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Concepts of similar soil and scaling are applied to investigate the
spatial variability of the field-measured soil-water properties, soil-
water pressure head, hydraulic conductivity, and soil-water diffusivity
associated with unsaturated flow. The classical, analytical aspects of
scale factors as regards the invariance of the flow equations expressed
in terms of ‘‘reduced variables’’ are reviewed and extended by con-
sidering stochastic aspects of random variations in soil-water properties.
It is demonstrated that scaling can best be achieved when soil-water
properties are represented by a set of related model functions.

The scale distribution is obtained from soil-water pressure head and
water content measurements for soil sampling locations 30, 60, 120,
180, 240, and 300 cm below the sutface in 12 plots planted to corn.
Scale factors are found to have an approximate log-normal distribution.

Methods of computing scale factors directly from soil-water pressure
head and hydraulic conductivity measurements and indirectly from
soil-water content profiles for a drainage experiment are derived. Im-
proved methods for estimating unsaturated hydraulic conductivity are
also presented. Stochastic behavior of flux and cumulative seepage as
random functions of the scale factors for a similar soil is described for
a simple drainage experiment.
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II. Hydraulic Conductivity and Flux

In contrast to the soil-water pressure head, which is a directly measurable and funda-
mental soil-water property, the hydraulic conductivity must first be computed from soil-
water flow measurements before scaling of conductivity can be verified. Moreover, the
estimated conductivity can vary drastically depending on the method of calculation
employed. Such computational variation can contribute to spatial variation and can
alter the results of scaling. For this reason a number of methods for computing conduc-
tivity are compared. These methods are based on ability to predict flux consistently
from available estimates of the pressure head gradient.

Scaling of conductivity is verified here for the measurements of the 1-m plots drainage
expetiment. A previous experiment of similar design (Nielsen, Biggar and Erh)
1973) has indicated that measurement of pressure head at only two depths in the profile
of each plot is sufficient to estimate conductivity at intermediate depths. Measurement
uncertainty allows for incomplete evaluation of pressure head gradient over a profile.
Therefore, the pressure head for the 1-m plots was measured at only 60 and 120 cm.

Scaling of flux is demonstrated with modifications in the scale relations of Miller and
Miller (1956). Flux is scaled by scaling the measured water content profiles of the 1-m
plots. Stochastic behavior of flux as a random function of an exponential conductivity
model has been described by Warrick, Mullen, and Nielsen, (19774). Their approach
uses a simplified drainage equation and requires averaging over all parameters. Here
it is demonstrated that description of stochastic behavior is considerably simplified by
representing spatial variability by scale factors. The method applies to a field of similar
soil, as found in the experimental field.

Calculation of Conductivity: Theoretical

Direct method

Conductivity can be computed directly by the instantaneous profile method using
flow data from the drainage experiment. The general method is similar to that described
in detail by Nielsen, Biggar and Erh (1973).

The equation for drainage and redistribution in a covered soil profile is

98 _ oh
z 57 = K(6,2) [1 + Bz] 1)
where
z

f 6(z,t) dz o)
0

defines the depth-averaged water content and z is the depth below the soil surface.
Equation (1) is an integral of Richards’ equation with the boundary condition that
surface flux equals zero. The flux is
06
= 5 2% 3
J=1z Y (3)

6 =

N |-
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and according to equation (1) the conductivity K(6,z)equals the flux divided by the
hydraulic gradient.

Finite difference estimates of K(©,z)

Suppose that the water contents 6 and pressure heads h are measured at n times t,

t,, ....tyand ak dcpths (nodes z,, z,, ..., z, below the surface, denoted by z, = 0.
Thcn for each dcpth z=1z(G=1...,k),the conductivity K(6;,z) for water content
O(z,t) (i=1,...,n)is cstlmatcd from
6.,, — 6,
2 | 1) g, 152 [1+ (z,t. )] )
t. - t,
i+l i

where 6, = 6(z,t) and

dh -1 i j+1

= (z,t) =5 |— +

0z 2 Azj Azj+1
with

Ahj = h(z ,t) - h(z _1°0)
and

Az, = z, -

. Z, ..
3 3 j-1
Equatlon (4) gives an advanced time, t;  ,, estimate of water content based on a present

time, t;, estimate of conductivity and head gradient. A time averaged estimate of con-
ductmty, K(G z), can be computed with the averages

6; =7 (8g4y + 0y
and
9h 1 ah
3z (2t = 5( (z,t;) + 5, (.z,tiﬂ))

used in equation (4).
In the case that pressure head is measured for only two depths z” and z”, the conduc-
tivity at an intermediate depth z can be estimated from

0. - 06, Ah,
S N [1”73_;] )
i+l i
where
" - '
Ahi ) h(z ,ti) h(z ’ti) ©
Az z" - z'
and 3
; N1
z6 (z,t) = Z 5 (e(zj_l,t) + e(zj,t)) Azj ™
j=1

forz = z,j = 1, ..., k. Equation (7) is an estimate of cumulative storage to depth z.
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At the last depth z”, the pressure head gradient is estimated as half of equation (6), so
that the pressure head gradient is assumed zero below z”.

A difficulty with the direct finite difference methods is that measurement uncertainty
can produce extreme variability in conductivity estimates and even nonsense estimates,
such as negative conductivity.

Analytical estimates of conductivity

When the condition of the data does not allow direct finite difference estimation of
conductivity, the pressure head gradient and flux can be smoothed and conductivity
computed analytically with the following methods.

