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ABSTRACT

The Forest Stand Generator, STAG, is a microcomputer-based program
that uses statistical routines to produce a projection set composed of
individual tree measurements of diameter at 4.5 feet above ground
(called the diameter at breast height or DBH), total height, height-to-
crown base, species, and tree expansion factor. When data sets are not
complete, STAG can be used to produce a projection set for a wide class
of inventory procedures. The authors will discuss the estimation proce-
dures used by STAG to (1) fill in missing measurements of tree height,
height-to-crown base, or both; (2) generate stands from summary
statistics; and (3) convert stand table data—numbers of trees by DBH
classes and species—to individual tree records, so that these projection
sets, composed of complete individual tree records, can be analyzed by
the California Conifer Timber Output Simulator (CACTOS) for simula-
tion of tree growth and mortality, even though the initial data sets could
not have been used with CACTOS. Also discussed are the predictive
equations and analytic procedures used to produce a projection set for
these three categories of data availability. Recommended uses of STAG
and the type of data required for accurate development of projection
sets are presented.
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The Predictive Models and Procedures
Used in the Forest Stand Generator (STAG)!

INTRODUCTION

The interior forests of northern California are typically composed of mixed
conifer species of multiple ages and sizes. Inventory procedures for these lands
are varied, as is true in the rest of the United States. This work addresses three
common inventory procedures. One typical procedure is to measure diameters
at breast height (DBH) and to subsample tree heights (H) and heights-to-crown
base (HCB). This procedure yields what can be considered a missing data case.
Another common procedure is to record the number of trees by diameter classes.
This yields stand table data, which are a discrete approximation of the continuous
dianteter distribution. In some cases only stand summary statistics are recorded,
such as the basal area per acre (basal area is the cross-sectional area of trees
measured at 4.5 feet above ground in square feet on a per acre basis) and number
of trees per acre. For summary statistics no individual tree information is
recorded, just overall stand parameters.

A common use of inventory data is to simulate the future growth and yield
of the stands from which the data were derived. Our goal is to ensure that the
three forms of inventory data listed above can be made to conform to the
requirements of the California Conifer Timber Output Simulator, known as
CACTOS (Wensel, Daugherty, and Meerschaert 1986; Wensel, Meerschaert, and
Biging 1987; Wensel and Biging, 1987). CACTOS simulates the growth and
development of individual trees and requires that species, DBH, H, HCB or live
crown ratio, and tree expansion factor? be supplied for each individual tree that
contributes to the stand description. When all these data are present, the stand
description becomes a minimal projection set, which is composed of the individual
tree records needed for growth simulation. To take full advantage of the simulation
capacity of CACTOS, these variables should be measured for all trees.

When data sets are missing any of the components necessary for simulation
purposes, the Forest Stand Generator, STAG? can be used to produce a
projection set for a wide class of inventory procedures (Biging et al. 1995). This
article discusses the estimation procedures used in STAG to (1) fill in missing
measurements of tree height, height-to-crown base, or both; (2) generate stands
from summary statistics; and (3) convert stand table data—numbers of trees by
DBH classes and species—to individual tree records, so that these projection
sets (composed of complete individual tree records) can be analyzed by CACTOS.
We also discuss the predictive equations and analytic procedures used to produce
a projection set for the three categories of data availability.

IAccepted for publication October, 1993.

2The crown ratio is the proportion of tree bole length that occurs within the crown of the
tree. The tree expansion factor is the number of trees per acre that the sample tree
represents.

3STAG is an acronym for Forest STAnd Generator for mixed Conifer Species, copyright ©
Regents of the University of California, 1986-94.
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DATA USED FOR
MODEL DEVELOPMENT AND TESTING

Data for this study were provided by the Northern California Forest Yield
Cooperative’s Growth and Yield Project. These data were collected from 710
permanent plots located throughout the mixed conifer region of northern
California. The variables measured for each tree included species, DBH, H, and
HCB. The permanent plots were established in 1978-79 and a ﬁve-year re-
measurement was made in 1983-84. These plots were typically % acre in size and
contained subplots used to measure submerchantable trees. Usually trees greater
than 11.0 inches in DBH were measured on the full plot. Trees between 5.5 and
11.0 inches in DBH were measured on a 4, acre subplot, and trees between 1.5
and 5.5 inches in DBH were measured on a %, acre subplot. There were some
variations in the class limits, depending on the company collecting the data. The
five-year remeasurement data were used for the models developed in later sections
of this article. Figure 1 shows the location of the permanent plots by township
and Appendices A and B provide summary statistics for much of the data used
in this study.

FORT BRAGG

SAN FRANCISCO!

Figure 1. Location of permanent plots by township.
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ESTIMATION PROCEDURES
AND DATA REQUIREMENTS

STAG is a microcomputer-based program that uses statistical routines to
produce a projection set composed of complete individual tree measurements
of DBH, H, HCB, species, and tree expansion factor. There are three main data
analysis routines in STAG, each with distinct statistical procedures corresponding
to the three different classes of data availability: filling in missing data, converting
stand table data, and generating stands from summary statistics. In this section
we define missing data estimation techniques for both overstory and understory
trees. Overstory trees are those trees greater than a defined threshold value of
either 5.5 or 11.0 inches in DBH, whereas understory trees are less than or equal
to the threshold DBH value. The species discussed in this article use the species
codes given in table 1. These species are classified into eight different species
groups during the simulation process, also shown in table 1.

TasLE 1. SPECIES CODES AND NAMES

Spp-

Spp- Spp- group
code Common name abbrev. Scientific name no.  Spp. group name
01  ponderosa pine PP Pinus ponderosa (Laws.) 1 ponderosa pine (PPG)
02  sugar pine SP Pinus lambertiana (Dougl.) 2 sugar pine (SPG)
03  incense cedar IC Libocedrus decurrens (Torr.) 3 incense cedar (ICG)
04  Douglasfir DF Pseudotsuga menziesii (Mirb.) Franco 4 Douglasfir (DFG)
05  white fir WF Abies concolor (Gord. and Glend.) Lindl. 5 white fir (WFG)
06 redfir RF Abies magnifica (A. Murr.) 6 red fir (RFG)
07  lodgepole pine  LP Pinus conlorta (Dougl.) 1 PPG
08  white pine WP Pinus monticola (Dougl.) 2 SPG
09  Jeffrey pine JP Pinus jeffreyi (Grev. & Balf.) 1 PPG
10 misc. conifers CM na. 4 DFG
11 chinquapin CH Castanopsis chrysophylla (Dougl.) A. DC. 7 other hardwoods (OHG)*
12 black oak BO Quercus kelloggii (Newb.) 8 black oak (BOG)
13 tanoak TO Lithocarpus densiflorus (Hook. & Arn.) 7 OHG
14  misc. hardwoods HM n.a. 7 OHG
*The OHG equations were derived mainly from CH (11) and TO (13).

FILLING IN MISSING DATA

One of the major and most appropriate uses of STAG is to fill in missing data.
The most reliable use of the missing data routines is in combination with
statistically valid field data plots. Typically, a statistical sample of trees in a stand
type is measured using a series of fixed-area inventory plots of 0.2 or 0.1 acre
in size, and trees on those plots are measured for DBH, H, HCB, species, and
tree expansion factor. STAG can then be used to fill in occasional missing data
values or to provide estimates of variables that may have been subsampled, such
as height. It is also possible to fill in missing data values for trees measured on
variable-radius (prism) plots. This is not recommended if the data are being
prepared for CACTOS, because variable-radius plots typically sample relatively
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few trees (4 to 8) at a sample location, compared with fixed-radius plots. It is
generally true that DBHs measured on fixed-area plots provide better approxima-
tions to diameter distributions than DBHs measured on prism plots, because
in the former more trees are sampled. With variable-radius plots, trees are selected
with probability proportional to size, and hence larger trees (the trees with
greater volume) are more frequently selected. Variable-radius plots are efficient
for estimating volume but not for representing the total diameter distribution
by species of trees in the stand.

In addition, in prism sampling it is common to measure the DBHs of the
sampled trees, but none or few of the sampled trees are actually measured for
H or HCB. If missing values are filled in on prism plots, where, say, only DBHs
and species have been recorded, the utility of these data for simulation is difficult
to assess. Because of these problems, using filled-in data from variable-radius
plots for simulation in CACTOS may result in less accurate portrayals of actual
stand conditions, and thus yield poorer forecasts than those obtained using fixed-
area sample data.

One way to overcome the disadvantages of variableradius plots for which few
tree attributes are measured is to take enough variable-radius plots to ensure that
they provide a good approximation of the true diameter distributions for the species
present in the stand. The prism plot stand descriptions should be averaged (using
the stand description averager (Meerschaert and Wensel (1987)) and then STAG
can be used to fill in missing data for the average stand description or the
distributional apportionment routines in STAG can be used to convert diameter
class data to pseudo-individual tree data. It is also a good idea to supplement the
prism plots with small fixed area plots (e.g. %oth or %th ac) located at the center
of each prism plot to better estimate regeneration and small tree frequency.

Estimating Total Height

STAG can be used to fill in tree heights or heights-to-crown base, when one
or both are missing, provided that the species, DBH, and expansion factors exist
for all trees on the plot. Models 1 and 2 are used to estimate missing heights
for overstory (> 5.5 inches DBH) and understory trees (< 5.5 inches DBH),
respectively. Heights for overstory trees whose diameters exceed 5.5 inches are
estimated as a function of DBH, stand basal area, and elevation, as follows:

Ho =bg+b; X VDBH + by X VBAg + bs X E2 (1]

where Ho = the estimated total height (ft) for overstory (o) trees
BAs = the stand basal area (ft?) in trees greater than 5.5 inches in DBH
DBH = tree diameter at breast height (DBH > 5.5 in)
E = stand elevation in feet.

