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Early Stage Infiltration of Water into 
Horizontal and Vertical Soil Columns1 

INTRODUCTION 

THE MOST COMPREHENSIVE solutions of the Richards' flow equation applied to horizontal 
and vertical infiltration were given by Philip (1955, 1957a, 1957b, 1969a, 1969b). 
Philip's solutions as well as numerical methods have been used to predict soil water con­
tent distributions and cumulative infiltrations. On the other hand, relatively few 
analytical studies of actual water content distributions for vertical infiltration into soils 
have been reported. To complete the theory of infiltration, several experimental analyses 
commensurate with the above theory should be carried out. Nielsen and Vachaud (1965) 
measured water content vs time using the distance as a parameter and estimated the 
coefficients in Philip's solution of the infiltration equation. They suggested that addi­
tional investigations to relate these coefficients to various soil-physical parameters, such 
as hydraulic conductivity and diffusivity, are necessary. The first purpose of this study 
was to evaluate experimentally the first three coefficient functions of Philip's solution, 
using sufficient numbers of horizontal, vertical-down, and vertical-up flow data. The se­
cond purpose of this study was to determine the soil-hydraulic properties from the flow 
data. 

THEORETICAL CONSIDERATION 

The equations for horizontal, vertical-down, and vertical-up water flow in a homo­
geneous soil are written, respectively, as 

at axj r dxl J (l) 

3Θ _ _3_ / 8Θ_\ 3K_ m 
9t " 3x2 r 3x2 ) " 3x2

 w 

M = _§_ ( 8Θ_\ + 3K_ () 

8t a * 3 ^ 3 x 3 ] 3x3
 {5) 

where Θ is the volumetric soil water content (cm3/cm3), t the time (min), x the horizon­
tal distance (cm), x2 the vertical distance positive downward, x3 the vertical distance 
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positive upward, K the unsaturated hydraulic conductivity (cm/min), and D the 
hydraulic diffusivity (cm2/min) defined as 

D = K % W 
where h is the pressure head (cm). 

Solutions of these equations for semi-infinite soil under the condition 

θ = Θ., t = 0, x > 0 
i? n (5) 

Θ = θ 0 , t Z 0, xn = 0 

for n= 1, 2, or 3 were given by Philip (1957a, 1969b) as follows: 

1. 
χχ = <>t2 (6) 

I 2 
x = 0t 2 + xt + tyt2 + tut2 + . . . (7) 
"2 

1 1 
2 - Yt + dit2 - tut2 + . . . (8) x3 = <|>t - xt + t|it - u)t + . . 

where e{ is the initial soil water content, θ0 is a larger water content at the plane of water 
entry, and the coefficients φ, χ, ψ, and ω are unique functions of Θ. These three solu­
tions express the soil water distributions during horizontal, vertical-down, and vertical -
up infiltration, respectively. 

Philip (1955, 1957a, 1957b) provided a procedure for computing the coefficients φ, χ, 
ψ, and ω from given values of D and K as functions of Θ. From these coefficients, the 
soil water distribution curves can be predicted. Youngs (1957) and Nielsen, Kirkham, 
and van Wijk (1961) showed that moisture distribution curves calculated from eq. (7) 
agreed well with values measured in the laboratory and in the field, respectively. 

Instead of calculating the three unknown coefficients φ, χ, and ψ from experimentally 
derived D(6) and Κ(θ) functions, it is also possible to estimate these three parameters 
from horizontal, vertical-down, and vertical-up infiltration data using eqs. (6), (7), and 
(8) neglecting the fourth and higher terms. For such data the experimental equations for 
infiltration may be written as 

1. 
Xj (Θ, t ) = t 2 φ(θ) + εχ (9) 

I 1 
.2 A / û . ^ _ , n v ^ Λ x2 (Θ, t ) = t z φ(θ) + tx(6) + XT ψ(θ) + ζχ + ε2 (10) 

I 2 
x3 (Θ, t ) = t 2 φ(θ) - tx(6) + t 2 ψ(θ) + ε2 + ε3 ( η ) 

where ¿i is the experimental error term which can be regarded as common in different 
directions of infiltration. Error terms ε2 and ε3 are 
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t 2 ιυ(θ) + t 2 γ ( θ ) + . . . (12) 

ε 3 = - t 2 ω(θ) + t 2 γ ( θ ) - . . . (13) 

which denote the error by the truncation of the higher terms of eqs. (7) and (8). Even if 
ε2 and ¿3 are clearly functions of Θ, and the contents of £i are not clear, it is tenable to 
view £ι, ε2, and ε3 as normally distributed functions having mean values of zero in this 
model. 

When £ι, ε2, and ε3 are negligibly small, the coefficients φ, χ, and ψ can be calculated 
as unique functions of Θ. Philip (1955, 1957a, 1957b) derived the relation between these 
coefficients and D or K: 

„Θ 
/ φαθ = -2D de (14) 

fv°(%)2%* ^ + K - K. 
1 

(15) 

Substituting eq. (14) into (15), we obtain 

K - K. 
i 

f xde + i S 
θ. 

1 

2 άφ 
J φαθ 

θ θ. 
i 

(16) 

Equations (14) and (16) suggest that both D and (K-Kj ) as functions of Θ can be 
calculated from experimental observations of φ(θ) and χ(θ). 

Transposing the terms in eq. (16) and evaluating the equation at θ = θ 0 , we obtain 

K, + / ° Xd6 = ΚΛ -
Θ. 

i 

1 άχ 
o 2 dé θ θ. 