Assuming scaled soil-water charactetistics, the pressure head gradient can be estimated
from the scales a and the measured water-content profile with the following:

sh B gy g () 4 o
3z 2 dz o 0 oz

where h,_ is the scale mean pressure head, which is explicitly independent of z. If the
rate of change of a with depth is negligible, then equation (8) becomes approximately

3h 1 _____ahm(e) 28 ©)

An average pressure head gradient is obtained by averaging (9) over the scales.
If the soil-water characteristics are measured at only two depths, z’ and z”, an
estimate of pressure head gradient is given by

h . hm(e")/a" - hm(e')/a'
9z z"

where a’, and a”are the scales and 6, and 6” the water contents for those depths.
Equation (10) is the estimate applicable to the 1-m plots. The pressure head gradient
(10) is independent of depth, but depends on time through 6 and 6”.

The water content 6 and its time dependence can be expressed as a polynomial regres-
sion for each location and depth as follows:

(10)

—z'

p
_ k
o = z;) a, t (11)
k=
where the regression coefficients a , a,, ..., a_ depend on the location and depth. Esti-

mates of the water content gradient and depth-averaged water content are then given by

P
%a
38 k k 12
0z Z 02 t (12)
- k=0
and

P

6 = z a, tk (13)
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where

z
a'k I ak 4 (k:O,l,...,p).

0

Usual finite difference methods are applied to compute derivatives and integrals of the
regression coefficients over the nodes of the measured water content profile. An estimate
of flux is then given by

p
J(z,t) = z z k Qk k-1 (14)

k=1
The conductivity is obtained from the drainage equation (1) by using the estimate of
hydraulic gradient (9) in conjunction with the regression estimates (11) through (14).

Then
oh_(6) -1
- 1 _m ~ 236
K(6,2z) = J(z,t) [l+a 55 32]
gives the conductivity as an explicit function of time t (and an implicit function of 6)
for each depth z. The conductivity can be found as an explicit function of water content
by using the regression
q
_ k
=3 by s »
k=0

in addition to (14). Flux as an explicit function of 6 is

(15)

p q

. N1 17)
J(e,z)=szak ij 67 ,

=1 i=0

and the water content gradient is given by

S (< k-1| 28 (18)
= - o0 18
0—z§—6+2kbke 5z
k=0 k=1
or by substitution of (16) into (12). Substitution of (17) and (18) into (15) gives the
conductivity as an explicit function of 6.

Other model functions for describing the time dependence of water content can be
applied in a similar way in place of (11). However, an advantage of (11) is the linear
dependence on regression coefficients. Standard regression methods are used to fit (11),
and the covariance matrix of the regression coefficients can be used to analyze propoga-
tion of measurement errors. A disadvantage of the polynomial regression (11) is the
dependence of the derivatives (12) and (14) on the particular choice of degree p. A p too
large will result in over-fitting of the data and a p too small will result in an incorrect
time dependence model. For the 1-m plots data, it was found that a simple nonlinear
model used by Nielsen, Biggar, and Erh (1973) best described the water content. Appli-
cation of this model is discussed in the next sections.
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Regression of depth-averaged water content

It has been suggested by Nielsen, Biggar, and Erh (1973) that depth-averaged
water content (2) approximately equals water content at each depth. Now consider the
situation, during a drainage experiment, for which this suggestion is valid. Thus, sup-
pose that the drainage water content profile undergoes a parallel translation in time:

6(z,t) = 6_(2) + 8(t) (19)

where 6 (z) is an initial profile, and d depends only on time. Then integration of (19)
gives

6 (z,t)

]

éo(z) + §(t) (20)
and )
8(z,t) = 6(z,t) +d (21)

whered = éo — 6, If the initial depth-averaged water content equals the water content,
i.e.,d = 0, then 8 = 8 during the entire drainage at each depth.

So as to account for water content profiles that translate in time without remaining
parallel, a correction coefficient c is introduced into (21) to give

é(z,t) = cO(z,t) + d. (22)

Indeed, it is found that the drainage profile satisfies a linear regression given by (22)
where ¢ and d depend only on depth z. For the 1-m plots, equation (22) holds with
regression coefficients c in the range 0.6 to 1.0 and with correlations about 0.95, and
estimates 8 from 6 within measurement etror.

By applying the regression (22), the flux J(z,t) is related to the rate of change in water
content according to the relation

96

J(z,t) = zc Y3 (23)

Thus, drainage and redistribution take place according to the following stochastic first-
order partial differential equation:

80 _ 3h
zc w7 = K(,z) (1 + 8z)' (24)

Unit hydraulic gradient drainage equation

Often a valid assumption for drainage of a profile at deep depths is that the hydraulic
gradient is unity, or the pressure head gradient is zero. Assuming an exponential con-
ductivity model and unity hydraulic gradient, the drainage equation (24) becomes

6 B(6-6 o ) .

AT 25
ze == =K e (25)

where K and 6 are the steady state infiltration values, or initial values. Integration of
equation (25) with z positive below the soil surface gives

=5 -1 26
] eo 2 In[l + BKot/cz] (26)
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and

g = -

o In[l + éKot/z] (27)

W > | =

where /§ = f/c.

Equations (26) and (27) were found to fit the water-content profile at every depth in
the 1-m plots. This result indicates that (26) and (27) apply with generality that goes
beyond the original assumptions, because hydraulic gradient is not unity over the entire
profile. In view of the flux equation (23), the implication is that flux is an exponential
functional of the form

§(6-6 )
J(0,2) = J_ e ° (28)

where J, is the steady state flux or initial flux, and the least squares fit parameters K
and (3 are estimates of J, and d, respectively. Thus, the parameters J, and d represent
the exponential conductivity model only when the pressure gradient is zero. The general
drainage equation applicable to the entire profile is then

_ 1
8 90 -3 In[l + JOGt/cz] (29)
and flux as an explicit function of time is given by
J
J(z,t) = = (30)

1+ 83 t/cz’
o

Least squares fit of the drainage equation (29) provides an indirect verification of the
model (28). Although not given here, we have verified (28) directly by a least squares
fit to finite difference estimates of the flux.