The coefficients by, by, by, and bs were estimated for species groups 1 through
8 (see table 1) and an allspecies-<combined category. Sample sizes for each species
group ranged from a low of 340 observations for black oak to over 4,000
observations for ponderosa pine and white fir. All standard errors of prediction
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TaBLE 2. COEFFICIENTS AND FIT STATISTICS
FOR THE TOTAL HEIGHT MODEL 1 FOR OVERSTORY TREES*

Species group
and number Sy.x n bo by by bs
PPG [1] 12.144 4,173 -38.673 27.073 1.809 -7 %1077
(1.234) (0.230) (0.064) (3 X 107%)
SPG [2] 11.215 1,070 -36.456 28.328 0.999 -6 X 10°7
(2.035) (0.353) (0.106) (5 X 10%)
ICG [3] 9.406 2,260 -28.246 22.713 0.709 -6 x 1077
(1.292) (0.231) (0.065) (3 X 10%)
DFG [4] 11.488 2,458 -34.586 27.400 1.446 -6 X 1077
(1.482) (0.305) (0.084) (4 X 10°%)
WFG [5] 10.700 5,167 —-40.147 29.353 0.829 -4 X 107
(1.013) (0.186) (0.048) (2 X 107%)
RFG [6] 11.397 501 -36.656 28.605 1.005 -5 X 1077
(3.722) (0.558) (0.163) (8 X 107%)
OHG [7] 13.218 273 -38.731 15.614 2.621 0
(5.679) (1.270) (0.217) (0)
BOG [8] 14.421 340 -2.386 13.237 1.712 -8 X 1077
(4.561) (0.910) (0.260) (12 X 10°8)
All 13.488 16,242 -35.361 27.607 1.033 -6 X 107
(0.652) (0.127) (0.034) (1x10%)

*Standard errors of coefficients shown parenthetically.

were in the range of 9 to 14 feet. Other model forms that included site index
were evaluated but did not outperform this model. Coefficient values and fit
statistics are presented in table 2.

One model that can be used to predict heights of understory trees is

. M5 - 4.5
A, =45+ “T x DBH (2]

where I:Iuo = the estimated total height (ft) for understory trees with an
overstory (o) present whose diameter is in the range
0 < DBH < 5.5 inches
H; s = the predicted height (ft) of a 5.5 inch DBH tree from equation 1.

Model 2 simply constrains the predicted height of understory trees to be between
4.5 feet and the height of a 5.5-inch DBH tree as predicted by model 1. This
constrained equation can be selected if the user wants to ensure that the
understory height predictions smoothly join the overstory equation. This
procedure introduces some bias, which can be seen when inspecting the standard
error of the regression values for model 2 presented in table 3. The Sy values
for model 2 are considerably larger in 7 out of 8 cases than those of the
unconstrained understory height prediction model 3 presented below.

When there is no overstory component, the height of the understory trees can
be predicted with equation 3. This equation does not ensure compatibility between
the overstory height equation 1 and the unconstrained understory height prediction
model 3. Because model 3 is considerably more precise than model 2, we rec-
ommend its use whether or not an overstory is present. Model 3 is specified as
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H, =4.5+Db; X DBHP2 X elbs X El [3]

where H, = the estimated total height (ft) for an understory tree whose
diameter is in the range 0 < DBH < 5.5 inches with no
overstory present.
by,bg,bs = coefficients estimated for each species group

Coefficients and fit statistics for model 3 are presented in table 3.

TasLE 3. COEFFICIENTS AND FIT STATISTICS FOR THE HEIGHT OF
UNDERSTORY TREES MODEL 3 WITHOUT AN OVERSTORY COMPONENT*

Species group Syx Sy.x
and number model 3 model 2 n by be bs
PPG [1] 6.109 6.536 1,377 8.621 1.190 -0.00019
(0.622) (0.035) (0.00001)
SPG [2] 4.819 5.821 225 3913 1.287 —-0.00008
(0.653) (0.086) (0.00003)
ICG [3] 3.436 4.355 996 4.826 1.231 -0.00016
(0.8379) (0.033) (0.00001)
DFG [4] 5.761 6.466 961 8.431 1.047 -0.00010
(0.500) (0.030) (0.00001)
WFG [5] 4.039 5.242 2,471 4.067 1.215 -0.00005
(0.191) (0.019) (0.00001)
RFG [6] 4.404 5.299 131 1.590 1.5654 0
(0.307) (0.127) (0)
OHG [7] 9.591 7.662 76 4.188 1.089 0
(1.604) (0.259) (0)
BOG [8] 6.488 7.720 90 6.556 1.187 -0.00019
(2.980) (0.241) (0.00005)
All 5.590 6.583 6,327 7.157 1.140 -0.00015

(0.224) (0.016) (0.00000)

*Standard errors of coefficients shown parenthetically.

Estimating Height-to-Crown Base

To estimate height-to-crown base (HCB) for overstory trees with DBHs > 5.5
inches, a model form based on the logistic equation was chosen so that HCB
would be constrained to be between zero and total height. The form of the model
selected was

HCBo =H X (1 -e (0 * 1 X In BAg + cg X (DBH/H))2) [4]
where I-TCTEO = predicted height (ft) to the base of the crown for over-
story (o) trees (> 5.5 in DBH)
H = total height (ft)
DBH = diameter at breast height (nearest 0.1 in)

o, €1, €2 = coefficients estimated for each species group
BAg is as defined in model 1.
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We squared the exponential argument to give positivity, which constrains the
exponent term to be negative. This constraint ensures that the model always
produces a prediction less than the height of the tree. Sample sizes were the
same as in estimating the total height model, but standard errors of prediction
were slightly less, ranging between 9 and 11 feet. Coefficients and fit statistics
are presented in table 4.

TaBLE 4. COEFFICIENTS AND FIT STATISTICS FOR THE
HEIGHT-TO-CROWN BASE MODEL 4 FOR OVERSTORY TREES*

Species group
and number Sy.x n co cy cg
PPG [1] 10.375 4,173 1.027 -0.112 1.925
(0.035) (0.006) (0.060)
SPG [2] 9.454 1,070 1.222 -0.130 1.400
(0.056) (0.009) (0.100)
ICG [3] 8.703 2,260 1.119 -0.097 0.974
(0.058) (0.010) (0.070)
DFG [4] 11.140 2,458 1.369 -0.162 1.833
(0.051) (0.009) (0.095)
WFG [5] 10.856 5,167 1.298 -0.154 1.831
(0.038) (0.006) (0.070)
RFG [6] 11.089 501 1.450 -0.160 1.022
(0.113) (0.019) (0.175)
OHG [7] 9.188 273 1.727 -0.184 0.535
(0.202) (0.033) (0.210)
BOG [8] 10.315 340 1.313 ~0.133 0.745
(0.150) (0.028) (0.131)
All 10.580 16,242 1.323 -0.146 1.414
(0.019) (0.003) (0.030)

*Standard errors of coefficients shown parenthetically.

The prediction equation for height-to-crown base (HCB) of understory trees
when an overstory component (o) is present is

I’ﬁuo =cp+cy X DBH +cg X H +c3 X Ng [5]
where HCBuo = predicted height (ft) to the base of the crown for

understory trees (< 5.5 in DBH) when an
overstory (o) is present

H = total height (ft)
Ne = number of trees per acre with DBH > 5.5 inches
Co, €1, €2, c3 = coefficients estimated for each species group.

Coefficients and fit statistics for model [5] are presented in Table 5.

For model 5 we observed that the variance increased with increasing predic-
tions of height-to-crown base. We formulated a simple model for this relationship
as
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TaBLE 5. COEFFICIENTS AND FIT STATISTICS FOR THE HEIGHT-TO-CROWN
BASE MODEL 5 FOR UNDERSTORY TREES WITH AN OVERSTORY COMPONENT*

Species group
and number Sy.x n co c ca cs b
PPG [1] 3.393 1,377 2.727 1.737 0.166 -0.0181 1.3971
(0.308) (0.110) (0.016) (0.0013) (0.0616)
SPG (2] 3.512 224 4.214 1110 0.252 -0.0192 1.2756
(0.871) (0.342) (0.054) (0.0028) (0.1129)
ICG (3] 3.097 996 1.764 0.894 0.197 -0.0069 1.5468
(0.331) (0.134) (0.027) (0.0011) (0.0657)
DFG [4] 4.753 960 1.659 2.567 0.188 -0.0168 2.0209
(0.607) (0.218) (0.027) (0.0023) (0.0855)
WFG [5] 3.901 2,470 0.866 1.468 0.295 -0.0129 1.9335
(0.269) (0.119) (0.020) (0.0009) (0.0500)
RFG [6] 3.741 131 3.361 0.437 0.294 -0.0132 2.0591
(1.208) (0.476) (0.083) (0.0034) (0.2635)
OHG [7] 3.909 75 9.145 -0.599 0.411 -0.0165 1.0384
(2.005) (0.500) (0.008) (0.0560) (0.1400)
BOG [8] 4.195 90 0 0 0.516 -0.0170 2.2357
(0) (0) (0.044) (0.0069) (0.3708)
All 3.988 6,323 1.922 1.201 0.302 -0.0159 1.9789
(0.173) (0.061) (0.009) (0.0006) (0.0347)
*Standard errors of coefficients shown parenthetically.
080 =b X HCBjy, (6]

where H’CTB“.O = predicted height (ft) to the base of the crown

0|2uo

b

for the ih understory tree (< 5.5 in DBH)
when an overstory (o) is present

= the variance around the regression of the height-to-

crown base model 5 for the i understory tree (i = 1 to n)
= a coefficient estimated for each species group.

The estimated values of beta (b) in equation 6 are given in table 5.

The procedure for adding stochastic errors is discussed in a later section.
Briefly, we predict height-to-crown base for understory trees with DBHs < 5.5
inches using equation 5 or 7. Stochastic errors are then added to the

prediction.

When there is no overstory component, we predict the height-to-crown base
of understory trees with equation 7 as

FICB,

where l-ﬁu

by,bg,bs,by

=b; X H2 + by X E X DBHb4

(7]

= the predicted height (ft) to the base of the crown for

understory trees (< 5.5 in DBH) with no overstory
present.

= coefficients estimated for each species group

Coefficients and fit statistics for model 7 are presented in table 6.
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TaBLE 6. COEFFICIENTS AND FIT STATISTICS FOR THE HEIGHT-TO-CROWN
BASE MODEL 7 FOR UNDERSTORY TREES WITHOUT AN OVERSTORY COMPONENT*

Species group
and number Sy.x n b, be bs by
PPG [1] 3.507 1,377 0.964 0.534 0.00017 1.372
(0.321) (0.084) (0.00006) (0.181)
SPG [2] 4.046 225 1.400 0.664 0 0
(0.320) (0.074) (0) (0)
ICG (3] 3.080 996 0.203 0 0.00033 0.699
(0.019) (0) (0.00004) (0.087)
DFG [4] 4.914 961 0.254 0 0.00034 1.219
(0.017) (0) (0.00006) (0.095)
WFG [5] 4.189 2,471 0.615 0.920 0 0
(0.047) (0.025) 0) (0)
RFG [6] 3.971 131 1.242 0.635 0 0
(0.418) (0.112) (0) (0)
OHG [7] 4.209 76 1.358 0.752 0 0
(0.309) (0.068) (0) 0)
BOG [8] 4.222 90 0.965 0.742 0 0
(0.381) (0.124) (0) (0)
All 4.214 6,327 0.610 0.830 0.00006 1.608
(0.080) (0.034) (0.00002) (0.206)

*Standard errors of coefficients shown parenthetically.

