MDHAR). Cc) Two MDHA 
molecules can also disproportionate to 
dehydroascorbate (DHA) and ascorbate 
(represented non-stoichiometrically by a 
dotted line). Cd) DHA is reduced to 
ascorbate by glutathione (GSH)-dependent 
glutathione reductase (DHAR), which is, in 

turn, regenerated from its oxidised form 
(GSSG) by glutathione reductase (GR). 
The net result is H202 removal by the 
ascorbate-GSH cycle at the expense of 
NAD(P)H [4,51. These reactions also occur 
in the chloroplast stroma, mitochondria and 
peroxisomes/glyoxysomes. APX is encoded 
by a gene family with distinct isoforms 
localised in different organelles; forms with 
hydrophobic tails are bound to thylakoid 
and peroxisomal/glyoxysomal membranes 
[5,281. A small proportion of APX activity is 
also reported in the apoplast [39]. There 
has been controversy over the existence of 
DHAR; other enzymes (e.g. glutaredoxin, 
thioredoxin reductase or peroxiredoxin) 
could reduce DHA but the evidence 
supports a role for a specific GSH- 
dependent DHAR [41. AsA and DHA occur 
in the cell wall. (e) AsA is transported into 
the wall by facilitated diffusion via a plasma 
membrane transporter in exchange for DHA 
[El. (f) Ascorbate oxidase (AO) is a 
secreted glycoprotein that catalyses 
ascorbate oxidation in the wall. (g) The 
resulting MDHA is probably reduced by a 
plasma-membrane cytochrome b system [7]. 
It is likely that cytosolic ascorbate is the 
electron donor and that (h) a plasma- 
membrane-bound MDHAR on the cytosolic 
side [91 regenerates ascorbate. A0 
expression correlates with cell expansion 
although a causal relationship although its 
mechanism of action has not been 
established. 

In some cases, the antisense suppression resulted in a on a non-phosphorylated sugar. The pathway prior to GAL 
reduction of mannose and galactose, but not of fucose, is probably cytosolic but the last step, the oxidation of GAL 
residues in wall polysaccharides. Incorporation of these to ascorbate by GAL dehydrogenase, is mitochondrial. 
sugar residues into glycoproteins was, however, unaffected GAL dehydrogenase has been purified and cloned from 
([15”]; GL Wheeler, PL Conklin, N Smirnoff, unpub- cauliflower and sweet potato; the genes that encode it in 
lished data). It has been suggested that most plant species each of these two plant species are nearly identical and 
lack phosphomannose mutase (PMI) activity and this include a putative mitochondrial targeting sequence 
accounts for the toxicity of exogenous mannose, which [18,19]. GAL dehydrogenase is bound to the inner mem- 
accumulates as mannose-6-phosphate [16,17]. Lack of brane of the mitochondria [ZO’]. GAL donates electrons to 
PM1 would necessitate an alternative route to GDP-man- cytochrome c between complexes III and IV, and the active 
nose such as a GDP-glucose-Z-epimerase. Nevertheless, site probably faces the intermembrane space (CH Foyer, 
the wtcl mutation and antisense potato results argue for a personal communication) so that GAL does not need to be 
role for PMI. transported into the mitochondrial matrix. 

GDP-L-galactose is produced by a double epimerisation of 
GDP-D-mannose [7]. The enzymes that break GDP-L- 
galactose down to free L-galactose have been detected ([7]; 
GL Wheeler, N Smirnoff, unpublished data) but have not 
yet been characterised in detail. A newly-discovered 
NAD+-dependent L-galactose dehydrogenase oxidises 
L-galactose to L-galactono-1,4-lactone (GAL), the immedi- 
ate ascorbate precursor [lO,ll]. This enzyme, which we 
have purified and cloned (GL Wheeler, S Gatzek, N 
Smirnoff, unpublished data) is specific for L-galactose and 
is, as far as we know, the only plant dehydrogenase acting 

The current evidence suggests that the mannose pathway 
predominates in the biosynthesis of ascorbate in plants, but 
we cannot rule out contributions from other pathways. 
Conversion of radiolabelled (methyl)-D-galacturonate and 
D-glucuronolactone to ascorbate was noted by Loewus and 
colleagues some time ago [12’], and the involvement of 
these compounds has been confirmed by the increased 
ascorbate pool found after feeding methyl-D-galacturonate, 
D-glucuronolactone and methyl-D-glucuronate to 
A. thaliana cell cultures (21’1. The physiological significance 
of these conversions requires further investigation. 
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L-gulono-1,4-lactone (GUL), the precursor used by mam- 
mals in place of GAL, is slowly converted to ascorbate by 
plants. A separate GUL-oxidising enzyme could exist as 
purified GAL dehydrogenase is completely specific for 
GAL. It is now thought that the osone pathway [12’] of 
ascorbate biosynthesis is not physiologically important [Z?‘]. 