The representations of the flux, equations (28) and (30), can be substituted into
equation (1) along with any of the given estimates of pressure head gradient to yield
the conductivity. A drainage equation (29) was found to be superior to the polynomial
regression (11), at least for the 1-m plots.

Scaling of Conductivity

Conductivity models

Conductivity is often represented within experimental measurement error for a re-
stricted range of water content by the exponential function
8(6-6 o)
K=K e 31)

where 6, is some reference value of water content, and K| is the corresponding conductiv-
ity. This result is common in the literature. In each case, the model is verified by least
squares fit of its linear form:

In K= 1n Ko + s(e-eo). (32)

For the 1-m plots, the direct finite difference estimates of conductivity based on the
pressure head gradient between two depths satisfy a regression (32) for each location.
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In terms of the degree of saturation s, the conductivity function is
b (s—so )
K = Ko e (33)

where K is now the conductivity at the reference saturation s . Another representation
of conductivity is obtained by defining s in (33) as an approximate saturation equal to
8/6,, where 6 is the water content during steady state infiltration. With s equal to 1,
the models (31) and (33) are then related by 8 = b/6,. These models yield equivalent
descriptions of conductivity when applied independently to each location with given
values of §_ and saturated water content ¢.

The conductivity can be scaled for a set of locations if either of the exponential models
can be least squares fit with a common value of f8 or b for all locations. As a consequence
of measurement uncertainty, the conductivity can scale possibly with respect to both
models, even though the scaling results are not equivalent. In general, the scaling with
respect to these models is not equivalent, because each emphasizes a different parameter
as being common for all locations, and the scale factors obtained with each model need
not be equal. Scaling will yield equivalent results for the two models only if 6, and ¢ are
constant over all locations.

Conductivity scale relation

Scale factors w for the conductivity models (31) and (33) are defined relative to
common reference values of 6, and s,. To obtain the scales, the models (31) and (33)
can be expressed in terms of averages 6, and 5 over locations as follows:

_ B(s-8)
K=K. e (34)
(o)
where _
B(® -0 )
R =k e °° (35)
o) o
and _
_ b(s-so)
K=K e (36)
o
where _
_ b(s -s )
K =K e ° 9, 37)
o o

The transformed models (34) and (36) now have the same reference value of 6 and s.
Assuming that the measured conductivity for a set of locations is scaled with either of
the exponential models, the scale relation is

= 2
Ko = w Km (i8)
where w is the scale factor of each location and K is the scale mean value of all K.
For a set of R locations, the scale mean K is determined by the condition that the

average of w over locations equals unity. The scale mean is then given by

R
1/2 _ 1N 21/2
"R

Kin or (39)

r=1
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where subscript r denotes the location. Values of the scales w, (r = 1, ..., R) are then
established by the scale relation (38), for each location. '

Scaling of conductivity with respect to the exponential models (34) and (36) has an
important property: values of w do not depend on the particular common values of 8,
and s, used. That is, scaling results are invariant with respect to the choice of §, and 5.
However, values of K do depend through (35) and (37) on the particular 6, and s, used.
Moreover, the domains of the models are still determined by 6, and s, of each location.

A different symbol w is used to distinguish conductivity scales and pressure head
scales @. Indeed, the principle of scaling as proposed by Miller and Miller (1956) is
valid if, within limits of statistical and computational error, the conductivity scales w
equal the pressure head scales a for every location. Equality of these scales is not a direct
consequence of Richards’ equation, but further depends on the scaling behavior of flux.

Scaling in terms of water content

Measured conductivity of the 1-m plots was scaled with the model (33) for an approxi-
mate saturation variable s equal /6 and for s, equal 1. One would expect that scales
computed in terms of s will approximate those in terms of 6 if 6, does not vary much
over locations. This possibility will now be considered.

The following method provides an estimate of the effect on scales of changing con-
ductivity models. Suppose that conductivity is scaled for R locations with

b (s-1) :
Kr=Kore r=1, ..., R) (40)
where s = 6/6_, and b is common for all locations. A common 6, is defined by

_
9

o=

R
1
Z-e;. (41)
r=1

Let B, = b/6,,. Then in terms of 6, (40) becomes

B_(6-6_ ) . B (6=6 )
_ r or’ _ ¢ r o
Kr(e) =K _e =K e (42)
where ‘
~ B.(® -6 )
K =K e% © °F 43)
or (o]
Now define
. A B(O-0)
K_(8) = K, e (r=1, ..., R) (44)
with
R
1
=+ 4
= Z s b/e . (45)
r=1

Then (44), which is scaled in terms of 8, is an approximation to (40). New scales & are
determined by
= 2 K

or r m (46)

€
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with R

~1/2 10 a1/2
TR Z for @7)
r=1

The standard deviation of 8, denoted 9, Y which equals b multiplied by standard devia-

tion of 1/8,, represents error in f. Scales & are related to the original scales w by
2 _ o' “or
w_ = wr (K /K) e . (48)

The difference in (42) and (44) for each location is given by

In K .(8) - 1n K (8) = (B-B,)(6-0). (49)
Thus the standard deviation over locations of the logarithm of conductivity equals
Oele'eol' (50)

Equation (50) constitutes an estimated deviation of the models when scaling representa-
tions are changed from saturation to water content.