It can be seen by comparing S, in tables 5 and 6 that when we know the sizes
and numbers of trees in the overstory the precision of the height-to-crown base
models increases by about five percent.

With these equations it is possible to fill in or estimate missing values of height
and height-to-crown base for individual trees. The only exogenous variable that
needs to be supplied for each stand is elevation. Basal area (BAg) can easily be
computed directly by summing the per acre individual tree basal areas obtained
from the individual tree DBHs and expansion factors contained in the projection
set file (stand description file). Number of trees (N6) can easily be calculated from
the expansion factors associated with individual trees in the projection set file.

Converting Merchantable Height to Total Height

The four different types of tree height measurements allowed in STAG include:
(1) total heights, (2) heights to a merchantable top (< 6.5 inches diameter inside
bark), (3) heights measured to whole (16.5 ft) logs, or (4) heights measured
to half logs (8.25 ft). Within a STAG projection set file, which is composed of
individual tree measurements, all heights must have the same measurement
standard. CACTOS requires total heights for individual trees, but STAG can
manipulate merchantable height to obtain an estimate of total height. STAG
uses a taper equation to solve for total height for the six major conifer species
(species group numbers 1-6 in table 1) whenever height to a merchantable top
or number of 16.5-foot logs is supplied.*

“The height conversion process is not intended to encourage the measurement of other
than total heights. Rather, it is intended to allow the use of older inventory data.
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We derive total height (H) from merchantable height (MH) with a sigmoid
taper equation (Biging 1984). The total height estimate obtained from inverting
the taper equation is

. MH X (A)3

H' = [8]
(1 - exp[(d/DBH - by) / by])*s

where 154 = the predicted total tree height (ft) estimated

from merchantable height

A =1-exp(-bi/bg)

DBH = the diameter at breast height (in)

d = the merchantable top diameter (< 6.5 in)

MH = the height to the merchantable top diameter (ft)

exp(x) =2.71828...raised to a power of x

by, by = species-specific coefficients given in table 7.

Coefficients and fit statistics for model 8 taken from Biging (1984) are presented
in table 7.

TaBLE 7. COEFFICIENT ESTIMATES BY SPECIES
FOR EQUATION 8 FROM BIGING (1984)

Species and spp. codes n by bs

PP [1] 2,014 1.019589 0.335666
SP [2] 692 1.069320 0.415632
IC [3] 541 1.071343 0.472157
DF [4] 1,588 1.029288 0.334012
WF [5] 2,645 1.092615 0.365295
RF [6] 312 1.075880 0.353784

If the heights of trees are entered as the number of logs, the program first
converts them to heights to the given merchantable top using equation 9, and
then uses equation 8 to predict total heights. The equation to estimate height to
the merchantable top (MH) when only the number of logs is known is given by

— LL

MH = [SH + ?] +NLOGS X LL [9]
where MH = the estimated height to the merchantable top diameter (ft)

SH = stump height of the tree = 1.5 feet

LL = log length in feet (16.5 or 8.25 ft)

NLOGS = the number of logs of length LL for a tree.

Stochastic Errors

The user can either make a deterministic or a stochastic prediction of missing
values when filling in missing data (height or height-to-crown base) or generating
stands from summary statistics. Choosing stochastic errors means that a random
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value will be added to the prediction to reflect that an individual tree’s
dimensions cannot be predicted with certainty. Thus, a random value will be
added or subtracted from the prediction. For the overstory tree height model
1, the understory tree height model 2, the understory height model with no
overstory component (model 3), the overstory height-to-crown base model 4, and
the understory height-to-crown base model with no overstory component (model
7), a random value is drawn from a normal distribution with mean zero and
variance equal to the estimated variance around the regression (S?.x). There are
two special cases. Even though equation 2 is a constrained model for which no
statistical model was fit, we calculated the estimated variance (S;.x) from model
2 to generate stochastic errors for this understory height equation. See table
3 for estimated (S%,) values for model 2. In the case of the understory height-to-
crown base model 5, the distributional mean is zero for random errors, but the
variance is proportional to the predicted height-to-crown base (see equation 6).
If random errors are not requested, then the missing value is set equal to the
model prediction (the deterministic prediction). If random errors are not added,
all predicted heights and height-to-crown base values are identical for a given
diameter of a particular species, given that basal area and elevation are the same.

Parameter Updating

If the user wants to incorporate knowledge of a local sample into the height
model coefficients, a Bayesian update of the first two parameters of height model
1 is possible. Alternatively, an ad hoc weighting scheme patterned after the linear
composite estimators (Burk, Hansen, and Ek 1982) can be chosen. In both cases,
only the first two parameters (bp and b;) are allowed to be updated, because
the effects of elevation (E) and density (BAg) cannot be adequately described
with a local sample.

The ad hoc approach adjusts the amount of change to the model parameters
by a constant ratio (k) between 0 and 1. A weight of k = 0 causes the update
routine to abort (no update), while a weight of k = 1 places all the emphasis
on the local sample to determine the coefficient values to be used for the height
prediction equations. This ad hoc weighting process is given as

B =KXIXBL+(I-K)XBp [10]
fi = { bg, b} } where b and by are the updated parameter estimates
where
K  =the ad hoc weight matrix (2 X 2) with diagonal elements
(k) 0<k<1
I = an identity matrix (2 X 2)

Bp = the database matrix estimate of the parameters (2 X 1)
BL = the matrix estimate of the parameters based on the local
sample (2 X 1).

We modified the true Bayesian method because in prior work (Van Deusen
1984) we found that it worked poorly. With relatively small sample sizes the
Bayesian update could result in large covariance terms in the local covariance
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matrix, which could cause the updated parameter estimates to behave poorly.
For example, the local parameter estimates could indicate that both the database
slope and intercept coefficients should be increased over their database counter-
parts. A large negative covariance term in the local covariance matrix could force
these two coefficients to move in opposite directions, regardless of the fact that
both local parameter estimates were larger than the database estimates. Because
of this, we modified the Bayesian approach and have termed it a pseudo-Bayesian
approach. The main difference between a Bayesian and a pseudo-Bayesian
approach is that for the latter we utilize only the variance terms in the variance-
covariance matrices of the local and database samples to avoid problems
associated with the covariance terms.

The pseudo-Bayesian approach is more conservative than the ad hoc proce-
dure. If the local sample is small, then the updated coefficients for the height
prediction equation are quite close to the database values. If, however, there is
a large local sample, then the pseudo-Bayesian estimates are a compromise
between the database values and those determined from the local sample. The
pseudo-Bayesian update is given by

B =WXBL+(I-W) XBp (11)

where B = {bj, by, } where b§ and b are the updated parameter estimates

I  =an identity matrix (2 X 2)

Bp = the database estimate of the parameters (2 X 1)

BL = the matrix estimate of the parameters based on the local sample
2x1)

W = the weighting matrix (2 X 2) = (Vi')1 + Vf,l)'l V[l

Vp = the diagonal elements of the inverse of the variance matrix
for the database parameters

VLl = the diagonal elements of the inverse of the variance matrix
for the parameters based on the local sample.

Van Deusen (1984) found that if the local estimate is of sufficient size it is often
the best, but when uncertainty exists the ad hoc or pseudo-Bayesian methods
are reliable, with the pseudo-Bayesian being conservative and of low risk.

GENERATING STANDS FROM SUMMARY STATISTICS

In cases where no individual tree measurements are available or when only
summary statistics are recorded by species, it is possible to generate a facsimile
description of a stand. This facsimile description still meets the qualifications
of a projection set because it is composed of complete individual tree records
calculated using summary statistics. With knowledge of the summary statistics
it is possible to generate a diameter distribution, as developed in a later section.
Individual tree diameters can be sampled from this distribution. Tree height and
height-to-crown base values are estimated from equations 1 through 7 to
complete the facsimile projection set.

The goal of this methodology is to produce a facsimile projection set of
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complete individual tree records that is plausible given the specified summary
statistics. Users of this technique should be aware that this may produce highly
variable results, since there is often a wide range of stand compositions that will
have similar summary statistics. We have done limited testing of the stand
generation procedures using permanent plot data for mixed-species, multiple-
aged coniferous stands and have found, in these test cases, that the stand
generation produced “reasonable” facsimiles of stands. Because we tested only
a small subset of the possible types of stands that could be generated, we cannot
say that this technique generally can be applied with good results. Therefore,
the stand generation technique should be used with great caution. We recom-
mend that this technique be used only as a last resort, not as a matter of course.
There is no replacement for real field data.

Generation of Overstory Trees

Overstory trees are defined as those greater than a specified threshold value
(usually 5.5 or 11.0 in DBH), and understory trees are those at or below the
threshold value. We have developed separate approaches for generating overstory
and understory trees to achieve better accuracy in predicting missing data
values.

The joint distribution of species, diameter at breast height, total height, and
height-to-crown base is formulated as a product of probability density functions
(Van Deusen 1984; Biging and Wensel 1987). This joint probability distribution
for overstory trees can be represented as a mixture of distributions:

S
p(DBH,H,HCB) = 2 p(species) X p(DBH | species) X [12]
species=1  p(H | species, DBH) X p(HCB | species, DBH, H)

where S = the number of species present in the stand.

The joint probability distribution of diameter at breast height, total height, and
height-to-crown base (p[DBH,H,HCB]) is factored as a product of three
conditional distributions. The first term on the right-hand side is p(species),
which is the fraction of each species in the stand. This is easily specified by
supplying the number of trees per acre by species in the hypothetical stand.

The three conditional distributions are for diameter at breast height, total
height, and height-to-crown base. The first of these conditional distributions is
that of the diameter of a given species (p[DBHIspecies]). The conditional
diameter distribution can be generated from either a two-parameter truncated
Weibull or a negative exponential distribution by relating the summary statistics
to the parameters of these distributions. The first two moments of the Weibull
distribution correspond to the average diameter of the species and the squared
quadratic mean diameter of the species, which can be derived from basal area
and number of trees for each species (see equation 16).

We found that the first moment (average diameter for a given species) could
be accurately predicted as a function of elevation, the quadratic mean stand
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diameter, and numbers of trees in the species. This is discussed more fully in
a following section (see equation 15). The user can generate a diameter
distribution for each species having knowledge of only the number of trees and
basal area in each species. Individual tree DBHs are then randomly generated
using an inverse transformation method for either the two-parameter Weibull
or the negative exponential.