O 1 

/ ° Φαθ (17) 

The left-hand side of eq. (17) constitutes the second parameter (A) of Philip's infiltra­
tion equation (Philip 1957b) 

2 2 2 
St + At + Bt + Ct + 

(18) 

where I is the cumulative infiltration, and S is the first parameter called the sorptivity. 
Corresponding to eq. (10), the three parameter infiltration equation may be written as 

I = S ( 0 ) t 2 + A(6) t + B ( 6 ) t 2 + m 

S, A, and B are defined as 
Γ 

S = J ° 0d0 
Θ . 

(19) 

(20) 
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A J ° xde + K, (2i) 
Θ 

.Θ 
B = / ° ψάθ (22) 

Θ. 
i 

m is a function of Θ, but we view it to be a normally distributed function having mean 
value of zero. Therefore, from eqs. (17) and (21) we obtain the relation 

A = K - § g 
o 2 αφ 

( 2 3 ) 

o 

Equation (23) implies that A is not equal to K0 unless άχΐά^ is zero at θ = θ0 , and that 
it can be calculated if φ(θ), χ(θ) and K0 are known. 

EXPERIMENTAL METHOD 

Gamma radiation attenuation equipment 

Gamma radiation attenuation equipment was used to measure the soil bulk density 
and soil water content. The radiation source was Cs137. Gamma-ray was collimated into a 
narrow beam by a window, made of lead, which was 2 mm wide and 5 mm high. The 
scintillation detector was a thallium-activated Nal crystal with photomultiplier and 
pulse-height analyzer-sealer. 

The resolving time or dead time of a gamma radiation counting system is defined as 
the minimum time that can separate two consecutively recorded photons. An observed 
counting rate can be corrected for resolving time with the equation 

i = r-L (24) 

where I is the true counting rate (cpm), R is the observed counting rate (cpm) and T is 
the resolving time (min/count). 

The mass absorption coefficient μ (cm2/g) is the fraction of the original intensity 
removed from the beam per unit linear thickness of absorber defined as 

£n ( I / I o ) = - μρΧ (25) 

where I0 is the true counting rate through air (cpm), ρ the density of the material 
(g/cm3), and X its thickness (cm). When there are two or more materials, the equation 
is written as 

¿η ( I / I o ) = - £ μ p X (26) 
i=l 
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where n is the number of materials for a given resolving time T, the mass absorption 
coefficient was found by plotting in I vs X. To find better estimations of μ and T, arbi­
trary resolving times were assumed to compare the resultant μ values with the theoretical 
values given by Reginato and van Bavel (1964). Correlation coefficients of the linear 
regression lines between In I vs X and the weighted variances (Fritton 1969) of the 
points from the lines were calculated. 

Hanford sandy loam surface soil, distilled water, an alminium block, glass plates, and 
acrylic plastic plates were used to determine the resolving time of the detector and mass 
absorption coefficients of the experimental materials. 

Material and procedure 

The air-dry soil sieved to pass through 2mm screen was packed by hand in 5.68 cm in­
side diameter and 37.5 cm length acrylic plastic cylinders with small pin holes through 
their walls to maintain the soil air at atmospheric pressure. 

Soil was added to each cylinder in increments of approximately 30 g. Each incremen­
tal addition to the cylinder was tapped with a wood mallet. After each tapping the sur­
face soil was slightly stirred to provide continuity with each soil addition. The average 
soil bulk density of each column was calculated from the total volume and the total 
oven-dry weight of soil. Bulk density values were measured at 1-cm intervals along the 
column from gamma radiation counting rates applying eq. (26) for three materials 

Pb = - L(Hww' + MS) l ^ / V + V P P ) ] (27) 

where Qh and ρρ are the soil bulk density and the density of the acrylic plastic column, 
respectively; L the inside diameter of the column; μ^ μ5, and μρ the mass absorption 
coefficients of water, soil, and plastic, respectively; w¿ the initial soil water content by 
weight; and y the thickness of the plastic wall. 

To initiate infiltration into the air-dry soil, the column was placed vertically upside 
down and the bottom glassbead plate removed without disturbing the soil. After the 
plate was filled with distilled water and connected with a water reservoir it was replaced 
firmly on top of the soil, maintaining the water pressure of the plate from 0 to - 5 cm. 
The air entry value of the glassbead plate was - 20 cm. Zero time for infiltration was 
considered the instant the glassbead plate touched the soil surface. The column was 
rapidly positioned to stand vertically or horizontally in the gamma-ray attenuation 
apparatus. 

During infiltration, a constant pressure of - 5 cm at the center of the glassbead plate 
was maintained for all runs. Visual wetting front distances from the entrance of water 
were measured repeatedly. Gamma radiation counts collected in 10 second intervals at 
each 1 cm distance along the column were measured to calculate soil water content 
distributions at specific times. 

Water content values were calculated by the equation 

Θ = —=- £n(I / I ) + Θ. (28) 
μ p L v ' sJ i 

where Is is the true counting rate through air-dry soil within the column. To calculate 
the true water content profile at each time, a correction was made that accounted for the 
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time required for observing each gamma attenuation measurement as well as the posi­
tioning of the gamma beam at specific locations along the column1. Hence, all the data 
χ(θ) were corrected with the equation 

x ( t . + At.) - x ( t . + At. ) 
x ( t . ) = x ( t . + At.) - ( t 1 + At1) - ( t

X ' \ A t , 1 ' At. (29) 
i i l - l l - l 

where x(t{) is the corrected distance at which the water content is Θ, xfo+Atj) is the 
measured distance at time (t¡ H- At¿), At¿ is the lag from time tj which arises from the pro­
cedure of the measurement, xfo. j + Atj.!) is the last measured distance at time 
(t¿-h At¿_ i), and At¡_ χ is the time lag which is not equal to At¿. For example, in horizon­
tal infiltration, let's choose ti = 30 min and t2 = 60 min. For Θ = 0.10, Ati = 3.3 min and 
At2 = 4.2 min. Substituting them into eq. (26), we obtain the following equation for 
θ = 0.10, 

-/¿ΛΛ (a n\ x(64.2) - x(33.3) , 0 ,2Γ.Λ 
x(60) = x(64.2) - 64,2 - 33.3 ' 3 0 ' 

The maximum difference between the measured and calculated distance in this experi­
ment was 0.5 cm. 