Of course, scales in terms of 6 can be obtained directly by least squares fit of (31) with
a common f. Scales & are not expected to remain valid approximations of the directly
obtained scales when 6, have large variation.

Indirect scaling of flux

The scaling of conductivity implies certain indirect scaling results for the water content
drainage profile and the flux. Consider a drainage profile with unit hydraulic gradient,
and suppose that 6 is constant throughout the profile, so that the scale relation becomes

_ 2
Ko =W Km' 51)
Let z denote a reference depth, for example, the last depth in the profile. A macroscopic
length scale L is then defined by L = z/z . A reduced time 7 for each location will be
defined by

= (@?/cL)t. (52)

Then, in terms of reduced time, the water content profile (26) is described by the same
equation:

6 =0 -Eln[l+BKT/z] (53)
At each location, the flux is given by
J(z,t) = wz Jm(‘[) (54)
where
K
Jm(T) "T+ 8K 1/z (55)
m ' “m

defines the reduced flux.
Equation-(54) constitutes a scale relation for flux (23), and provides an indirect method
for scaling conductivity. Conductivity based on unit hydraulic gradient can be scaled
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with an exponential model if (26) can be least squares fit to measured water content of
all locations with a common f. The fit estimates K, for each location, and the scales are
obtained from (38), using (35). An assumption of constant 6, is not required here.

In general, however, the hydraulic gradient is not unity throughout the entire profile,
so that the fit of (26) actually represents equation (29) with a common 4. Thus the flux
(28) can be scaled if the drainage equation (29) can be least squares fit with a common
d for all locations. Then drainage scales w are defined by

- 2
J o =W J m (56)
where _
§(6 -6 )
J =3 e °° (57)
o o
for each location, and 8 is an average reference steady state 6. The scale mean fluxJ is
determined relative to the common 6,;
J;/z = average 33/2. (58)
Equation (58) follows from the constraint that average w equals one. Reduced time is
then defined as
o 2 6(6 o~ 0)

T = L e t. (59)

In terms of reduced time, the water content profile is described over all locations by

-5 _1
6 =0, -3 1n[l + 5Jm1/zm]. (60)

Hence, the water content profiles for a set of similar soil locations can be coalesced into
a single curve (60) by scaling time according to (59) and by transforming the water-
content reference from 6, to 6. Dependence of flux on reduced time is given by

2 6(60—90)
w J_ e
m (61)
1+ 683 1/z
m m

J(z,t) =

New scale relations

Scaling of time and flux as in equations (52) and (54) suggests that another set of
reduced variables, which differ from those of Miller and Miller (1956), can be defined.
The flow equations are written as

J—2=-K—2%[Z+h] (62)
o [0

and
L %E (.J/cxz) = - Be/a(oczt/L). (63)

Then invariance of Darcy’s law (62) and the continuity equation (63) implies the follow-
ing scale relations:
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(1) hm = ah
(i) K = K/o®
(iii) z = z/L
@) 3= 3/a?
W) t = azt/ L
The subscript m denotes a reduced variable, i.e., a scale mean quantity, and « is the

scale factor. These scale relations differ only in the definitions of reduced flux (iv) and
reduced time (v). In terms of reduced variables, the flow equations are

1 8hm
Jm=_Km 1+E3z (64)
m
and o]
“m _ CLE]
9z Bt_° (65)
m m

Thus, the solution of the flow equations is invariant over locations if the pressure head
gradient is invariant; this is the case, for example, if h/dz = 0. Note that the invariance
of (62) and (63) assumes a scale-homogeneous soil profile, or that the gradient of a is
negligible. In general, the reduced flux (64) is invariant over locations if aL is invariant,
and this is the same condition required by the original Miller and Miller definition.

Indirect estimate of conductivity and scales based on pressure head for
two depths

The following method for scaling conductivity avoids the difficulty of evaluating
the hydraulic gradient over a profile.

Soil-water characteristic curves h’ and h” are assumed determined at two depths
z’ and z”. Then the conductivity at profile depths between z’ and z” for which drainage
as a function of time is measured can be calculated as follows. An integral equation
forK(6, z) is givenby ~ ,n

J(6,2) = 2" = ' + K" -
(0, z) dz z z h'" =h'. (66)
2!
The water content 6 is provided as data for the ndepths 2z’ = z,z,, ..., z,,,2, = z’,

and the flux J(6,z) is described as a functional of 6(z,t), or determined as an explicit
function of time, J(z,t), at each depth. For example, a polynomial representation of flux
such as (14) can be used. Now let

f(z) = J(6(z,t),2)/R(6(z,t),2) (67)
where conductivity K(6,z) is described by some choice of model function. A finite dif-
ference approximation of the integral (66) over the profile is given by

2" Az n-1 (Az, + Az, ) Az
f £(z)dz = £(z)) Tl+z £(z,) J—zil— +E(z) —E (68)
z' j=2
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Eachf(z) (j = 1, ..., n) is an explicit function of time t, which depends on the param-
eters by, ..., b, of the conductivity model K@, z; b, .. ., bp) for each location. Thus
equation (66) with the approximation (68) depends on the np parameters b, .. ., by
by, --.y by o5 by oo, by, These unknown parameters can be estimated by a
direct nonlinear least squares fit of (66) using (68). The integral (68) is fit to the dif-
ference in hydraulic potential, z + h, as a function of time.
In particular, the model (31) depends on two parameters: K and . With the flux
model (28), (67) becomes
Jo (5-8) (9-90)
f(z) = T e . (69)

o
where all parameters may depend on z. Then conductivity can be estimated and scaled
simultaneously by letting

2 .
bj—l/ouj Km Gg=1, ..., n)
and by taking b, ., = 8 as the common parameter. Then
(8,-8)(6.-6 )
£(z,) =b,J ., e 3 LI (70)
J J o]
forj =1, ..., nwhere 6; = 6(z,1), ], and d; are known from measurement.