To randomly sample from this distribution we will consider it a probability
density function, compute its associated cumulative distribution function, and
finally compute the inverse cumulative distribution function from which we may
generate DBHs. Since the cumulative distribution function produces a probabil-
ity, and by definition probabilities are bounded between 0 and 1, we may use
uniformly distributed random deviates bounded between 0 and 1 to generate
values for input into the inverse cumulative distribution function.

A second distribution, the negative exponential, was provided for the in-
frequent case in which a balanced, uneven-aged condition exists within a stand.
The details for the procedure of fitting the distribution and a list of the necessary
stand summary statistics are provided in a later section.

With either the Weibull or negative exponential distribution, only unimodal
distributions can be generated for a given species. In most cases there are too
few trees of a given species to develop more complex distributional models.
However, because we allow each species to have its own diameter distribution,
it is possible to build multimodal distributions for a stand.

Once the diameters are specified with the diameter distribution, the overstory
height and height-to-crown base values are predicted with equations 1 and 4.
The understory height and height-to-crown base are predicted with either
equations 2 and 5, or 3 and 5, or 7. These equations are associated with the
conditional probability distributions of p(HIspecies, DBH) and p(HCBIspecies,
DBH,H), respectively. Elevation also needs to be supplied, since it is an
independent variable in height prediction equation 1 and in understory height-to-
crown base equation 7. Random stochastic errors distributed as N(O,S;".x) for
equations 1, 2, 3, and 4 or as N(0,bXHCB;,,) for equations 5 and 7 are added
to the predictions if the random error feature has been selected.

There are alternatives to the factorization approach utilized in this study. For
example, the joint distribution of diameter, height, and height-to-crown base
could have been modeled as a trivariate distribution. We did not investigate this
approach because we had relatively few measured trees on each of the re-
measured permanent plots (usually less than 20). With a factorization approach
there is the additional advantage that any number of species can be modeled.

Weibull Distribution

The Weibull distribution has been widely used in forestry applications for
describing the diameter distributions of stands. This use stems both from the
Weibull’s shape and the ease of estimating parameters. We chose a truncated
Weibull because we improved our ability to model diameter distributions by
breaking the stand into overstory (DBH > 5.5 in) and understory components
(0 < DBH < 5.5 in). The three-parameter Weibull may be reduced to the two-
parameter Weibull since the location parameter, typically called a, is zero. The
two-parameter truncated Weibull density function is given as (Van Deusen 1984)
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o = H g HC e [0 X [18]
b b
where  f(x) = frequency of trees in diameter class x
X = midpoint DBH of diameter class; x 2 T
T = truncation DBH (5.5 in)
bandc = parameters > 0.

Deriving the b and c coefficients

To specify a particular distribution from this Weibull family, we need to define
the b and ¢ parameters. The moment equation for the two-parameter truncated
Weibull is given as

T
Ex’ = b'XeT/D X[ (r/ct1)—cXb- ()X | xrtelxe-x/D)xdx| [14]
0
where Ex’ = the expectation of the r'® moment of x or DBH

I'(r/c+l) =the gamma function of (r/c + 1).

The first and second moments are used to simultaneously solve for the b and
¢ parameters. It is known from Cauchy’s inequality that the arithmetic mean must
be less than or equal to the quadratic mean stand diameter, which is the square
root of equation 16. The arithmetic mean stand diameter is predicted as a
fraction of the quadratic mean stand diameter, where the fraction is constrained
to be less than 1 through use of the logistic function. The arithmetic mean stand
diameter is predicted as follows:

(1 - Bo)

D= =

D® =DBH = B0+ (1+e(-B1-B2XE-BgXIn (Dg)-B4xNg!-p5xDgl)) XDq [15]
where DM = the estimated DBH = the first moment or mean stand

_ diameter for a given species

Dq = quadratic mean diameter of trees for a given species

> 5.5 inches DBH

SNe = number of trees for a given species > 5.5 inches DBH

E = elevation (ft)

Bo,-.-» Bs = the coefficients estimated from regression (see table 8).

In = logarithm base e

TaBLE 8. COEFFICIENTS AND FIT STATISTICS FOR
MEAN STAND DIAMETER MODEL 15 FOR ALL SPECIES(1-8) COMBINED*

Number

of plots MSE Bo B B2 Bs Bs Bs

2,078 0.363  0.75637 -12.12687  -0.00018 3.62041 6.15495 56.31421
(0.24924) (6.08516)  (0.00008) (1.31558) (3.09834) (20.51430)

*Standard errors of coefficients shown parenthetically.
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The second moment is the squared quadratic mean stand diameter, which is
given by definition as

p®  =Di=1x Y DBHz- DA [16]
n K' X SNs
where D@ = the estimated second moment or squared quadratic

mean stand diameter (D%) of a given species

n = the number of trees on a plot

K' = 0.005454, which is a conversion factor for diameter
in square inches to basal area in square feet

SBAg = basal area of trees for a given species > 5.5 inches DBH

SNg = number of trees for a given species > 5.5 inches DBH.

The absolute difference between the two moments given above and the
predicted moments given an estimated b and c provides an overall error figure.
This figure is required to be less than 5 percent (E%) of the respective moments.
The square-root transform is used on the second moment, so that it can be put
into the same metric as the first moment. The error formula is

_E% x DD + E% X VD@

E (17]
2
where E = the average error between predicted and observed
moments (inches)
E% = the percent error allowed in estimating the moment

DM, D@ = as defined above.

Using ponderosa pine as an example, if the species basal area were given as 150
ft2 and the species number of trees per acre given as 300, then the maximum
allowable error in finding the Weibull parameters would be

E= (0.05 X 9.01 + 0.05 X V91.68)
2

= 0.46 inches

where 9.01 is D and 91.68 is D®. When estimates of b and ¢ are obtained,
then predicted values of DI and D® are obtained and summed as

1 9.01 - DD | + Vi91.68 — D@ |
2

E=

where DM and D® are the predicted first and second moment, respectively. If
E is less than E, then the estimates of b and c are close enough and the procedure
stops; otherwise, new estimates of the parameters are calculated and the process
is repeated.
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To begin the algorithm for determining the coefficients, two predictive
equations are used to provide starting values for the parameters. These equations
were fit using multiple linear regression for converged values:

b = - 2.2675 — 0.5433 X DM + 0.01304 X D@ + 0.0002460 X DM X D®@
—-0.01175 X (DM)2-0.000001542 (D?)?

¢ = exp(- 0.7970 — 0.6513 X b + 0.2501 x b2 - 0.6576 X DM X b + 0.001782
X D® X b + 1.0459 X D - 0.006255 X D@ — 0.00175 X DM x D@
+0.4085 X (D1)2)

Next, Powell’s method is used to minimize E. If Powell’s method fails to
converge within 12 iterations, then a grid search is used to minimize E. Powell’s
method is much faster than a grid search and is quick to converge for most stands
with mean stand diameters of about 6 inches DBH and above.

The grid search algorithm begins by searching for the minimum error over
a course grid (increment of 0.5) with respect to b and &. This course grid search
is accelerated by retrieving the D and D@ estimates from two binary files. Next,
the range of the parameters is reduced to be around the minimum found in
the course grid search, the increments for b and ¢ are reduced to a third of
their previous value, and a finer search is performed. Up to 10 iterations of
increasingly finer grld searches are performed. As with Powell’s method, the
convergence criteria is that E be less than E. Once the grid search converges,
afine tumng is performed where b and ¢ are adjusted slightly, so that the relative
error in estimating the first moment is approximately the same as that of the
second moment.

Estimating DBHs

The derivation for the inverse cumulative distribution function of the truncated
two-parameter Weibull is as follows. The probability density function is integrated
from the lower truncation point (T) to the diameter of interest (x):

XTc t
roo =[5 [s

where Fr(x) = the cumulative proportion of trees between the lower
truncation point (T) and the specified upper diameter (x)
with 0 £ Fr(x)<1
b and ¢ = estimated constants.

c-1
x e[ (T=t)Xb™] g¢ = [1-€(T/D) X e-(x/)] [18]

This provides the cumulative proportion of trees up to the diameter of interest.
Generating a uniform random number between 0 and 1 gives us a value for
Fr(x); we may then solve for the DBH by inverting equation 18 as follows:

DBH =b X [(T/b)c-loge (1 —Fr(x))]V/¢ [19]
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By generating a uniform random number (Fr(x)), we can use the inverse
transform of the cumulative distribution function to estimate diameters at breast
height using equation 19.

Negative Exponential Distribution

The diameter distributions of balanced uneven-aged stands (Meyer 1952) are
often characterized as being distributed according to the negative exponential
distribution. A typical method for applying the distribution to a stand is with
the diminution quotient or Q value (Husch, Miller, and Beers 1982; Davis and
Johnson 1987). To obtain the number of trees in the next to the largest diameter
class, we would simply multiply Q by the number of trees in the largest diameter
class. Thus, for the next smallest diameter class, we would multiply Q times the
number of trees in the next largest diameter class or Q? times the number of
trees in the largest diameter class. To compute the number of trees in each
diameter class, we need to specify Q, a range of tree diameters, their diameter
class (2 1 in), and the number of trees in the largest diameter class. Unlike with
the truncated Weibull distribution, we use the negative exponential distribution
to simultaneously generate both overstory and understory trees.

The negative exponential function that is used to describe the distribution
of numbers of trees by diameter class is given as follows:

SZI\TJ =k X e2 X DG [20]
where  SN; = the estimated number of trees of a given species in
ith diameter class (i = 1,...,n)
DG = the ith diameter class
aand k = coefficients.

To specify the distribution we need to define k and a, which can be done by
using Q, a value that may be more meaningful to a manager than the a and
k coefficients of the negative exponential function.

Deriving the a and k coefficients

The coefficient a is derived from the definition of Q:

. S'I\IT,_l k X e2xDCyq (21]
§an k X eaxDCqy
where Q = the estimated diminution quotient

SNpa = the estimated number of trees for a species in the
next to the largest diameter class

SN, = the estimated number of trees for a species in the
largest diameter class

DCpa = the next to the largest diameter class of a given species

DC, = the largest diameter class of a given species
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Cc = the size in inches (width) of the diameter class of a given
species that equals DC, — DC,,.

Solving for a we get

—

og Q
c

[22]

ﬁ:

Since we know the number of trees in the largest diameter class (SN,) and the
a parameter, we may solve for k using the negative exponential equation

[23]

When Q and SN, are known, we can estimate the a and k parameters needed
for the negative exponential distribution in equation 20.