RESULTS 

Resolving time and mass absorption coefficient 

Figure 1 shows the logarithm of the counting rate plotted against thickness of distilled 
water. The linear regression lines were drawn in figure 1 for each resolving time. Table 1 
gives the resolving times, mass absorption coefficients, the correlation coefficients of 
each regression line, the weighted variances which were defined by Fritton (1969), and 
the theoretical mass absorption coefficients. Comparing these data, 15.0 μ$€€/count 
resolving time gave the closest absorption coefficient values to the theoretical values and 

I Resolving time 
fcv (/«sec/count) 

Γ^&ν Δ l5 

Γ *§^v x O 
^ k o 5 

^ % * . · 0 

I' r ^^L· 

Fig. 1. Corrected and uncorrected counting 
rates vs thickness of distilled water. The slope 
of the graph is equal to the mass absorption 
coefficient for water. 

io | > * 
-c , , , \ I 
0 5 10 15 20 25 

Thickness X cm 



HILGARDIA · Vol. 52 · No. 6 · June 1984 7 

it provided larger correlation coefficients of the regression lines compared with those for 
uncorrected lines. Therefore, even if it seems slightly larger than T values reported in the 
literature, 15.0 μζζαΙcount was used in this experiment as the best resolving time for all 
the materials. 

Bulk density 

Table 2 shows bulk density values for each column, calculated from gamma radiation 
attenuation as well as measured directly by weighing the total oven-dry soil in each 

TABLE 1. RESOLVING TIME AND MASS ABSORPTION COEFFICIENTS 

Material 

Distilled 
water 

Density 
g/cm 

1.000 

Resolving 
time 

psec/count 

0 
5 
10 
15 

Mass 
absorption 
coefficient 

cm /g 

0.0793 
0.0812 
0.0833 
0.0855 

Correlation 
coefficient 

-0.99984 
-0.99990 
-0.99993 
-0.99993 

Weighted 
variance 

32.89 
19.92 
14.97 
21.52 

Theoretical 
mass absorption 

coefficient 
2/ cm /g 

0.0862 

Hanford soil 

Aluminum 
block 

Glass plate 

Plastic 
plate 

1.420 

2.775 

2.478 

1.193 

0 
15 

0 
15 
0 
15 
0 
15 

0.0671 
0.0798 

0.0723 
0.0748 

0.0697 
0.0757 

0.0714 
0.0821 

-0.99986 
-0.99990 

-0.99973 
-0.99983 

0.0775 

0.0748 

TABLE 2. BULK DENSITY VALUES FOR EACH SOIL COLUMN 
Direction 
of 

infiltration 

Horizontal 

Vertical down 

Vertical up 

Average 

Column 
number 

1 
2 
3 

4 
5 
6 

7 
8 
9 

Standard error 

Calculated 
bulk 

density 
(g/cm ) 

1.351 
1.371 
1.365 

1.311 
1.328 
1.321 

1.335 
1.310 
1.324 

True bulk 
density 
(g/cm ) 

1.395 
1.401 
1.395 

1.401 
1.402 
1.402 

1.410 
1.399 
1.401 

1.401 
0.004 

Standard 
deviation 

0.043 
0.025 
0.032 

0.034 
0.025 
0.033 

0.028 
0.030 
0.034 

Differences 
of bulk 

densities 
(g/cm ) 

0.044 
0.030 
0.030 

0.090 
0.074 
0.081 

0.075 
0.089 
0.077 
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column. The calculated values underestimate the bulk density of all columns. These dis­
crepancies may be attributed to the overestimation of the resolving time or the overesti-
mation of the mass absorption coefficient of the soil. All values of the calculated bulk 
density from gamma radiation attenuation were corrected by adding the differences 
shown in table 2 in each column. 

The average bulk density of all columns was 1.401 g/cm3 with a standard error of 
0.004 g/cm3. The standard deviation of the bulk density within each column, estimated 
from each 1 cm counting rate for each column, ranged from 0.02 to 0.04 g/cm3. This 
means that it is easier to prepare soil columns of the same bulk density than to pack a 
single column as uniformly as possible. 

30, 

20 

1 Vertical down infiltration 
2 Horizontal infiltration 

3 Vertcal up infiltration 

10 15 20 
Distance (cm) 

0 20 40 60 80 100 120 140 160 180 200 220 240 
Time ( minutes) 

Fig. 2. Wetting front advancement during in- Fig. 3. Soil water content distributions for 
filtration. horizontal infiltration. Solid curves were 

calculated from eq. (9). 