Since the drainage flux can be scaled for the 1-m plots, d. corresponding to each loca-
tion can be replaced by a single common d. By the scale relations, a single average value
of 6, can be used.

Disadvantages of this method are that a prior choice of conductivity model causes
biased estimates and that a requirement of many parameters b,, ..., b, can make a
unique and accurate fit impossible.

Corrected Estimates of Conductivity

In circumstances for which direct measurements of the entire pressure head profile
are not available, the following methods are used to improve estimates of conductivity
by estimating hydraulic gradient from the scaled water-content profile.

Conductivity based on estimate of pressure head gradient

Usually the soil profile of a field is scale heterogeneous, and computation of the
pressure head gradient requires evaluation of the scale factor’s derivative. However,
when the pressure head scales, a, are incomplete over the profile, as is the case for the
1-m plots, the derivative da/dz cannot be estimated properly. But assuming that the
new scale relations are valid, the scales a are identified with those obtained by scaling
drainage according to (56). Then assuming that @ equals w for all locations, the gradient
of a can be estimated over the same profile for which 8 is measured.

Suppose that the parameters of the pressure head model are estimated for at least
one location and that the drainage profile is scaled with (56) and (60). Then the head
gradient is

1 da an p(6-9) 96
(a T e 3z 7y
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where the pressure head model is

- p(6-9) _
hm a (e 1) (72)
and z is positive downward. Now from equation (29),
20 Lo _ t/c 9__(12) (73)
oz dz 1+ GJot/cz dz \ z
and
dJ de
o 2 do o
dz o dz Jo + GJo dz (74)

by the flux scale relation (56) with w equal a. Substitution of (74) into (73) and elimina-
tion of t with (29) gives

§(6~6 )
98 _ _...__deo e6 (6-90) + (1-e ° ) 1-22%2 da (75)
dz dz 8z a dz
Then substitution of (75) into (71) yields the pressure head gradient as a function of 6:
oh _ hm 1 do % p(6-¢) (76)
—_—_ ===+ — p e
9z a \o dz o

deoe6(6-60)+(l_e o) 1-23@_
dz Sz o dz

for z >0 downward. The gradient (76) neglects the gradient of c. With the flux given by
(28), the conductivity is then given by
§(6-6 )
K(8,2) = J_ e ° /@ + sn/sz). (77)

An advantage of this method is that conductivity is not restricted to a simple exponen-
tial model. On the other hand, a disadvantage is the required evaluation of the gradients
d6,/dz and da/dz, since small errors in these gradients can easily yield nonsense results
such as negative conductivity. The formula (77) gives most reasonable results when the
gradients are estimated by their average values over the profiles. A suggested procedure
is to estimate d6,/dz and da/dz from the slope of linear regressions over the profile.
Conductivity estimates can be further improved by using the actual a obtained from
direct scaling of the pressure head, when available.

It is notable that if the pressure head gradient (76) is replaced by its average over
scales a, then the conductivity (77) is scaled with the flux scales of (56).

Conductivity based on scaled drainage flux

An improved method for simultaneously estimating and scaling conductivity is
obtained by applying the new scale relations (i) through (v). The method does not re-
quire detailed measurements of the hydraulic gradient over the entire soil profile;
however, it does tequire that conductivity scales equal drainage flux scales w. Further-
more, if pressure head scales a are assumed to equal flux scales, then measurement of
a soil-water characteristic at a single location within a field is sufficient to apply the
method.
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The following method is based on application of the integral equation (66) associated
with indirect scaling of conductivity. Hydraulic conductivity and flux are assumed to
satisfy the exponential models (31) and (28), respectively. The water content profiles
are assumed to satisfy the drainage equation (29) with d common to all locations, so
that the flux scales w are given by (56) and (57). Then assuming that conductivity scale
factors equal w for each location gives

K@y _Jo OO0 Iy @905y o
J(@,2) K, R

The parameters A = J_/K_and B = d — f3 are common to all locations. Under these
assumptions, the integral equation (66) becomes
z 11

B(6-6 )
A e dz = z" - z' + h" - h' + ¢ (79)
\]

z

where ¢ represents error. This error is due to measurement error and the fact that (66)
need not constitute an equality when the various models for flux, conductivity, and
pressure head are substituted into the integral equation. Indeed, the soil-water prop-
erties represent only approximations of actual values for the experimental range. An
estimate of A and B is then obtained from least squares fit of (79) to the measured watet-
content profile and the pressure head at the two depths z” and z”, for all experimental
times. That is, the sum of squares of error in the hydraulic head difference between
z’ and z” over all experimental times for all soil profiles is minimized. If direct measure-
ments of the pressure head are not available, h can be estimated from a characteristic
given by (72) and the drainage scales with

h=h/u. (80)

Using the known parameters J, and J from the scaled drainage profiles and the least
squares estimates of A and B, the conductivity parameters are obtained for each location
from _
J o B(6 0-90 )
Ko=re and B = § - B. (81)
This method can also be applied independently to each soil profile (experimental
plot). In such application, the conductivity and flux need not scale over locations, that
is p and d need not be common to all locations, provided only that A and B are common
in a statistical sense.