Calculations when Q or SN, is unknown

If either Q or SN,, is unknown, then the basal area for the species on the plot
(SBA) is used to compute the missing variable.

If Q and species basal area (SBA) are known but SN, is unknown, we iteratively
solve for SN, using equation 24. In equation 24 species basal area is formulated
as the sum of the number of trees in a diameter class multiplied by the square
of the diameter class.

n
SBA =K' x Y SN; x DBH? [24]
i=1
where SBA = total basal area for the species on the plot in square feet
SN; = the estimated number of trees of the species in the jth

diameter class (i=1,..., n)

DBH; = the midpoint DBH of the i diameter class in inches
for the species

K' = 0.005454, which is a conversion factor for diameter in
square inches to basal area in square feet.

To estimate SN, from Q and SBA, we initially give SN, a starting value of 1.
Then if the estimated SBA is less than the specified SBA, SN, is increased by
0.001, or vice versa. Using the new estimate of SNy, the procedure is repeated
until the difference between the specified and estimated SBA is less than 1 square
foot.

If Q is unknown, then SBA and SN, must be given. Q is then computed using
an iterative process where Q is initially set to 1.1. The number of trees in each
diameter class i of a given species is estimated by
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SN; =SN, x Q! [25]
where i = is an index for the i'" diameter class (1,..., n) ordered from
smallest to largest, respectively
n = the number of diameter classes.

The SBA is then estimated with equation 24 and compared with the specified
basal area, and the estimate of Q is incremented identically as the estimated SN,
is incremented above. The same threshold of 1 square foot of basal area
difference between the specified and estimated SBA is used as a stopping
criterion. Q can then be estimated from equation 21.

Now that all of the necessary information is complete, the coefficients for the
negative exponential distribution may be easily computed. The diameters are
simulated and written to the projection set file, each with an expansion factor
of 1. The total tree height and height-to-crown base are also estimated, given
the simulated diameter at breast height using equations 1 to 7. The total number
of trees for the species on the plot is rounded to the nearest integer so that
all the trees in the completed projection set file will have an expansion factor
of 1.

Estimating DBHs
The derivation for the inverse cumulative distribution function of the negative

exponential is as follows. The probability density function is integrated over the
range of diameters up to the diameter of interest:

DBH | i k e-3XDC1ppy
F(DBH) = — X e3XDC x dDC = — X
m C C -4 |m
= X [e—éxDBH_e—éXm] [26]
CXa

where F(DBH) = the cumulative number of trees between the minimum
diameter (m) and the specified upper diameter of
interest (DBH)

kandi = estimated constants

C . e
m = DChin — ? with C = the class width in inches
DCrin = minimum diameter class in inches.

This provides the cumulative number of trees up to the diameter of interest.
Generating a uniform random number between 0 and 1 and multiplying it by
the total number of trees gives us a value for F(DBH). We may then solve for
the DBH by inverting the above equation, as is seen in equation 27
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Ccxa
n(-FOBH) xTF) 4 eaxm)

a

DBH =

[27]

Thus, by generating a uniform random number (F(DBH)) we can use the inverse
transform of the cumulative distribution function to estimate diameters at breast
height.

Generation of Understory Trees

As an adjunct to the stand generation techniques (overstory generation), we
have developed the capability to generate understory trees. The understory trees
can be between 1.0 and 11.0 inches at DBH. The overstory of trees (measured
or generated) can be used to predict the b and ¢ parameters of the Weibull
needed to generate understory trees. Understory tree height and height-to-crown
base values are estimated from equations 2, 3, 5, and 7 to complete the
understory facsimile projection set. Because stands of trees are often simulated
for over 30 years with CACTOS, it is essential to be able to generate an understory
component that matures with relatively long simulations. One reason we
separated the overstory and understory components is that there is much greater
variability (plot to plot or stand to stand) in the number of understory trees than
in the number of overstory trees. Hence, the understory generator is inherently
more imprecise.

A two-parameter Weibull distribution was fit to the understory component (1.0
in < DBH < 11.0 in) for each of the 308 permanent plots for which there were
at least six understory trees present on the plot with a plot average diameter
exceeding 5.5 inches. Six trees was chosen as the minimum number needed for
estimating the two parameters of the Weibull distribution, although most plots
had many more than six trees. An 11.0-inch DBH was chosen as an upper value
for the distribution rather than a 5.5-inch DBH value to allow for a more regular
distributional form and to increase the number of trees available for modeling
the understory diameter distribution. Even though an upper DBH value of 11.0
inches was chosen, the understory generation can be specified for any range
within these limits. Summary statistics for the understory component of the 308
permanent plots used to model the Weibull diameter distribution are presented
in Appendix B.

We found that the coefficients of the Weibull for the understory could be
predicted as the following functions of overstory parameters:

. b b by X CV,
b=bo+—l+ 2 +b3XCV6+; [28]
N¢ DBHuyn DBHin
& =crexp(caX b+cg X X4+c5 XY+ X Z) [29]
where b = predicted value for b (scale) parameter of two-parameter,

left-truncated Weibull



22 Biging, Robards, Turnblom, and Van Deusen: Forest stand generator...

¢ = predicted value for c (shape) parameter of two-parameter,
left-truncated Weibull
Ne = the number of trees per acre greater than 5.5 inches in DBH

DBHyin = the minimum diameter measured on a specific plot,
usually 1.0 or 2.0 inches

CVs = the coefficient of variation of DBH for trees greater than
5.5 inches DBH
X =0.75 + BAg/87.945 — SDIs/131.0
BAg = stand basal area in trees greater than 5.5 inches DBH
SDIs = stand density index considering only trees greater than
5.5 inches DBH (cf. Reineke 1933; Avery and Burkhart 1983)
Y =0.035+1/(b- SDI)
Z =410.0 + 1/[In(b) - In(BAs)]

by, ..., bs =b coefficients estimated for all species combined
¢y, ..., ¢g = ¢ coefficients estimated for all species combined.

Coefficient values and fit statistics appear in table 9. Due to the great inherent
variability of the understory component, these predictive equations explain a
small but significant portion of the total variability. While the predicted
parameters resulting from using these equations will not be very precise, they
are still preferred over using a simple average value. In general, predicting the
parameters of a Weibull distribution from stand characteristics, even in situations
in which there is not a great deal of variation, has proven difficult, and R? values
are typically less than 0.10 (Knoebel and Burkhart 1991).

TaBLE 9. COEFFICIENTS AND FIT STATISTICS
FOR THE UNDERSTORY WEIBULL PARAMETERS OF MODELS 28 AND 29
FOR ALL SPECIES COMBINED ESTIMATED USING 308 PLOTS*

Model MSE bo by b2 bs bs

[28] 3.718 15.4269 -66.160 -15.0426  -0.13859 0.21027
(1.9121) (18.702) (3.5167)  (0.03925) (0.07143)

Model MSE [ C2 cs c4 cs Cs
[29] 3.691 0.57718 0.31116 0.51325 29000 -18.8181 4.0501 X 1073
0.25234)t  (0.04067) (0.15300) (0)% (8.6527)  (1.9817 X 10°%)

*Standard errors for coefficients shown parenthetically.
tStandard error for In(c;)
IThe c4 parameter was fixed at a value of 2.90 and hence has no standard error.

Specification of total numbers of understory trees

Even though the b and ¢ parameters of the Weibull distribution can be directly
predicted via equations 28 and 29, this distribution gives only the relative
frequency of tree sizes. Therefore, the total number of understory trees must
be specified before the understory can be generated. The total number of
understory trees can also be predicted from overstory parameters. Predicting
the total number of understory trees from overstory parameters is analogous to
predicting the number of ingrowth trees—numbers of trees that will reach some
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minimum surveyed size in a specified time—with some obvious differences. They
are similar in that both involve only use of overstory conditions to estimate the
condition of the understory. The prediction of ingrowth numbers is arguably
more well defined than the prediction of total understory numbers, in the sense
that one particular size class is under scrutiny, while predicting understory
numbers may involve a broad spectrum of size classes. On the other hand,
estimates of ingrowth are further complicated by an implied growth rate of trees
whose exact sizes are unknown, while estimates of the total number of understory
trees represent a static depiction of the stand at one instant in time. Both
estimation problems are complicated by the fact that stands currently with similar
overstory conditions may have had dissimilar histories, which may result in
dissimilar understory conditions.

Models frequently used to predict ingrowth have been reviewed by Shifley
(1990). Typically, variables important to the prediction of ingrowth involve stand
density measures such as basal area per acre, number of trees per acre, percent
stocking, and sum of diameters per acre. These variables also affect growth rates
of individual trees, so their superiority in predicting ingrowth is somewhat to
be expected. One might also expect that additional variables may be required
to predict total number of understory trees due to the previously noted
differences between these two estimation problems.

A useful approach to modeling the number of understory trees was found by
viewing the problem as the specification of total stand structure based on what
was found in the overstory portion only. This led to the investigation of several
stand structure variables. Shifley and Lentz (1985) pointed out that the ratio
of the mean DBH to the standard deviation of DBH was a valuable index to
the c, or shape, parameter in the Weibull distribution. Miller and Weiner (1989)
and Knox, Peet, and Christensen (1989) found that the inverse of Shifley’s index,
commonly known as the coefficient of variation, was useful in describing size
inequality, or the degree of size hierarchy development in populations of forest
trees. We found that the ratio of variance of DBH to the mean DBH was a useful
predictor in our models for estimating total number of understory trees.

A model for predicting the number of understory trees was patterned after
the ingrowth models of Ek (1974) and Hyink and Moser (1983). The same model
form is used for predicting the number of trees between 1.5 and 5.5 inches DBH
(N ) as for the number of trees between 5.6 inches and 10.5 inches DBH (Ng1).
The predictions for understory tree numbers are given by

Nis =exp{bo+b; X DSUME2 X Ng' + bg X (Re+1.5) X NgP4} [30]
Nea1 =exp {co+ci X DSUMZ XNi} + cs X (Ryp + 1.5) X Ny} [31]
where Ny = the predicted number of trees per acre with 1.5 in
<DBH<5.5in

Ne,_“ = the predicted number of trees per acre with 5.5 in
<DBH £10.5in

Neg = the number of trees per acre whose DBH > 5.5 inches
Ni1 = the number of trees per acre whose DBH > 10.5 inches
Re = the ratio of variance of DBH to mean DBH for trees

> 5.5 inches
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Rn = the ratio of variance of DBH to mean DBH for trees

> 10.5 inches
DSUMg = the sum of the diameters for trees whose DBH > 5.5 inches
DSUMy; = the sum of the diameters for trees whose DBH > 10.5 inches
by,..., bg =b coefficients estimated for each forest type (see table 10)
Cyeee5 C4 = c coefficients estimated for each forest type (see table 11).