0 4 

"EOS 

' 8 · 
• V^^NT^ 

X 
.\ 

30 \ 

•1 
·' 

íí^r^~-Z~ira~T¿?~Tr*5"*^· 

A \ \ 
60\ 90\ \ l20 

°1 \ \ 
\ °\o \ ¿^ 

\l80 

^ 

Aminutes 

^240 

10 15 20 
Distance ( cm ) 

g 0 2 

10 15 20 25 
Distance (cm) 

Fig. 4. Soil water content distributions for Fig. 5. Soil water content distributions for 
vertical-down infiltration. Solid curves were vertical-up infiltration. Solid curves were 
calculated from eq. (10). calculated from eq. (11). 
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Wetting front advancement and water content distribution 

Figure 2 shows the visual wetting front advancement during vertical-up, vertical-
down, and horizontal infiltrations, with the standard deviations at each point. These 
standard deviations were calculated from three repetitive runs for each direction. 

Table 3 shows the relation between the combinations of run numbers and the average 
standard deviations of the wetting front advancement. The average standard deviations 
were calculated by averaging the standard deviations at each 10-minute distance of wet­
ting fronts. Our skill in executing the experiments apparently increased with time, thus 
decreasing the average standard deviation. Only the last combinations in table 3 were 
chosen for figure 2 and for the analysis. 

Figures 3,4, and 5 show the soil water content distributions during infiltration. Each 
point indicates the average values of the three chosen columns. The solid lines in figures 
3, 4, and 5 were calculated and will be discussed later. 

Combining figure 2 with figures 3,4, and 5 we can find the water content at the wet­
ting fronts at each time. Table 4 shows the average soil water contents at the wetting 
front, and table 5 provides their statistical analysis. From the analysis of variance, the F 

TABLE 3. AVERAGE STANDARD DEVIATIONS OF THE 
WETTING FRONT ADVANCEMENT 

Direction of 
infiltration 

Horizontal 

Vertical down 

Vertical up 

Run 

1 

1 
2 
3 
4 

1 
2 
3 

number 

2 

2 
3 
4 
5 

2 
3 
4 

3 

3 
4 
5 
6 

3 
4 
5 

Average standard 
deviations (cm) 

0.30 

0.65 
0.60 
0.45 
0.37 

0.44 
0.44 
0.16 

TABLE 4. AVERAGE SOIL WATER CONTENT (cm3/cm3) 
AT THE WETTING FRONT 

Infiltration 
time (minutes) 

30 
60 
90 
120 
180 
240 

Mean 

Direction 

Horizontal 

0.141 
0.195 
0.125 
0.105 
0.140 
0.130 

0.139 

of infi .ltration 

Vertical down 

0.133 
0.110 
0.095 
0.150 
0.107 
0.130 

0.121 

Vertical up 

0.150 
0.140 
0.125 
0.130 
0.120 
0.143 

0.135 

Overall Mean 0.132 
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ratio of the water contents at the wetting front was 1.142, which is so small that we con­
clude there are no differences among the values for downward, upward, and horizontal 
infiltration. In addition, from the regression analysis, correlation coefficients between 
infiltration time and water content at the wetting fronts are so small that we conclude 
there are no relations between them. Consequently, the water content at the wetting 
front can be defined here as 0.132 cm3/cm3. 

TABLE 5. ANALYSIS OF VARIANCE OF THE DATA IN TABLE 4 

Source of 
variation 

Direction 
Error 

Total 

Sum of 
squares 

0.00111 
0.00730 

0.00841 

Degree of 
freedom 

2 
15 

17 

Mean 
square 

0.000556 
0.000486 

Computed 
F 

1.14 

TABLE 6. RELATION BETWEEN xi and Θ DURING HORIZONTAL 
INFILTRATION, AND THE ESTIMATED VALUES OF Θ and ε, 

Θ 
3 3 cm /cm 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.32 
0.34 
0.36 
0.38 
0.40 
0.42 

xl 
30 

9.5 
9.5 
9.4 
9.3 
9.2 
9.1 
9.0 
8.9 
8.8 
8.7 
8.6 
8.4 
8.2 
8.0 
7.9 
7.1 
5.5 
4.4 

(cm) at each 

60 

13.1 
12.9 
12.8 
12.7 
12.6 
12.5 
12.5 
12.4 
12.2 
11.9 
11.6 
11.4 
11.2 
10.8 
10.4 
8.9 
8.4 
6.4 

90 

15.3 
15.1 
15.0 
15.0 
14.9 
14.8 
14.7 
14.6 
14.6 
14.3 
14.2 
13.8 
13.4 
12.9 
11.5 
10.9 
9.4 
8.5 

time 

120 

17.4 
17.3 
17.1 
17.0 
16.9 
16.8 
16.6 
16.5 
16.4 
16.2 
16.1 
15.8 
15.5 
15.0 
13.8 
12.3 
11.0 
10.2 

(minutes) 

180 

20.9 
20.7 
20.6 
20.5 
20.4 
20.3 
20.2 
20.1 
20.0 
19.8 
19.6 
19.2 
18.9 
18.2 
16.0 
15.5 
12.0 
10.0 

240 

23.6 
23.5 
23.4 
23.3 
23.2 
23.1 
23.0 
22.8 
22.7 
22.5 
22.2 
21.8 
21.2 
20.1 
19.2 
16.2 
15.5 
10.9 
8.9 

Φ 
cm/min^ 

1.4009 
1.3982 
1.3938 
1.3893 
1.3927 
1.3882 
1.3858 
1.3782 
1.3822 
1.3807 
1.3704 
1.3474 
1.3126 
1.2336 
1.1054 
0.9722 
0.9115 
0.6451 
0.5713 
0 

ει 
cm 

2.0232 
1.9100 
1.8481 
1.7945 
1.6594 
1.6059 
1.5307 
1.5049 
1.3273 
1.1675 
1.0733 
1.0153 
1.0378 
1.3179 
1.5968 
1.6526 
0.7979 
1.6635 

Correla­
tion 
coef. 