Solution of the drainage equation

The drainage equation

6(8-6) B(6-9 )
I, e =Ke (1 + 3h/3z) (82)

coupled with the pressure head model
h=a ( (6-¢) _ 1) (83)

constitutes a first order differential equation solvable for 8. A computer program for the
Runge-Kutta solution of (82) was developed, which can simulate the water-content
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profile for known flux and conductivity model parameters. This program can be applied
to study layer effects as characterized by different scale factor distributions over the soil
profile (scale heterogeneous soil).

Millington-Quirk Conductivity and Scaling

Estimates of conductivity, which were calculated by the instantaneous profile method
applied to the 1-m plots, are restricted to a limited range of water content. Indeed, the
measured water content within the 1-m plots seldom decreased below a value of 0.3
even for 60 days of drainage. Accurate calculations of conductivity for smaller water-
content values are difficult, because the change in 6 over long periods is comparable to
measurement error. Thus, for smaller water contents, another method is needed to
estimate conductivity. Such an extension of conductivity, which is compatible with the
scale relations, is provided by the Millington and Quirk (1959) method.

Introduction

The Millington-Quirk formula for hydraulic conductivity is given by

p
= o —e i - i 2
K(e)i —g-Sn n2 E (25 +1 2i) rj (84)
where r, ..., r, are the radii of pores corresponding to n pore classes. Millington and

Quirk take n to be the total number of pore classes and p = 4/3, and K(6); denotes the
conductivity at a water content 8 for which the pore classes with radii r , I, are
water filled.

In terms of the suction head h (negative of pressure head) corresponding to pores of
radius r remaining filled at suction h, the radius is given by the capillary equation

1' 1+1’ te

= 2y/pgh. (85)
Using (85) the conductivity bccomes
n
- ik -
K(G)i = ngn 2 Z 2J + 1 21)/h (86)

where y2/20gn = 2.7 x 102 cm/sec at 20°C. The sum in equation (86) begins with the
suction head h; corresponding to the radius of largest water filled pores and is over all
pore classes when 6 equals the saturated water content (porosity).

The conductivity model (84) is derived from Poiseuille’s equation for flow through a
narrow tube of radius r, and for i equal 1 the sum

— . 2
2 @1- ] &)
=1

represents an average cross sectional flow area of the connecting pore tubes, where ¢ is
the porosity. An average area (87) is obtained by counting the number of effective pore-
to pore connections for n classes, and the flow area of connecting pores is that of the
smaller pore or neck of contact. The average (87), which was derived by Marshall (1958),
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assumes an effective pore area fraction per unit area of section equal to ¢. Millington-
Quirk estimated that fraction to be $2/3. Substitution of an average radius r corresponding
to (87) into Poiseuille’s equation for the effective flow velocity through the pore volume
gives p = 2 for Marshall’s method and p = 4/3 for the Millington-Quirk method. In
the Marshall method, however, the n included in the term 6P/n? is replaced by
(n — i + 1), which is the number of water-filled pore classes up to 6. Thus the particular
power p used in these methods is determined by the particular estimate of effective
pore flow area and pore interaction (continuity of pore contact).

Both Marshall and Millington-Quirk methods estimate h, corresponding to pore
radius r, by dividing the water range 0 to ¢ into n equal intervals, and the h; equal the
suction head evaluated at the midpoint of the water content intervals. Then

= h(ej) G=1, ..., n) (88
where
= (2n - 2j + 1) ¢/2n
(89)
and h1<h2< cee <hn.

The actual pore distribution is unknown and the uniform distribution implied by (88)
and (89) is assumed. A matching factor, K./K_, is introduced to correct the calculation
error inherent in the assumptions of a capillary flow model with pore radii correspond-
ing to uniformly distributed water content (89). Here K_ is the actual conductivity at
saturation and K__is the value calculated from equation (86). Conductivity is then given
by

n
K@), = (Ec—s-) (—Y—z—-) ep 25 +1 - 21)/h (90)
i K./ \208n Z_. J '

Modifications to Millington-Quirk conduct1v1ty

The pore radius corresponding to suction head given by (88) can become arbitrarily
large for water-content values near saturation, when the number of pore classes n is
large. Physically realizable radii of pores are actually restricted by an upper limit to pore
size. Thus, a critical value of water content less than saturation must occur for which the
pore radius determined by (88) and (89) cannot be greater than

r, = 2y/pgh(ec), (91)

where 6 denotes this critical value. For a sample drying from saturation, 6, is the lowest
value of 6 for which all pores remain filled, and all pore classes contain water when
6.< 6 <$. The critical value 6_ is the extreme limit of the capillary fringe of a soil-water
charactcrlstlc curve. The summation in equation (90) is therefore terminated for 9 of
(89) greater than some 6, which is to be estimated from the soil-water charactcnstlc
curve. In a similar way, the sum in equation (90) is truncated for pore classes with radii
below some physical limit size. This lower limit of pore radii is considered as correspond-
ing to 6 for an air-dry soil.

Matching factor

The matching factor K /K, can be estimated from any measured value of conductivity
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for water contents other than saturated. Let f = K /K_ and I/&(G)i denote conductivity
calculated with equation (86). The measured conductivity K(6) is described by a model
function which is least squares fitted to measurements in the interval 6 ; to 6,. A best
fit estimate of the matching factor f for n pore classes is obtained by minimizing the
sum of squates of errors g given by the following:

1n K(ei) = In f + 1n K(G)i + e (92)

for 6 ., < 6, <0 . Minimization yields
min — i — "o
N
1

I fe§ ) In/E) %)

i=1
where N is the number of 6, values between 6_; and 6.