We found that predictions could be improved through stratification by forest type.
An analysis was performed to see if any of the classes could be combined, but we
found that a statistically significant improvement was made by using separate
coefficients for each major forest type for predicting both N1 and Ne1. The co-
efficients were therefore estimated by timber type and are given in tables 10 and 11.

TasLE 10. COEFFICIENTS FOR PREDICTED NUMBER OF UNDERSTORY TREES Ny¢* (Model 30)

Number
Timber type Syx of plots be by bs bs by
Douglasfir 52.8 25 9.015 -0.412 1.0 0.00091 1.0
(0.411) (0.059) (0) (0.00049) (0)
Mixed conifer 128.0 469 6.579 -0.211 1.0 0.00110 1.0
(0.221) (0.021) (0) (0.00007) (0)
Ponderosa pine 135.0 59 6.018 -0.002 1.691 0.00306 1.0
(0.357) (0.002) (0.131) (0.00061) 0)
True fir 81.8 83 7.100 -0.266 1.0 0.00114 1.0
(0.520) (0.054) (0) (0.00114) (0)

*Standard errors for coefficients are shown parenthetically.

TasLe 11. COEFFICIENTS FOR PREDICTED NUMBER OF UNDERSTORY TREES Ng 11* (Model 31)

Number
Timber type Sy.x of plots Co cy ca cs cy
Douglas-fir 35.9 25 6.525 -0.189 0.993 0.00223 1.0
(0.928) (0.122) (0.073) (0.00177) 0)
Mixed conifer 50.0 468 6.501 -0.146 1.0 0.00245 0.870
(0.219) (0.016) (0) (0.00280) (0.209)
Ponderosa pine  63.4 56 6.675 -0.188 1.0 0.00324 1.0
(0.832) (0.060) 0) (0.00096) (0)
True fir 37.5 83 7.252 -0.626 0.836 0.00008 1.0

(0.678) (0.249) (0.055) (0.00101) (0)

*Standard errors for coefficients are shown parenthetically.

STAG automatically determines the forest type to which the projection set
belongs. It uses the classification rules given in table 12.

TaBLE 12. CLASSIFICATION RULES FOR FOREST TYPE DETERMINATION
Timber type Definition

Douglasfir Douglas-fir makes up > 80% of the stand basal area (BAg or BA;;)
Ponderosa pine Ponderosa pine makes up 2 80% of the stand basal area (BAg or BAj;)
True fir Red fir and white fir make up 2 80% of the stand basal area (BAs or BAj)

Mixed conifer No one species (PP, SP, DF, WE, RE, IC) exceeds 80% of the stand basal area
(BAg or BAy))
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It should be noted that these models are accurate but not precise. That is to
say, a large variance is associated with these predictions. Standard errors of
prediction (Syy) range from 50 to 135 for Nj_¢ and 35 to 65 for Né-11. Therefore,
the user is given two options for specifying the number of understory trees. The
first option is predicting the number of understory trees by using equations 28
and 29 and either 30 or 31. This predicted number of understory trees for a
given stand specification is displayed so that the user can either accept the model
prediction or specify another value in lieu of the predicted number. This second
option is provided for cases in which the user has good knowledge of local forest
conditions and reproduction patterns.

Specification of species

Species of the understory can be specified via two options. In the first option,
species composition can be specified to follow the database values used for model
development in STAG. These rates are given in table 13.

TaBLE 13. PERCENTAGES OF SPECIES BY TIMBER TYPE,
ROUNDED TO THE NEAREST 5 PERCENT*

Douglas-fir Mixed conifer Ponderosa pine True fir

Diameter range Diameter range Diameter range Diameter range
Spp. 1-6 6-11 1-11 1-6 6-11 1-11 1-6 6-11 1-11 1-6 6-11 1-11

PP 5 0 5 10 20 15 50 80 65 0 0 0
SP 5 0 5 5 5 5 5 0 5 5 5 5
IC 10 5 5 30 20 30 15 10 10 10 5 10

5 0 0 0
15 75 75 75
0 10 15 10

DF 60 85 70 15 20 15 5
WF 20 10 15 40 35 35 25
RF 0 0 0 0 0 0 0

S ov»

*DFy6 denotes Douglasfir timber type. The row entries corresponding to this column show the
percent of species in the Douglasfir timber type for trees within the 1- to 6-inch DBH class
(1.5 < DBH < 5.5). Other columns show the percentage of species for a given timber type in
the 6- tol1-inch DBH class, and the 1- to 11-inch DBH class. Values of less than 5 percent have
been deleted, and the other categories within a column have been proportionally adjusted and
rounded to the nearest 5 percent.

We were unable to develop meaningful equations for predicting species
composition related to the overstory composition and size of trees. Because of
this the percentage of trees occurring in each species in the understory can be
specified directly by the user of the program as the second option.

Creating an understory tree list

Because it is possible to generate a large number of understory trees, we use
the following methodology to reduce the number of tree records being written.
For either the predicted or the user-specified number of understory trees (0 in
< DBH < minimum [smallest DBH on plot or 11.0 in]) we generate individual
tree records with a tree expansion factor of 1. The diameters of these trees are
generated from the Weibull distribution using the equations for b and ¢ given
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under the heading “Generation of Understory Trees” (eq. 28 and 29). Tree
heights and heights-to-crown base are determined according to equations 2 or
3 and 5 or 7, as described under “Estimating Total Height” and “Estimating
Height-to-Crown Base,” respectively. Stochastic errors are added according to the
methods described under “Stochastic Errors”

After the understory is developed in this fashion, the tree records are added
to the existing overstory projection set. If the total number of records exceeds
the record limit of 500 trees imposed by CACTOS or if the total number of tree
records exceeds some user-specified limit (which may be greater or less than
500), the user is given the option of “compressing” the understory tree list.
Understory tree record compression is carried out by averaging those tree records
that have similar tree attributes, and then replacing those individual tree records
with their average values and an appropriate expansion factor.

The compression algorithm is implemented as follows. Individual tree records
are grouped into diameter at breast height, total height, and live crown ratio
classes by species. If the first grouping does not sufficiently reduce the number
of understory tree records, successively coarser and coarser classes are examined
until the number of understory tree records is less than or equal to the number
desired.

The first grouping uses %inch DBH classes, five dynamically determined height
classes, and five dynamically determined live crown ratio classes. The height and
live crown ratio classes are dynamically determined, in the sense that the data
determine the class limits and class intervals for each live crown ratio class nested
within height class, where each height class is nested within a DBH class. Thus,
the maximum and minimum heights for the smallest DBH class will generally
be different from those in the largest DBH class. Similarly, the largest and smallest
live crown ratios found in the smallest height class of the smallest DBH class
will generally be different from the largest and smallest live crown ratios found
in the largest height class of the smallest DBH class, and so on. We felt that these
nested classes would retain more of the “individuality” of each tree record than
would nonnested classes.

If the first grouping fails to meet the desired number of understory tree
records, the groupings are made successively coarser in the following manner.
First, the number of dynamically determined height classes is reduced to three.
If this grouping is unsuccessful, the number of live crown ratio classes is reduced
from five to three, also. Next, l-inch DBH classes are tried, then two height
classes, then two crown ratio classes, then 2-inch DBH classes. As a last resort,
one tree record per understory species is attempted, though a compression of
this severity is certainly not recommended if the number of generated understory
tree records far exceeds the number of species.

CONVERTING STAND TABLE DATA
TO AN INDIVIDUAL TREE LIST

If the user is interested only in the number of trees by diameter class and
species, field data can be collected simply by recording the tree species and
tallying the DBHs into a diameter class. A table of numbers of trees by diameter
class and species produced from this tally is termed a stand table. However, this
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form of data collection is not comphrensive because it tells us nothing about
the tree heights and crown length or about tree growth. It is a common method
for obtaining field data, but obviously individual tree information is lost. Its main
advantage is that, since diameters only have to be crudely approximated, there
are substantial time savings in collecting information. The number of trees in
the diameter classes can be thought of as a discrete approximation to a
continuous diameter distribution. Data for producing a stand table can be
collected from fixed-area (0.2 or 0.1 acre ) or variable-radius (prism) plots. It
is generally true that DBHs measured on fixed-area plots provide better
approximations to diameter distributions than DBHs measured on prism plots
because in the former more trees are sampled. With a variable-radius plot,
typically only four to eight sample trees are measured at a sample location, and
these trees are selected with probability proportional to size. Hence, larger
trees—the trees with greater volume—are frequently selected with variable-radius
sampling. Variable-radius plots are efficient for estimating volume but not for
representing the total diameter distribution by species of trees in the stand.

In addition, it is common in prism sampling to measure the DBH or DBH
class of the sampled trees, but none or few of the sampled trees are actually
measured for H or HCB. If missing values are filled in on prism plots, where,
say, only DBHs and species have been recorded, the utility of these data for
simulation is difficult to assess. Because of these problems, using filled-in data
from variable radius plots for simulation in CACTOS may result in less-accurate
portrayals of the actual stand conditions, and as a result yield poorer forecasts
than those obtained using fixed area sample data.

One way to overcome the disadvantages of variable-radius plots for which few
tree attributes are measured is to take enough variable-radius plots to ensure
that they provide a good approximation to the true diameter distributions for
the species present in the stand. The prism plot stand descriptions should be
averaged (using the stand description averager [Meerschaert and Wensel 1987]
and then STAG can be used to fill in missing data for the average stand
description or the distributional apportionment routines in STAG can be used
to convert diameter class data to pseudo-individual tree data. It is also a good
idea to supplement the prism plots with small fixed-area plots (e.g. %oth or
“%ooth ac) located the center of each prism plot to better estimate regeneration
and small tree frequency.

Because this technique uses a reduced set of field data, it should be more
reliable than the stand generation techniques that rely solely on summary
statistics to generate the stand description. However, the stand table conversion
techniques should be used more cautiously than the missing data routines, since
they produce a facsimile of a stand given the reduced data sets provided.