0.9996 
0.9998 
0.9998 
0.9998 
0.9998 
0.9998 
0.9997 
0.9996 
0.9998 
0.9999 
0.9998 
0.9999 
0.9995 
0.9986 
0.9948 
0.9929 
0.9842 
0.9358 
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x and \ft relation, and φ(θ) values 

The so-called Boltzmann transformation written as eq. (6) is a mathematical conse­
quence of the form of eq. (1) and the initial condition (θ = θ[, t = 0, Xi >0) of conditions 
eq. (5). Figure 6 shows the x and \ /T relations at each water content during horizontal 
infiltration. The intercepts of the distance axis are equal to the error term ¿i in eq. (9) 
and the slope of the regression lines can be regarded as φ values in the same equation. 
Table 6 gives the relations between time and distance where the water content is con­
stant, the coefficients of linear regression lines for xi versus \/T, a n d their correlation 
coefficients. We also found a significant correlation between ει and Θ, having a slope of 
- 1.89, an intercept of 1.86, and a correlation coefficient of - 0.621 with 16 degrees of 
freedom. This means that although ει was regarded as the random variable having a 
mean of zero, it is inversely related to Θ. 

χ(θ) and ψ(θ) values 

The way to estimate χ(θ) values from experimental data of water content during in­
filtration was shown by Nielsen and Vachaud (1965) for the first time. According to their 
method, we obtain from eqs. (9), (10), and (11) 

3 
.2, tx + t ψ + ε. 

3 
tx - ΐ2ψ - ε, 

(31) 

(32) 

in which the error term ¿i is eliminated. 
Figure 7 shows the relation between (x2 - xi) and t, and (xi - x3) and t, at the wetting 

front. If ψ, ε2, and ε3 values are negligibly small, these two lines should coincide. 
Statistically the 95 percent confidence intervals for the χ values are, respectively, 
0.0160 <χ< 0.0168 and 0.0107 <χ < 0.0115. Hence, it is concluded that φ, ε2, and ε3 
cannot be neglected, and eqs. (28) and (29) are inadequate to estimate χ(θ) values. The 
reason why Nielsen and Vachaud (1965) failed to obtain equal values of χ for vertical-up 
and vertical-down infiltration may be the same with this case. 

10 15 
ST ( m i n u t e s " 2 ) 

80 120 160 200 240 
Ti me ( minutes) 

Fig. 6. Relation between the distance of the soil Fig. 7. Relation between (x2-xi) and time, 
section where a given water content value is and (xi - x3) and time at the wetting front. 
located and the square root of time during 
horizontal infiltration. 
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The next possible way to estimate χ(θ) is to compare the water content distributions 
during vertical-up and -down infiltration. Subtracting eq. (11) from (10), we obtain 

x3 = 2tX + ε2 - ε 3 (33) 

in which £i is again eliminated. 
Figure 8 shows the relation between (x2 - x3) and t at the wetting front. The regression 

coefficient is very high (0.999) and the intercept, which is regarded as the estimated 
value of (ε2 - ε3), is very small (-0.169). Hence, it is expected that good estimations of χ 
can be obtained from the relation between (x2 - x3) and t at each water content. Table 7 
and table 8 give the relation between x2 and t, and x3 and t. Table 9 gives values of 
(x2-x3) for given values of Θ for different infiltration times t, their correlation coeffi­
cients, and estimates of χ values. 

Using eqs. (9), (10), and (11), ψ(θ) values were calculated from the equation 

x2 + x3 2x, 2i|)t + ε2 + ε3 (34) 

in which the error term ¿i was eliminated. Table 10 gives the values of (x2 + x3 -
ε2 + ε3 and their correlation coefficients for given values of Θ. 

Figure 9 shows the φ, χ, and ψ values as functions of water content. 

2χ ι ) ,ψ , 

1.5 

~ i.o H 

Ç C 
E E 
^ ^» 
E E 

0.5 h-

-Θ- X -=>-

80 120 160 200 240 
Time ( minutes) 

pr 

1 L 

1 1 1 

Φ 

1 1 1 

I I I ! 

Ψ7 \ 

1 1 I N 
0.10 0 .20 0 .30 0 . 4 0 

Water content (cm /cm ) 

Fig. 8. The relation between ( x 2 - x3) and time Fig. 9. Values of φ, χ and ψ defined by eq. (9), 
at the wetting front. (10), and (11) vs soil water content. 
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Cumulative infiltration 

Figure 10 shows the cumulative infiltration I calculated from the water content 
distributions. It is also possible to estimate the three parameters of infiltration eq. (19) 
from these data. The experimental equations are 

I = Mt + m1 

I 1 
ΙΛ = Mt2 + M't + M"t2 + m0 

(35) 

(36) 

h" Mt 
3 

M't + M"t2 + (37) 

for horizontal, vertical-down, and vertical-up infiltration, respectively. The terms mi, 
m2, and m3 are the error terms. Table 11 shows the cumulative infiltration and the values 
of the parameters which were calculated by the least square method with r being the cor­
relation coefficient. 

It is interesting to compare the values of the parameters shown in table 11 with the 
coefficients of eq. (19) which can be obtained by integrating the functions φ, χ, and ψ. 