Suction head required in equation (86) is computed from the model soil-water charac-
teristic curve fitted to measured pressure head and water content. A model function for
h(6) allows extrapolation beyond the experimental range as required in order to compute
conductivity for low water contents not attained in the field experiment.

Computer program for Millington-Quirk conductivity

A special computer program was developed to compute conductivity from equation
(90) with the following features:

(@) The summation in equation (90) is truncated for pore classes with pore radii
larger or smaller than predetermined physically realistic pore size limits. These
pore size limits are determined by limits on the corresponding water content.

(i1) The best fit model soil-water characteristic curve
h(o) = a(e”®®) _ 1) 94)

is used to estimate suction head and extrapolate beyond the range of experi-
mental water content.

(iix) The best fit matching factor, f = K, /K., is computed for the model
conductivity function
B (6-6 o)
K(®) = Ko e (95)

fitted to experimental valuesin therange 6 . < 8 < 6 .
min — o

(iv) An extended model function given by
P
= —6 YK 96
K(6) K, exp Z By (s 60) (96)
k=1

is least squares fit to the conductivity computed from equation (90), using
the best fit matching factor of (iii). The fit of (96) includes the optional con-
straint that 8, equals . Then (96) is consistent with measured K for 6 near 6.
The program computes f3,, . . ., fip step-wise with polynomial degree P incre-
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mented by one until a desired accuracy of fit is reached. As a result of this
method, the conductivity model (95) is extended to low water contents in a
way compatible with field measurement and the Millington-Quirk model.

Scaling

The scaling of Millington-Quirk conductivity follows directly from the scaling of the
soil-water characteristics. This result is demonstrated by letting a be the scale factor
for any location where ah = h_ and by assuming that the matching factor has a fixed
value. Conductivity is computed from equation (90) for each location, and the scale
mean conductivity is defined by

Ks 2 oP - 2
%0 = T || 2| 2 > @i +1-2mmiE) o

_ 3=
for6,(j = 1, ..., n) given by (89). Then

K(0), = o2 K_(0),- 98)

The exact scaling relationship (98) is a consequence of the scaling of the capillary equa-
tion and Poiseuille’s equation, which is just a special case of Stokes’ equation.

Differences between the conductivity scales w computed directly from measurements
at each location and the pressure head scales a can be attributed to spatial variation in
the estimated matching factor. Variations in the actual pore size distribution used to
define the summation in equation (90) for each location can also cause deviations from
the ideal scale relation (98).

Since porosity usually changes with location, best scaling results are obtained when
the pressure head is expressed as a function of the saturation variable s = 6/¢. In terms
of saturation, the Millington-Quirk formula becomes

n
P
oP 5= Z (25 + 1 - 2i)/h>  (99)
2 J
n- —
J=1
withs, = 6./¢ and h; = h(s;). Now if ¢ does not vary appreciably over locations, which
is usually tilc case, then conductivity given by (99) scales with the pressure head scale
factor a according to the relation

K(s), = o2 K (s), (100)

where the scale mean conductivity is defined by using (99) with h_(s). It is observed
that conductivity can be estimated for all locations if the matching factor can be estimated
for at least one location. This result assumes, of course, that the pressure head can be
scaled and the pore size distributions for each location are similar. Indeed, the latter
requirement is valid for locations having similar soil.

K(S)i = E_\ Y

K . } 20gn

Average Drainage Flux

The effects of uncertainty in measurements of water content and conductivity have
not been considered in any of the foregoing analyses. It was a tacit assumption in the
previous sections that soil-water variables 6, h, and K and model function parameters
represent mean values to be used in the Richards’ equation. In this section, the view is



HILGARDIA ® Vo/. 47, No. 4 ® September, 1979 121

taken that Richards’ equation is stochastic, because the soil-water variables are stochastic.
The effect of both local and spatial variability on estimation of flux will now be con-
sidered. Random behavior of conductivity results from measurement error and fluctua-
tion phenomena inherent in soil-water transport, and this random behavior propagates
as statistical error in the water-content profiles.

Local variation of conductivity

The conductivity is described effectively with a regression model (32), which assumes
normal distribution of errors in 1n K and homogeneous variances within each location
for a normal distribution of errors in 8. Conductivity is scaled by obtaining an estimate
of f common to all locations under consideration, but K and 6, depend on the location.
In the following analyses of error propagation, f is assumed to be estimated with negligible
error by the scaling method. Then conditional on this value of 8, a single measurement
of conductivity K for a value of 6 is sufficient to estimate a yalue of K, from (32). The
expectation of 1n K for these estimates is denoted by 1n K where fgo represents the
geometric mean for each location. That is,

1In K, = E[ln Ko] (101)

for each location. Now neglecting errors in 8 and 6, the standard deviation of 1n K is
given by
o[ln Ko] = ¢[1ln K] (102)

where o[1n K] is the standard error of estimate for the regression

In K = 1n K_ + B(e—Aeo) . (103)
The standard error of estimate of the mean 1n K | is estimated as

o[ln Ko] = ¢[1ln Ko]/;/ﬁ (104)

where N is the number of conductivity measurements for the location. Notice that (102)
and (104) attribute 2 maximum error to 1n K . Estimates of the arithmetic mean K and
standard deviation og are obtained by transformation to a log-normal distribution as
follows:

E[K ] = K, exp(s”[1n K_]/2) (105)
and

o[k ] = EIK ] (exp(e’lln K 1) - DY2 (109
The error in K is

o[I'(o] = o[KO]//N_. (107)

As indicated in Part I both the arithmetic mean conductivity and standard error depend
exponentially on 6.

