Irrigation for wheat and other small grains in a drought year
Dry conditions this year have generated common questions from growers such as “when should I irrigate to maximize yield?” and “will I be able to take this crop to seed?” Many of the principles that dictate irrigation strategies in wheat are similar to those of other crops. Understanding wheat's growth stages can help growers develop a strategy for drought years.
Important Physiology
Relative to many crops, small grains are considered plastic, or flexible, in their growth habit and yield potential. This means that the crop adjusts its growth to the scarcity or abundance of resources (water and nutrients) encountered during the season. The impacts of stress on crop yield are not equal across the season. There are several critical time periods during which environmental stress has a larger than average impact on crop productivity. Table 1 indicates the relative impact of stress on crop yield at various stages of growth for small grains and the length of time and relative water requirement associated with each stage.
Each crop growth stage varies somewhat with respect to water-stress vulnerability. For example, the jointing stage occurs very rapidly, and the impact of stress can accumulate quickly. Meanwhile, the grain filling stage occurs over a much longer period of time. Therefore, the relative amount of water required to prevent stress earlier in the season is less than is required to prevent stress later in the season. Monitoring soil moisture prior to sensitive growth stages like jointing and pollination can prevent rapid reductions in yield potential.

Growers without access to irrigation can also use these principles to better estimate their final yields and adjust management accordingly. For example, if the crop is severely stressed throughout the tillering and/or jointing phase, growers might consider reducing their in-season nitrogen applications to account for a reduced yield potential.
Average Water Use Throughout the Season
The seasonal wheat crop evapotranspiration, or ETc (the combination of water loss from the soil surface and water usage by the crop) averages 22 in./acre. But this amount varies greatly depending on the level of production. ETc can range from 12 to 30 in./acre depending on the yield potential of the crop, which ranges from 2000-9000 lb/acre throughout the state.
Crop water use is driven by solar energy and the growth and development of the crop canopy, both of which increase throughout California's wheat-growing season. Thus, the monthly crop water use increases rapidly in March through May. By June, grain is mostly mature, and the canopy is reduced by senescence as the plants enter the dry-down phase (Figure 1).

Mitigating losses in a drought year
Under ideal circumstances, a grower would apply slightly more water than ETc to account for irrigation application inefficiency and any leaching requirement. In dry years, when access to water is limited, growers may need to pinpoint when to use water to maximize its utility. For wheat, there are several key recommendations listed below.
Growth Stage-Based Approach
Understanding the growth stages of wheat can help growers monitor their crop and anticipate important management decisions in the season.
Figure 2: Feekes Scale Cereal Growth Stages - Don't neglect the rapid growth phase (jointing): Plant reactions to stress in the jointing phase are similar to those in the tillering phase, but the canopy has expanded and ETc has increased. The plant is developing faster, and moisture stress can rapidly reduce yield potential in a relatively short period of time.
Figure 3: Jointing and Early Boot Stages Wheat - Don't waste water later in the season: Irrigation has little to no effect on yield outcomes after the soft dough stage and late-season irrigation can lead to increased lodging. Making sure that the crop has enough water to carry it through grain fill is important to maximizing yield potential. But it is better to err on the early end of the grain fill stage versus the later end.

Plant and Soil Water-Based Approaches
Figure 4: Drought Stressed Wheat, note the spikey appearance of the flag leaf and the premature senescence at the base of the plant (photo: Aaron Earlea) - Irrigate when plants have used 40-50% of plant available water: Stress increases as available soil moisture drops below 50%. Plants respond to water stress by slowing transpiration which in turn slows photosynthesis. This slowdown reduces yield potential. Shorter, more frequent irrigations (irrigating at 35% depletion) have been shown to increase yields in arid environments where rainfall is scarce and soil moisture depletion occurs rapidly on a daily basis. This strategy is useful when local conditions in California are particularly dry, hot and/or windy, but it should be avoided in the late stages of grain fill because it can lead to lodging. In an ideal scenario, the crop would have enough water in the root zone to carry it through grain fill by the beginning of the grain fill phase. Remember to account for the irrigation efficiency of the system. Depending on soil, water quality, and the water delivery system, irrigation efficiency typically ranges between 50-90%.
Figure 5: Blanks in drought stressed wheat.
Summary
There are several critical time periods during which drought stress has a larger than average impact on crop productivity. Likewise, there are different management strategies which growers can use to minimize negative impacts on yield due to drought stress. If irrigating based on crop growth stage, a good overall strategy is to meet the crop's water use requirements during the early vegetative growth stages and again at flowering. The early growth stages normally require less water and have a significant impact on productivity, and stress at flowering had disproportionately negative impacts on yield. If a plant and soil water-based approach to irrigation is used, plan to irrigate when plants have used 40-50% of plant available water and, ideally, before signs of stress are observed in the field. Finally, UCCE Advisors are available to assist with questions related to irrigation management.