The methodology presented in this section to convert stand table data into
individual tree data to produce a facsimile projection set closely parallels the
technique used for continuous data that was previously described under the
section entitled “Generating Stands from Summary Statistics” We assume that
the distribution of grouped diameters, given the species (p[DBH | species]),
follows a Weibull distribution. The probability of a tree height falling into some
discrete height class, given its species and DBH class (p[H | species, DBH]), and
the probability of a tree crown falling into some discrete class, given its species,
DBH, and height class (p[HCB | species, DBH, H]), are both hypothesized to
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follow a normal distribution. These assumptions were tested using a Kolmogorov-
Smirnov test and found to be acceptable. For further detail, see Van Deusen (1984).

Diameter Distributions

We postulated that the distribution of diameters (or diameter classes) followed
a Weibull distribution, but within a given diameter class we assumed that numbers
of trees followed a uniform distribution. If diameter classes are not wide, then
this is a plausible assumption. We tested these assumptions on 50 %-acre plots
(see Van Deusen 1984) and found that the simplifying assumption of uniform
distribution of diameters within a diameter class yielded results quite similar to
that obtained by using a Weibull distribution for DBH classes when diameter
classes were no larger than 2 inches.

Height Distributions

An average value for height of overstory trees is predicted from equations 1
and 4, or for understory tree height from models 2 or 3, by using the diameter
class mean value for DBH. The predicted average height is used to locate the
centroid of the height distribution, which is assumed to follow a normal
distribution within a diameter class (see figure 2). The variance of the distribution
is then approximated using the variance of the regression of the height prediction
equation. We estimate the proportion of trees to allocate to a specific height
class within a diameter class by determining the percentage of the area under
the curve for each height class. We call this process distributional apportionment
because we allocate (apportion) the number of trees per diameter class over
the height classes using this methodology.

[oofif o)
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Height-to-Crown Base Distribution

We assume that the distribution of heights-to-crown base within a given height
and DBH class follows a normal distribution. We allocate the numbers of trees
into each of the crown classes with the same methodology used for allocating
trees into height classes. The normal curve is first located using the mean height-
to-crown base value from equation 4, or models 5 and 7 for understory tree
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height-to-crown base, assuming the midpoints of the height and diameter class.
The variance of the normal curve is approximated by the variance about the
height-to-crown base predictive model. In the last step, the area under the curve
within each crown class is calculated and the number in each height-diameter
cell within the crown class is determined by multiplying these proportions by
the number of trees in a given height-diameter class.

This apportioning process calculates the numbers of trees to place in each
cell of the height-diameter-crown categories. We define these cells to be either
1- or 2-inch-diameter classes (specified by the user), 10-foot height classes, and
10-foot height-tocrown base classes. Individual tree dimensions (diameter, height,
and height-to-crown base) are given an equal probability of occurring at any
location within this three-dimensional cell by drawing random numbers that
correspond to x,y,z coordinates in 3-D space. Using this procedure we have
developed an individual tree list from the original stand table, but they are
pseudo-individual, in the sense that they have been estimated using the above
procedure rather than measured.

VALIDATING THE DIAMETER DISTRIBUTION
GENERATION PROCEDURE

The procedure was tested on 166 %-acre permanent plots from the Northern
California Forest Yield Cooperative database. Only the Weibull distribution was
tested, since the stands used for the test are considered generally to be managed
stands and do not usually follow a negative exponential distribution. The second
measurement of these data occurred in 1984. For the test we used plots from
the southern Cascade region. The accuracy of the procedure for predicting the
number of trees per DBH class and the volume per DBH class was evaluated.
We used 2-inch DBH classes, beginning at 5.5 inches and going to 49.5 inches
DBH. The error index developed by Reynolds, Burk, and Huang (1988) was used
for the test and is given as

k
e =NxY, | J‘I' w(x) X dF(x) -JI. w(x) X dF(x) [32]
j=1' 4 i
where e = error index
N = number of trees per acre

w(x) =weighting factor

F(x) = the cdf of diameters on a plot as predicted from the model

F*(x) = the empirical cdf

dF(x) = the differential of the cdf (empirical or predicted) with
respect to x (diameter)

k = the number of DBH classes

I = the j** DBH class.

As the authors of the index point out, a good fit in one diameter class does
not offset a poor fit in another. The error index provides a means for comparing
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the overall fit of a model to another model, but the individual cells (DBH, species
classes) must be examined to determine where a particular model fits
adequately.

We performed two sets of analysis. In the first we computed the error index
of an “average stand.” The average stand is the stand table produced by averaging
all of the 166 stand tables associated with each of these plots. We judged our
ability to produce a tree diameter distribution by seeing how accurately the
number of trees in various diameter classes is predicted for this average stand.
We also judged how well our diameter distribution models work by comparing
the volumes (Biging 1983) predicted for each diameter class with the average
volume computed from the 166 test plots. In the second analysis we presented
results that show the average of the error indices computed for each plot
individually.

The results for the average stand are shown in tables 14 and 15. Table 14 shows
the “misclassification” by species and DBH class for the average of the 166 plots.
By misclassification we mean the signed values calculated from differencing the
predicted number of trees (or volumes) from the actual number of trees (or
volumes) in each diameter class. The sum of the absolute values (predicted minus
observed, see equation 32) is used by Reynolds, Burk, and Huang (1988) to
calculate the error index. Thus, for ponderosa pine in the 8.5-inch DBH class,
this model underpredicted by two trees (see table 14).

In the right margin of table 14 the error indices are listed by species. The
indices’ magnitude corresponds, relatively, to the abundance of the trees on the
plots. In other words, the more trees there are, the greater the error. The bottom
margin is the average misclassification across species for a particular DBH class.
Thus, we see on average an underprediction for the 6.5- to 8.5-inch DBH classes
and an overprediction in the 10.5- to 12.5-inch DBH classes. There are on average
only slight underpredictions for the 18.5- to 26.5-inch DBH classes. The lower
right cell of table 14 provides the overall error index for this “averaged” plot,
which is a value of 68.

Another statistic we computed was the average plot error index with its
associated standard errors. The average was 358 and the standard error was 11.8.
The average is quite large and shows the difficulty of predicting the diameter
distribution for a particular plot. The error index in table 14 is much smaller
(68) because we are averaging the plots and then computing the errors, as
opposed to an average error index value (358.13) calculated as the average of
the individual plot error indices.

Table 15 provides the same type of information as table 14. In table 15 the
error index is weighted by board foot volume, whereas in table 14 the error index
is weighted by numbers of trees. In table 15 we see that volumes are on average
slightly underpredicted for the 6.5- to 8.5-inch diameter class. Volumes are
overpredicted in the 10.5- to 18.5-inch diameter class, underpredicted in the 20.5-
to 28.5-inch diameter class, and overpredicted in the 30.5-inch and 32.5-inch
and greater diameter classes.

In table 14 we reported that on average the models underpredicted by two
or three trees in the 18.5- to 26.5-inch diameter class. Because trees in this size
range average around 200 to 500 board feet, it is not surprising that in table
15 we find that the misclassification index for diameter classes in this range varies
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from an overprediction of 516 board feet to an underprediction of 2,374 board
feet. The average net effect of these over- and underpredictions is a slight
overprediction of 330 board feet. Thus, there appears to be no major bias in
volume or numbers of trees associated with producing diameter distributions
using the Weibull generation procedure.

We also computed the average plot error index welghted by volume with its
associated standard errors. The average was 44,540 board feet and the standard
error was 3,187 board feet. Again, this underscores the difficulty of accurately
predicting the diameter and volume distribution on any particular plot.

In another test of this procedure we used the same plots to create “known”

TaBLE 14. AVERAGE MISCLASSIFICATION INDICES (ACTUAL MINUS PREDICTED)
OF NUMBERS OF TREES PER ACRE BY SPECIES AND DBH CLASSES
AND OVERALL ERROR INDEX OF THE “AVERAGE” PLOT FROM STAG VERSION 4.2*

Misclassification Index

DBH class

[3

Species 6.5 8.5 105 125 145 165 185 205 225 24.5 265 28.5 30.5 >32.5 error index

PP 3 2 4 -6 0 0 0 1 1 0 1 (U] 0 -2 (18)
SP 1 0 0 0 1 o 0 0 o0 o0 o0 o0 O 0 2 (2
IC 7 5 o o o0 o o0 o0 o0 o0 o0 0 O 0 12 (12
DF 5 0 -2 0 o o0 0 0 1 0o o0 o0 O 0 4 (8)
WF 9 4 -5 5 4 0 2 1 1 1 0o 0 O 0 7 (29)
RF (U] 0 0 o o o o0 0 o0 o0 o0 O 0 0 (0

25 11 -1 -1 0 0 2 2 3 1 1 0o 0 0 23 (68)

*The value in the penultimate column is the signed value, while next to it in parenthesis is the
absolute value necessary for the computation of the error index.

TasLE 15. AVERAGE MISCLASSIFICATION INDICES (ACTUAL MINUS PREDICTED)
OF BOARD FEET TO A 6-INCH TOP PER ACRE BY SPECIES AND DBH CLASSES
FROM STAG VERSION 4.2*

Misclassification Index

DBH class .
Species

Species 6.5 85 10.5 125 145 165 185 20.5 22.5 245 26.5 28.5 30.5 2325 error  index

PP 38 24 -221 -521 -345 -223 -295 318 671 186 983 -95 -288 -576 -344 (5,394)
SP 2-11 -6 6 2 58 1-110 60 125 -28 61 -67 —440 -341 (1,651)
IC 7 -1 -51 -72 -35 -130 87 4 130 9 18 0 72 269 38 (988)
DF 21 -27 -193 -208 -215 -216 -299 -199 762 -3 199 0 -23 -161 -562 (2,548)
WF 84 55-369 -716 -652 -624 42 309 655 205 107 802 -38 526 386 (5,236)
RF 3 -1 44 -54 -B7 27 -52 18 96 72 384 -22 -69 -104 143 (1,003)

155 39 -884 -1,577 -1,284 -1,162 -516 340 2,374 675 1,663 746 —413 —486 -330 (16,820)

*The value in the penultimate column is the signed value, while next to it in parenthesis is the
absolute value necessary for the computation of the error index.
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TaBLE 16. AVERAGE STAND TABLE BASED ON 166 PERMANENT PLOTS
FROM THE SOUTHERN CASCADE REGION