The integrated value of φ Γ θ η 

(J ° φαθ) 
Θ . 

i 

was calculated numerically by both Simpson's rule and the trapezoidal rule. The initial 
water contents 6¡ were 0.02^0.025 cm3/cm3, and <t>(0j) must theoretically be infinite. To 
avoid complicated discussion, the numerical integration was carried out from 9 = 0.02 
cm3/cm3 to 0.42 cm3/cm3 assuming φ(0.002) = φ(0.04). The integrated value was 
0.4838 by Simpson's rule and 0.4826 by trapezoidal rule, which were very close to the 
value of M = 0.4764. The integrated value of Y r®n 

(J XdB) 
Θ . 

i 

was also calculated from θ = 0.02 cm3/cm3 to 0.42 cm3/cm3, and was found to be 
0.005297 by Simpson's rule and 0.005267 by trapezoidal rule, which were very close to 
the value of M ' = 0.005373. 

60 120 
Time (minutes) 

240 

Fig. 10. Cumulative infiltration during hor­
izontal (Ii), vertical-down (I2), and vertical-up 
(I3) infiltration. 
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The integrated value of ψ, rQñ ( J ° Ψαθ) 
Θ . 

1 

was calculated to be 0.9640 x 10 " 4 by Simpson's rule and 0.9523 x 10"4by trapezoidal 
rule, which were also very close to the value of M" = 1.00 x 10"4. 

Prediction of water content distribution 

In figures 3 ,4 , and 5, the solid lines were calculated from eqs. (9), (10), and (11) 
neglecting the error terms ε2 and ε3. All of the calculated distributions agree well with 
those measured. The maximum difference between measured and calculated water con­
tent is seen for small values of Θ at 30 minutes during vertical-down infiltration for 
which the discrepancy is about 0.6 cm. Obviously, error term ει is not negligible. 

Estimation of D and K - K¿ 

When φ and χ values are given as functions of water content Θ, D and (K - K¿) values 
can be obtained from eqs. (14) and (16). For numerical integration, a reformed 
trapezoidal rule was applied to eqs. (14) and (16), which are given as 

D - Y n + 1 "n ΓΦ2 ' 5Φ1 + ° A 1 
η+^ 2 L 8 k = 1

 Y U (3 8) 

TABLE 11. CUMULATIVE INFILTRATION AND VALUES OF THE PARAMETERS IN 
INFILTRATIONS EQS. (35), (36), AND (37), AND CORRELATION COEFFICIENTS 

r OF THE REGRESSION LINES 

Time 
(minutes) 

30 
60 
90 
120 
180 
240 

M 
mi 
r 

M' 
nu+nu 
r 

M" 
m~+m~-2m.. 

r 

h 
(cm) 

3.04 
4.13 
4.88 
5.63 
6.78 
7.83 

0.4764 
0.4132 
0.9998 

h 
(cm) 

3.07 
4.41 
5.45 
6.32 
7.96 
9.37 

h 
(cm) 

2.83 
3.83 
4.57 
5.12 
6.12 
6.86 

h-h 
(cm) 

0.24 
0.58 
0.88 
1.20 
1.84 
2.51 

0.005373 
-0.08108 
0.9999 

W21! 
(cm) 

-0.18 
-0.02 
0.26 
0.18 
0.52 
0.57 

0.00010 
-0.07645 
0.9160 
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(K K.) Ml i v&\ 
Γχ2 SX, n 

Σ 
k=l 

\r+ VU 
pn+l 

Φο - 5φ, 
8 

n 
+ Σ 

k=l 
Δθ (39) 

where <|>kand xk are given in table 6 and table 9. The reformation of the trapezoidal rule 
was carried out in such a way that the integrations of 0k and xk from k = 1 to k = n + Vi, 
which are necessary to correspond the central differences of n+ Vi, are possible. 

Figure 11 shows the hydraulic diffusivity D as a function of water content. The em­
pirical equation for these data is 

D = 0.00124 exp (21.16) (40) 

with a correlation coefficient of 0.948. 
Figure 12 shows the relation between χ and ψ. Their least squares third-degree 

polynomial curve is given as 

X = 0.0217Φ (1.711 - φ) (41) 

which was used to obtain the value of άχ/ά$ as a function of Θ. The calculated (K - K¿) 
values are shown in figure 13. The saturated hydraulic conductivity Ks was measured to 
be 8.1 x 10"3 (±0.55 x 10"3) cm/min. Figure 13 shows that the calculated (K-Ki) 
values at large water content values are close to the measured value of Ks. 

0 1 0 0-20 0-30 0-40 

Water content (cm 3 /cm 3 ) 0 ( cm/min ) 

Fig. 11. Hydraulic diffusivity D vs water content Fig. 12. Relation between χ and φ of Hanford 
of Hanford sandy loam. sandy loam. The solid curve is the least squares 

third-degree polynomial. 
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Figure 14 shows the soil water characteristic curve of Hanford sandy loam, obtained 24 
days after the start of wetting of a 100-cm vertical column from the bottom. From 
figures 11 and 14, another estimation of K was calculated by eq. (4). To obtain the value 
of de/dh from figure 14, a linear regression line was used between h = - 30cm and - 70 
cm, having a slope of 0.004218 with a correlation coefficient of - 0.987. Combining this 
value of slope with eq. (40), the value of K was calculated and shown in figure 13, which 
appears to overestimate the values of Ks and K. Twenty-four days may not be enough 
time to attain equilibrium for wetting within the column, and hence a value ofd0/dh is 
expected to be smaller than 0.004218 had equilibrium been attained. 

DISCUSSION 

Philip (1957a) showed the relation between the parameters φ, χ, ψ, ω, and so on, and 
the hydraulic diffusivity D and hydraulic conductivity K. Since then, based on known 
values of Κ(θ) and D(0), close agreements between observed and calculated water con­
tent distributions have been obtained. On the other hand, few investigations have been 
made to estimate those parameters from measured water content distribution and to 
relate them to unknown values of Κ(θ) and D(6). 