The recent advances in identifying the ascorbate biosyn- 
thetic pathway will allow investigation of its control, most 
importantly in relation to light intensity. Ascorbate accu- 
mulation is increased at high light intensity [23-E], a 
response which presumably reflects its use in H,Oz detox- 
ification (described below), regeneration of oxidised 
a-tocopherol [6] and as a cofactor for violaxanthin de-epox- 
idase [ZS]. Ascorbate concentration decreases in darkened 
leaves of some species, and this is partially reversed by 
sucrose or glucose feeding [23]. Synthesis of ascorbate is 
repressed or feedback-inhibited in pea seedling embryon- 
ic axes after their ascorbate content has been increased by 
feeding with ascorbate [26’]. 

Oxalate and tartrate are synthesised from 
ascorbate 
Ascorbate is cleaved at CZ/C3 to form oxalate and at either 
CZ/C3 or C4/C.5, depending on species, to produce L-tar- 
trate [12’]. Oxalate can also be formed from glycolate. In 
Pistia stratiotes, however, labelling studies show that 
oxalate is predominantly derived from ascorbate rather 
than glycolate [27”], and calcium oxalate crystals are accu- 
mulated in specialised cells (i.e. idioblasts). Calcium 
oxalate synthesis could therefore be involved in the regu- 
lation of calcium concentration. The enzyme catalysing 
CZ/C3 cleavage has not been identified but idioblast cells 
would be a good place to start searching for it. 

Ascorbate peroxidase is a key enzyme for 
controlling H,O, concentration 
APX catalyses the reduction of HzOz to water and has high 
specificity and affinity for ascorbate as reductant [S]. Its 
sequence is distinct from other peroxidases, and different 
forms of APX occur in the chloroplasts, cytosol, mitochon- 
dria, peroxisomes and glyoxysomes. Membrane-bound APXs 
occur on the peroxisome and thylakoid membranes [5,28]. 
Hydrogen peroxide is formed by oxygen reduction by the 
chloroplast and mitochondrial electron transport chains; by 
certain oxidases, notably peroxisomal glycolate oxidase, dur- 
ing photorespiration; and during the oxidative burst 
associated with the hypersensitive response to pathogens. 
Oxygen reduction by Photosystem I, coupled with removal 
of the resulting HzOz by APX, is termed the Mehler-peroxi- 
dase reaction and contributes to the regulation of the redox 
state of photosynthetic electron carriers [5,29]. Recent work 
on the response of APX expression to intense light and 
pathogen attack has highlighted the importance of APX 
activity in controlling HzOz concentration in signalling. 

Photoinhibition and photo-oxidation are caused when low 
light (LL) acclimated leaves are exposed to high light 

Figure 2 
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The proposed biosynthetic pathway of ascorbate via GDP-mannose 
and L-galactose [lo]. The diagram illustrates links with other pathways, 
including polysaccharide and glycoprotein synthesis from 
GDP-sugars. Mannitol is a major carbon translocation compound in 
some species. GDP-mannose could be formed from GDP-glucose, 
although lower ascorbate concentration in plants with reduced 
GDP-mannose pyrophosphorylase activity [14”,15”], suggests that 
this is not a major route. Reduced GDP-mannose pyrophosphorylase 
activity also lowers the mannose and L-galactose content of cell-wall 
polysaccharides. The final oxidation of L-galactono-1,4-lactone to 
ascorbate on the inner mitochondrial membrane [201 uses 
cytochrome c as an electron acceptor and is therefore coupled to 
mitochondrial electron transport. Ascorbate and L-galactono-I ,4- 
lactone presumably enter and leave the intermembrane space freely 
through porins in the outer membrane. Ascorbate biosynthesis is one 
of many biosynthetic functions that takes place in plant, but not in 
animal mitochondria In contrast, the final step of ascorbate 
biosynthesis in mammals is catalysed by a microsomal oxidase. 
Alternative pathways via D-galacturonate and D-glucuronate, or their 
lactones or esters [21 *I, are not illustrated and their physiological 
significance has not yet been established. The enzymes are: 
(a) glucose phosphate isomerase; (b) phosphomannose isomerase; 
(c) phosphomannose mutase; Cd) GDP-mannose pyrophosphorylase; 
(e) GDP-mannose-3,5-epimerase; (0 uncharacterised enzymes; 
(g) L-galactose dehydrogenase; and (h) L-galactono-1,4-lactone 
dehydrogenase. 