Diameter Observed Expected Observed  Expected  Observed  Expected

class av. numbers  av. numbers  av. height  av. height av. HCB av. HCB
6.5 50.2 21.7 35.5 39.7 21.0 16.3
8.5 49.7 35.9 45.2 48.4 26.1 21.3
10.5 30.4 42.5 56.4 57.6 319 26.3
125 28.9 40.7 65.0 65.5 36.3 30.5
14.5 29.5 29.7 72.2 73.4 38.5 34.6
16.5 18.8 19.8 80.8 81.0 42.7 38.3
185 15.2 12.5 85.7 879 44.7 42.4
20.5 10.3 8.0 95.0 95.0 49.0 42.5
22.5 9.8 4.5 99.1 102.3 51.6 49.0
24.5 4.6 3.0 106.6 109.2 52.7 51.8
26.5 5.0 1.9 113.1 114.8 59.4 55.2
28.5 3.0 1.5 116.3 120.0 61.3 58.1
30.5 1.3 1.0 120.0 124.8 65.8 60.7
32.5 0.6 0.5 119.6 132.1 61.7 65.8
34.5 0.7 0.4 135.2 136.6 75.5 69.9
36.5 0.6 0.3 1219 149.3 64.6 71.3
38.5 0.4 0.2 140.4 145.8 69.6 68.5
40.5 0.1 0.1 185.2 157.7 76.6 73.6
42.5 0.1 0.1 147.7 168.8 89.7 78.1
4.5 0.0 0.0 — 170.3 — 78.1
46.5 0.1 0.1 146.3 167.8 97.0 83.1
48.5 0.0 0.0 — 169.8 — 85.3

stand tables. We then used the stand tables to apportion the trees over height
and crown classes. The results for the average stand table based on these 166
plots are presented in table 16. The numbers of trees apportioned into these
classes corresponded well with the actual numbers observed on the plots, except
for the smallest diameter classes. Predicted heights and predicted heights-to-
crown base were generally close to the observed average values. This demonstrates
that stand tables can be generated that on average closely approximate actual
stands. Good judgment should be exercised in using these routines. Real field
data is always preferable to generating stands from summary statistics. Even
though these procedures produce reasonable facsimiles to real stands, this process
always produces inaccuracies. For a more detailed treatment of this analysis, see
Van Deusen (1984).

DISCUSSION AND RECOMMENDED USES OF STAG

The Forest Stand Generator, STAG, is an important component of a simulation
system for mixed conifer growth and yield projection. STAG was created to ensure
that different types of inventory data could be supplemented to produce data
sets suitable for projection in the forest simulator CACTOS. There are different
procedures and analysis routines within STAG for (1) generating missing data,
(2) converting stand table data (approximations to a diameter distribution), and
(3) transforming summary statistics, such as number of trees and basal area per
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acre, to a projection set composed of complete individual tree records for use
in CACTOS. To fill in missing data, STAG uses predictive equations for total
height (H) and height-to-crown base (HCB) developed from a permanent plot
system of over 20,000 trees in northern California. To create a projection set
based only on summary statistics (termed stand generation) is much more
complicated. To accomplish this, STAG factors the joint distribution for species,
DBH, H, and HCB into a product of probability density functions, and models
each of these components. The methodology developed for converting stand
table data closely follows that described for stand generation.

We developed these procedures to increase the availability of data that can
be used with the CACTOS simulation system, not to encourage a shift away from
field data collection. The best and most reliable use of STAG is in combination
with statistically valid field data plots (usually measuring DBH, H, HCB, and
species of trees on 0.2- or 0.1-acre field plots) to fill in occasional missing data
values. Even though we have developed stand generation techniques for produc-
ing facsimiles of stands from summary statistics, users of this technique should
be aware that this may produce highly variable results. We have done limited
testing of the stand generation procedures using permanent plot data for mixed-
species, multiple-aged coniferous stands, and have found, in these test cases, that
the stand generation produced reasonable facsimiles of stands. Because we tested
only a small subset of the possible types of stands that could be generated, we
cannot say that this technique can be generally applied with good results. As
such, users should use the stand generation techniques with great caution. We
recommend that stand generation be used only as a last resort, not as a matter
of course. Remember that there is no replacement for real field data. Converting
stand table data to a projection set is a case that is intermediate between filling
in missing data and stand generation. Stand table data are counts of the number
of trees by species observed on field plots that fall within specified diameter
classes. These field data can be collected simply by recording the tree species
and tallying the DBH into a diameter class. However, this form of data collection
is not comphrensive, because it tells us nothing about the tree heights and crown
lengths. This frequency information can be used to approximate a continuous
diameter distribution, and heights and heights-to-crown bases can be generated
to complete the stand description. Because this technique uses a reduced set
of field data, it should be more reliable than the stand generation techniques,
which rely solely on summary statistics to generate the stand description.
However, the stand table conversion techniques should be used more cautiously
than the missing data routines, since they produce a facsimile of a stand given
the reduced data sets provided.



34

APPENDIX A.
SUMMARY STATISTICS FOR PERMANENT PLOT TREE DATA

Biging, Robards, Turnblom, and Van Deusen: Forest stand generator...

Ponderosa pine n = 4,173 trees
Variable Median Mean Std. deviation =~ Minimum Maximum
DBH (in) 12.9 14.12 6.58 5.5 55.8
Total height (ft) 71.0 72.87 27.97 12.0 184.0
Height-to-crown base (ft) 32.0 34.92 18.21 1.0 145.0
Site index (ht @ 50 yrs) 75.0 74.20 17.51 29.0 150.0
Elevation (ft) 4,100.0  4,150.00 786.40 2,150.0 7,500.0
Basal area (ft?) per acre 189.6 194.42 82.31 22.5 532.7
Number of trees per acre 200.0 215.43 100.04 16.0 515.0
Sugar pine n = 1,070 trees
Variable Median Mean Std. deviation =~ Minimum Maximum
DBH (in) 14.1 15.96 8.41 5.5 59.1
Total height (ft) 71.0 73.49 31.46 15.0 199.0
Height-to-crown base (ft) 34.0 36.91 18.25 1.0 105.0
Site index (ht @ 50 yrs) 78.0 76.67 16.30 29.0 150.0
Elevation (ft) 4,640.0  4,566.00 733.80 2,350.0 7,000.0
Basal area (ft2) per acre 197.6 216.27 98.08 30.2 532.7
Number of trees per acre 188.0 207.89 90.64 15.0 490.0
Incense cedar n = 2,260 trees
Variable Median Mean Std. deviation =~ Minimum Maximum
DBH (in) 11.0 12.70 6.90 5.5 67.6
Total height (ft) 43.0 48.19 22.17 11.0 182.0
Height-to-crown base (ft) 22.0 25.10 14.88 1.0 95.0
Site index (ht @ 50 yrs) 76.0 76.22 16.49 29.0 130.0
Elevation (ft) 4,420.0  4,443.00 735.90 2,150.0 6,640.0
Basal area (ft?) per acre 203.0 213.25 90.05 27.2 532.7
Number of trees per acre 192.0 205.21 91.31 18.0 515.0
Douglas-fir n = 2,458 trees
Variable Median Mean Std. deviation =~ Minimum Maximum
DBH (in) 12.2 13.22 5.91 5.5 50.4
Total height (ft) 71.0 72.59 24.92 11.0 170.0
Height-to-crown base (ft) 36.0 38.63 18.34 2.0 126.0
Site index (ht @ 50 yrs) 77.0 77.82 16.59 36.0 157.0
Elevation (ft) 3,700.0  3,802.00 784.00 2,150.0 5,880.0
Basal area (ft2) per acre 163.6 169.06 72.56 16.5 424.2
Number of trees per acre 170.0 182.98 76.14 20.0 515.0
White fir n = 5,167 trees
Variable Median Mean Std. deviation =~ Minimum Maximum
DBH (in) 11.7 13.03 6.17 5.5 48.9
Total height (ft) 61.0 64.29 26.60 9.0 171.0
Height-to-crown base (ft) 31.0 33.37 17.49 1.0 114.0
Site index (ht @ 50 yrs) 76.0 76.29 16.50 23.0 130.0
Elevation (ft) 4,850.0  4,862.00 752.40 2,700.0 7,500.0
Basal area (ft%) per acre 204.0 211.82 89.91 3.5 532.7
Number of trees per acre 188.0 203.20 89.92 5.0 525.0

(Continued on next page)
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Red fir n = 501 trees
Variable Median Mean Std. deviation =~ Minimum  Maximum
DBH (in) 13.8 15.39 7.54 5.5 51.6
Total height (ft) 69.0 70.01 29.09 15.0 154.0
Height-tocrown base (ft) 32.0 33.55 18.63 3.0 92.0
Site index (ht @ 50 yrs) 63.0 65.43 11.35 46.0 104.0
Elevation (ft) 5,800.0 5,840.00 547.30 4,640.0 7,500.0
Basal area (ft?) per acre 213.7 230.00 94.37 36.6 428.8
Number of trees per acre 176.0 199.41 95.01 15.0 525.0
Other hardwoods n =273 trees
Variable Median Mean Std. deviation =~ Minimum  Maximum
DBH (in) 10.0 10.79 4.41 5.5 25.2
Total height (ft) 44.0 47.57 19.85 11.0 104.0
Height-to-crown base (ft) 24.0 25.36 11.62 2.0 69.0
Site index (ht @ 50 yrs) 82.0 78.51 21.52 37.0 114.0
Elevation (ft) 3,560.0 3,779.00 736.20 2,700.0 5,500.0
Basal area (ft2) per acre 183.2 204.61 108.70 22.5 454.4
Number of trees per acre 160.0 173.97 65.70 36.0 305.0
Black oak n = 340 trees
Variable Median Mean Std. deviation =~ Minimum  Maximum
DBH (in) 10.8 12.93 7.00 5.5 52.7
Total height (ft) 51.5 52.55 19.55 12.0 164.0
Height-to-crown base (ft) 22.0 24.75 13.92 1.0 82.0
Site index (ht @ 50 yrs) 75.0 75.83 15.45 37.0 114.0
Elevation (ft) 4,218.0 4,116.00 806.70 2,350.0 5,700.0
Basal area (ft?) per acre 172.65 188.40 86.57 30.6 424.2
Number of trees per acre 168.0 184.35 79.71 16.0 376.0
APPENDIX B.
SUMMARY STATISTICS FOR PERMANENT PLOT SMALL TREE DATA
All species Tree statistics n = 7,157 trees
Variable Mean Std. deviation Minimum Maximum  Median
DBH (in) 3.31 1.12 1.50 5.40 3.20
Total height (ft) 18.66 8.00 5.00 64.00 17.00
Height-tocrown base (ft) 10.00 6.55 1.00 56.00 8.00
Plot statistics n = 308 plots
Basal area of all trees < 5.4" 0.84 8.78 0.02 9.32 0.43
Number of all trees < 5.4" 176.18 183.00 4.00 1,400.00 120.00
Elevation (ft) 2,150 919.3 4,519 7,300 4,510
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