Nielsen and Vachaud (1965) analyzed horizontal, vertical-down, and vertical-up in­
filtration of water into air-dry soil columns and presented the values of φ, χ, and ψ vs 
soil water content. Although they predicted water content distribution during infiltra­
tion, they did not calculate the parameters D(0) and Κ(θ). 

The relation between φ(θ) and D(9) is well known in the form of eq. (14). The rela­
tion between the parameters φ, χ, and K is written as eq. (16) which has never been 

100 

O.IO 0.20 0.30 0 .40 

Water content (cm /cm ) 
Fig. 13. Calculated K and (K-K¡), and 
measured Ks vs water content of Hanford sandy 
loam. 

0.10 0.20 0.30 0.40 
3 3 Water content (cm /cm ) 

Fig. 14. Soil water characteristic curve of Han­
ford sandy loam. 
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presented explicitly. Figures 15 through 22 show for different soils the previously pub­
lished relations between χ and φ which were calculated from known D and K, measured 
values of K and calculated (K - Ki) values vs water content which were obtained from 
eq- (39). 

Philip (1957b) calculated values of the parameters φ, χ, ψ, and ω for Yolo light clay 
based upon Moore's experimental data of D(6) and Κ(θ). Figure 15 shows the relations 
between χ and φ, and figure 16 shows the calculated (K-K¿) values with measured K 
values. The fitted third-degree polynomial of the relation between <|>(cm/sec1/2) and 
χ(cm/sec) is 

X = 0.187φ (φ - 0.176φ + 0.00840) (42) 

with the multiple correlation coefficient of r= 0.998, which is shown as the solid line in 
figure 15. The agreement of the calculated (K - Kj) values with measured K values is 
good, suggesting that eq. (39) is sufficient to estimate Κ(θ) values neglecting K¡ for this 
soil. 

Nielsen, Kirkham, and van Wijk (1961) calculated values of the parameters φ, χ, ψ, 
and ω vs water content for Monona silt loam and Ida silt loam based upon known values 
of D(6) and Κ(θ). Figures 17 and 19 show the relations between χ and φ for both soils 
and figures 18 and 20 show the calculated (K-Kj) values with eq. (39). The fitted 

o 
x 

10 

E 

^-6 

4 0 

3 0 

o 
3 
c o 

σ 
£ 10" 
x 

o measured value 
• calculated value 

8· 
• o 

O 02 O 04 0 0 6 0 0 8 0 10 

0 ( cm/sec ) 
0-2 0 4 0-6 0 8 ΙΌ 
Relative water content 

Fig. 15. Relation between χ and φ for Yolo Fig. 16. Measured and calculated hydraulic 
light clay. conductivity of Yolo light clay. 
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third-degree polynomial of the relation between <|>(cm/hr1/2) and x(cm/hr) for Monona 
silt loam is 

X = 0.0313 + 1.15φ - 0.0280φ2 + 0.0001ΐ4φ3 (43) 

with the multiple correlation coefficient of r = 0.999 and that for Ida silt loam is 

χ = -0.0156 + 0.756φ - 0.0233φ2 + 0.0001ΐ4φ3 (44) 

with the multiple correlation coefficient of r= 0.997, which are shown as the solid lines 
in figures 17 and 19. The measured K values and calculated (K-Kj) values agree 
especially well for large water content values, which again support the utility of eq. (39) 
for those soils. 

Nielsen and Vachaud (1965) obtained different χ(θ) values depending on the direc­
tions of vertical infiltration. Figures 21 and 22 show only the values of upward infiltration 
because almost all the calculated (K - K¿) values were negative in case of downward in­
filtration, which may be caused by the underestimation of άχΙά§. The fitted third-
degree polynomial of the relation between ^(cm/min1/2) and x(cm/min) for Columbia 

— i 1 1 1 1 1 

o measured 8 

• calculated · 

_ j i i i i I 
0 30 0 34 0-38 0-42 0-46 0-50 

Water content ( cm3/cm3) 

i u 

10 20 30 40 50 
0 (cm/hrl/2) 

Z 10° 
\ 
E 

Î 'Ο ' 

C 
O 

^-z 

10" 
0·: 

Fig. 17. Relation between χ and φ for Monona Fig. 18. Measured and calculated hydraulic 
silt loam. conductivity of Monona silt loam. 
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silt loam fails to show a positive value of άχΙά§ at the origin. The fitted two-degree 
polynomial of the relation between φ and χ/φ is 

χ = φ x 10" 4 ( -0 .116 + 7.895φ - 4.603φ2) (45) 

with the multiple correlation coefficient of r= 0.926, which is shown as the solid line in 
figure 21. 

Table 12 shows the values of K0, S,/e°xd0, A, and A/K0 for several kinds of soils. To 
calculate the values of A by eq. (23), the slopes of the straight lines between the origin 
and the closest points to the origin in θ - χ plane were used for the values of άχΐά^ at 
θ = θ0. As the functional relation between φ and χ is still not clear, it may be reasonable 
to evaluate it by discrete data in the meantime. In table 12, the integrated values of χ, 
which were calculated by Simpson's rule, are very close to the values of A. This means 
that it is possible to get the value of A from both eqs. (23) and (21) neglecting Kv It is 
convenient for us to be able to calculate the values of A from K0, φ, and χ without 
knowing K¡ values. 

The special merit of the above-mentioned technique is that from water distribution 
data during horizontal, vertical-up, and vertical-down infiltration, we can predict the 
water content distribution of different times, calculate the values of the physical 
parameters D(0) and Κ(θ) and obtain the values of the parameters of the infiltration 
equation. 