(HL) intensity. Acclimation involves the induction of 
antioxidant and photoprotective (e.g. zeaxanthin-depen- 
dent non-photochemical quenching) systems [5,24,29,30]. 
HL causes increased HzOz formation in chloroplasts, 
either from the Mehler reaction or Photosystem II, and in 
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peroxisomes as a result of faster photorespiration. 
Exposure of A. thaliana leaves to HL causes a rapid 
(i.e. within 30 min) increase in the transcription of APXI 
and APXZ, which encode two isoforms of cytosolic APX 
[31]. The promotors for APXl and APXZ have been isolat- 
ed and fusions with a luciferase reporter gene have been 
made. The transformants were then used to investigate 
the pattern of APXZ expression and the signalling process- 
es that control it [32”]. APX induction is correlated to 
increased reduction-state of quinone B and plastoquinone. 
Thus, APXexpression is regulated in same way as has been 
proposed for light-intensity-dependent expression of other 
photosynthetic genes [33]. The expression of both antiox- 
idant and photosynthetic genes is therefore co-ordinated 
through a common redox-signalling system. 

Hydrogen peroxide itself is also involved in APX induc- 
tion: exogenous application of HzOz increases APX 
expression in LL, whereas catalase infiltration inhibits the 
expression of this gene in HL [32”]. Hydrogen peroxide 
also induces cytosolic APX expression in non-photosyn- 
thetic tissue [34”]. Induction of APX by its own substrate 
may provide a sensitive means of controlling its concentra- 
tion (assuming that the enzyme is active). This system has 
also provided evidence of a systemic plant response to HL, 
possibly mediated by HzOz, because leaves remote from 
the one exposed to HL showed an increase in 
APXZ::LUCIFERASE expression and a small increase in 
HzOz concentration. Because the APXZ promoter has an 
extremely sensitive response, it will prove to be a valuable 
tool for identifying the promotor DNA sequences and 
DNA binding proteins involved in responses to HzOz or 
other redox signals. Further progress towards this goal 
might be made with the use of a recessive A. thaliana 
mutant that has increased tolerance to salinity-induced 
photo-oxidation [35”]. The mutant has APX and superox- 
ide dismutase activities that are above wild-type levels, 
particularly after exposure to salt. It is possible that the 
mutation affects a gene that regulates the expression of 
antioxidant genes. 

Hydrogen peroxide is produced during pathogen attack, 
and it could provide a direct defence against the pathogen 
and contribute to programmed cell death in the hypersen- 
sitive. response. These responses are localised and 
therefore more difficult to investigate than the leaf 
responses to HL described above. Antisense suppression 
of catalase in tobacco results in the expression of patho- 
genesis-related genes [36]. I f  HzOz is the key to this 
mechanism, local activity of catalase and APX should be 
restricted during pathogen attack. Cytosolic APX tran- 
scripts increase in virus-infected tobacco but APX protein 
concentrations actually decrease as a result of the inhibi- 
tion of polypeptide elongation on the ribosomes [37,38”]. 
These findings illustrate the danger of equating increased 
transcript levels to increased enzyme activity, and suggest 
that suppression of peroxide scavenging by APX is impor- 
tant for defence against pathogens [39]. The inhibition of 

catalase and APX by salicylic acid, which is produced in 
response to infection, might also contribute to local sup- 
pression of HzOz scavenging 1401. 