The efficiency of this method depends on the reliability of the values φ(θ) and χ(θ). 
Through theoretical consideration, good estimation of χ(θ) values were expected by eq. 
(33), and figure 8 and table 9 revealed it to be true. On the other hand, the error term t\ 
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Fig. 19. Relation between χ and φ for Ida silt Fig. 20. Measured and calculated hydraulic 
loam. conductivity of Ida silt loam. 
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was so large that the question of the validity of Buckingham-Darcy's law for infiltration 
problems still remained. The effect of the soil bulk density, the effect of experimental 
skill of the investigator, and the effect of the low pressure at the entrance of each column 
were avoided as far as possible. Distilled water may cause both solute and air to be 
dissolved at the wetting front. The effect of heat on wetting is still in question. The fact 
that the error term t\ is in inverse proportion to Θ raises the question whether 
Buckingham-Darcy's law is valid or not for infiltration into air-dry soil. 

Another problem is the somewhat complicated procedure to determine φ(θ) and χ(θ) 
experimentally. There are two methods to determine the value of φ(θ). The first, water 
content distribution is measured at a fixed time, which may be called the profile 
method. The second, water content is measured at a fixed position, which may be called 
the transient method. Selim, Kirkham, and Amemiya (1970) showed that both are 
reliable and the transient method is quicker and more convenient for computer analysis 
of data. In this study, although both φ(θ) and χ(θ) were determined by the profile 
method, it may be worthwhile to investigate whether the transient method is reliable, 
quick, and convenient to determine χ(θ) or not. To determine χ(θ) by the transient 
method, the experimental equations must be written as 

1 
(46) 

x = φ + t 2 x + φ + εχ + ε2 

I 1 
x = φ - t3x + φ + εχ + ε3 

(47) 

(48) 

0 (cm/min , / 2 ) 
Fig. 21. Relation between χ and φ for Columbia 
silt loam. Solid line is the least squares third-
degree polynomial curve. 

0-5 
Water content (cm3/cm3) 

Fig. 22. Calculated hydraulic conductivity of 
Columbia light clay. 
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for horizontal, vertical-down and vertical-up infiltrations, respectively. The times ti, t2, 
and t3 are when the given value of Θ passes across the position x. Random error variables 
£ι, ε2, and ε3 fluctuate about an expected value of zero. In this case, χ(θ) value can be 
calculated by eliminating φ and ψ from eqs. (46), (47), and (48) as 

x - εΊ 

1 1 
~2 "2 t + t 2 z3 

3 y- 3 1 

■ t V 1 -■0 1 
1 -1 

"2 2 t + t L2 L3 

"ε2 
3 " 

£ 3 
3 

4 
(49) 

The merit of this transient method is that we do not need such a correction as eq. (29) 
used in the profile method. 

Although we tried the transient method for several times, we did not succeed in find­
ing reproducible and reliable values of χ(θ). This may be caused by the sensitivity of the 
relation between χ, t, and x in eq. (49). 

The accuracy of the estimation of Κ(θ) using eq. (16) depends on the accuracies of the 
values of 

*θ •Θ 
/ χαθ, / φαθ and (dx/d<t>)6. 

Θ. 
i 

Figures 16, 18, and 20 proved that good estimation of D(0) and Κ(θ) can be obtained 
using calculated φ(θ) and χ(θ) values, which were estimated from measured D(0) and 
Κ(θ). In this case, the relation between χ and φ appears reasonable. On the other hand, 
the relation between χ and φ is more erratic when estimated from measured water con­
tent distributions. Figures 12 and 21 show that the third-degree polynomial curve re­
mains somewhat approximate. Additional experimental studies involving different 
values of θ[ and θ0 for a variety of soils are necessary to improve this method. 

TABLE 12. VALUES OF K0, S,/eoxd0, A and A/K0 FOR SEVERAL KINDS OF SOILS 
0j 

Soil A/K References 

Yolo light clay 7.37x10 

Monona silt loam 6.02x10 

Ida silt loam 4.50xl0" 

-4 9.71x10 -2 2.79x10 
-2 5.72x10 -2 2.62x10 -2 

7.11x10 1.82x10 

Columbia silt loam 1.72x10 

Hanford sandy loam 8.01x10 

-4 4.68x10 

4.84x10 

-1 9.75x10 -5 

5.30x10 -3 

2.80x10 0.380 Philip (1969a) 

2.62xl0"2 0.435 Nielsen (1961) 

1.82xl0"2 0.403 Nielsen (1961) 

9.75xl0"5 0.566 Nielsen and 
Vachaud (1965) 

5.63xl0"3 0.703 This paper 

- K , F and A are given in cm/min and S is given in cm/min^. 

-^ F = / °xd0 and A is defined by eq. (21). 
Θ. 
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SUMMARY AND CONCLUSION 

Water content distributions during horizontal, vertical-up, and vertical-down infiltra­
tion into air-dry soil were measured experimentally using gamma radiation attenuation 
equipment. The data were analyzed using eqs. (9), (10), and (11). The parameters φ, χ, 
and ψ were estimated through the least squares method. The relation between these 
parameters and Κ(θ) was investigated theoretically to obtain eq. (16). The second 
parameter A of the three-parameter infiltration eq. (19) was reduced to eq. (23). 
Estimated values of Κ(θ) and A from eqs. (39) and (23) agreed well with experimental 
values. 

Further studies into the reasons for the large values of ει and somewhat erratic relation 
between the parameters χ and φ are necessary. 

1. We wish to acknowledge the helpful discussions with Dr. Dale Swartzendruber (Purdue University) that 
allowed us to use eq. (29) to more accurately describe the soil water content profiles. 
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