WC mutants and transgenic plants provide 
evidence of the role of ascorbate in stress 
resistance 
Various stresses, including UVB, increase the prevalence 
of MDHA radicals [41]. The A. thaliana wtcl mutant has 
only 30% of wild-type ascorbate [42], which is sufficient for 
normal growth under non-stressful conditions. A similar 
reduction in ascorbate concentrations in potatoes express- 
ing antisense GDP-mannose pyrophosphorylase, however, 
causes visible lesions on leaves and stems, and premature 
die-back of the shoot [15”]. It is not known if these symp- 
toms are caused by ascorbate deficiency or by defects in 
the cell wall. Vtcf is hypersensitive to ozone, ultraviolet-B 
light and SO,, but its ozone sensitivity is reversed by 
exogenous ascorbate [42]. Plants kept in the dark for a pro- 
longed period are known to be more ozone sensitive, and 
it has been suggested that this is a result of reduced 
apoplastic ascorbate [43]. Use of an apoplast-localised dye, 
whose fluorescence is abolished by oxidation, however, 
suggests that apoplastic ascorbate is not the major reduc- 
tant of ozone in the apoplast [44]. Nevertheless, cytosolic 
ascorbate may be important because antisense reduction of 
cytosolic APX activity increases the ozone sensitivity of 
tobacco [45]. Presumably the induction of cytosolic APX 
(described above) [31,32”] improves the scavenging of 
HzOz that escapes from the chloroplasts and peroxisomes 
after evading chloroplast APX and peroxisomal catalase. 
Furthermore, over-expression of peroxisomal APX3 
increases HzOz tolerance [46”]. Ascorbate is probably a 
limiting factor in the violaxanthin de-epoxidase reaction in 
the thylakoid lumen [47]; it will therefore be of interest to 
determine if the reduced ascorbate content of wtc mutants 
affects their zeaxanthin-mediated photoprotection [30]. 

Ascorbate oxidase and prolyl hydroxylase: 
roles for ascorbate in growth? 
Ascorbate oxidase (AO) is a cell wall localised glycoprotein 
belonging to the family of blue copper oxidase enzymes. Its 
role in plants has not been defined but its activity and expres- 
sion are closely correlated to rapid cell expansion [48’] and it 
is induced by auxin [49]. A causal relationship that might 
explain this correlation has not yet been demonstrated and no 
mechanism of action has yet been established [6]. One possi- 
bility is that A0 generates MDHA radicals. These radicals are 
then reduced by transmembrane electron transport (Figure 1) 
thereby depolarising the plasma membrane and stimulating 
H+-ATPase activity. In this model, cell expansion is stimulat- 
ed by enhanced wall loosening or ion uptake: exogenous 
MDHA radicals stimulate onion root growth and ion uptake 
[50,51]. It is likely that transgenic plants with altered A0 
expression will soon be used to clarify the function of AO. 
Another role for ascorbate in growth is an involvement in the 
synthesis of hydroxyproline-rich glycoproteins (HRGPs). 
Ascorbate is a cofactor for prolyl hydroxylase (as it is for a 
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range of other oxygenases [6]), which post-translationally 
hydroxylates proline residues. The HRGPs are cell wall struc- 
tural proteins and are involved in wall synthesis in dividing 
cells [SZ]. Prolyl hydroxylase is inhibited by 3,CDL-dehy- 
droproline causing increased ascorbate concentration and 
reduced cell division in onion roots [53,54’]. These results 
show that HRGP synthesis in meristems is a function of 
ascorbate and could provide an explanation for the reported 
effects of ascorbate on cell division. 

Conclusions and future developments 
Within the past few years knowledge of ascorbate metabo- 
lism and function in plants has greatly increased. The 
identification of the ascorbate biosynthetic pathway will 
allow us to manipulate the ascorbate content of plants, as 
has already been achieved with its fellow antioxidants 
GSH [3,4] and a-tocopherol [Z]. This should provide fur- 
ther information on the functions of ascorbate, including 
those involved in photosynthesis, stress resistance, growth, 
development and oxidative-stress signalling, that have 
been identified in my review. Metabolic engineering of 
ascorbate biosynthesis to produce plants with increased 
ascorbate concentration will not only provide crops with 
improved nutritional value, but may well improve their 
growth and stress resistance. Ascorbate does not act in iso- 
lation, so it will be exciting to see the effect of engineering 
ascorbate biosynthesis along with GSH, a-tocopherol, 
carotenoids and other antioxidant enzymes; this goal is 
now within reach. 

Update 
A recent paper by Conklin et al. [SS] describes the identi- 
fication and mapping of three ascorbate-deficient mutants 
(UC& 3 and 4) in addition to the previously characterised 
wtcl [13,14”]. These mutants contain between ZO-30% of 
wild-type ascorbate. Not all of the mutant alleles produce 
phenotypes that are hypersensitive to ozone, suggesting 
that the relationship between ascorbate content and ozone 
resistance [42-45] is not predictable. These mutants 
should prove useful for identifying further genes involved 
in ascorbate metabolism and exploring the role of ascor- 
bate in resistance to oxidative stress. 
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