Flux as a stochastic function

Prediction of flux for conditions of unit hydraulic gradient will now be investigated.
Since K can be viewed as a random variable which reflects the variability of the conduc-
tivity (31), the drainage equation (25) is a stochastic differential equation. Furthermore,
the flux is a stochastic function of the random variable K, characterized by the statistics



122 Simmons, Nielsen, and Biggar: Il. Hydraulic Conductivity

(105) and (106). The average water-content profile, 8(z,t), is obtained by averaging the
solutions of equation (25) over the distribution of K. It is an approximation to assume
that §(z,t) satisfies the same drainage equation (26) for the average K .

. Random variations of K occur between locations (spatial) due to changes in soil
propcrtics such as texture and composition and within locations (local) due to fluctua-
tion in transport phenomena and measurement errors. Therefore, the water content
6(z,t) must be averaged both between and within locations in order to compute the
averages of cumulative seepage and flux through a field at any time. Variations in K
can also be due to progressive deviation of measured conductivity and the exponentlal
model (31), but this effect caused by lack of fit will be neglected. Hence, the local
component of variability is represented by the standard error or estimate of conductivity
and the spatial component by the scale distribution for the mean K. Note that the
mean steady state conductivity, Ko, expressed relative to a common average 8, in the
scale relation (38) is the quantity K . That is, in previous sections K reprcscntcd a mean
value; here K represents a single measurement.

Average cumulative seepage
Cumulative seepage at depth z (positive) equals zA(K ) where
AR) =6 -6 = -:?: In[1 + BK t/z]. (108)
[Ai is constant over locations if the variation in ¢ is neglected, and the water content dif-
ference (108) is a stochastic function of the random variable K .
Local expected seepage
The local variation in K will be considered first. Denote the expectation of (108) as
A= E[AK )], (109)
A second order Taylor series expansion about the mean K o gives
RS = a®) + 8" ®) K, - R) +5 Rk, - K2 )
Taking the expectation of (110) yields the followmg approximation:
A = A(Ko) + %— A"(RO) of(o. (111)
Similarly, a first order approximation of the standard deviation is given by

= ' 74
olal = [a'®)| oKo. (112)
The derivatives required in the equations (111) and (112) are

t/z
1+ BKot/z

A" (K,) (13)

and

2

- t o 2

2K ) = - s(;——/—z———) -- a1t g
+ BKot/ z

Equation (111) demonstrates explicitly that the local average depends on the sample
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variance of K as well as on the mean of K. For times sufficiently later than initial
drainage, cquations (111) and (112) simplify to

= 2
= AR)) - ; (o 0/Ko) (115)

and

1 -

o[a] = = (o /K)). (116)
B (¢}

Equation (111) with (114) indicates that the expected seepage is always less than the

deterministic estimate obtained by substituting K_ into equation (108). Average flux

within a location is given by

T2, 17)
Thus the average flux does not equal the deterministic estimate.

Spatial variation in seepage

Next, consider the spatial variation in K . A, will denote the mean water-content
difference at each location r, according to equation (111). The spatial average of (108) is

R
__l -
=133, e

r=1
and spatial variance is R
2 _ 1 - -2
VT RT Z @, -8 (119)
r=1
Variance in the spatial average (118) due to variation within locations is
R
6% [] = -1-2 o2[3. ] (120)
R2 r

where o[A] is the standard error of the mean A, i.e., standard deviation o[A] divided
by the square root of sample size. The variance (120) assumes independent distributions
of A, for all locations. The avarage local error equals

_1§ ZG [Zr] . (121)
r=1

Using a second order expansion, the spatial average (118) is given approximately by

R
T = AR L ez 2 1 -l
A—A(Ko)+2A(Ko) \)O+R o

R R
2 _ 1 - - .2
Z and Vo =11 z (Kor - Ko) - (123)

r=1 r=1

(122)

where

FUH—‘
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The term in the brackets of (122) is recognized as the sum of spatial and average local
variance of K . It can be shown that the spatial variance (119) has the following ap-
proximation:

R
v = -1-1— Z (A" (% ) +l(A')'(iz) 02 12 ® - io)z. (124)

or
or

Replacement of the local variances in equation (124) by average local variance yields a
further simplified approximation:

R 2

2_ | VT l Nt /T l 2 2

v =} A (Ko) +2(A) (_Ko) RZ ox vy (125)
= or

Equation (125) indicates that the spatial variance depends on the local variance of K as
well as on the spatial variance of K .
The total variance of K is

R
2 _ l
r=1
And according to equation (122) the complete spatial average of cumulative seepage
equals R 2
Z 1n[1 + Bﬁot/z] - zB (—%—) 02. (127)
B 1+ BKot/ z

The average flux equals the derivative of (127) with respect to time.

Although (127) is not an exact estimate of average cumulative seepage, it does
demonstrate explicitly the departure from a deterministic estimate using only the mean
KO. It is noted that the above derivations apply as well to the actual drainage described by
equation (29). The parameters need only be changed to 3 andJ,.

Estimate of average flux

A first order expansion of the flux for unit hydraulic gradient conditions can be used
to investigate the effect of variance of K_ on average flux. Here 0% will represent either
the local or spatial variance. A first order expansion of flux about the mean K_ gives

K B, - R)e/z]
J=— !ﬁ - — (128)

1+BKt/zL 1+ 8K t/z l

(o] le) H

-4

Then the expectation of flux is approximately given by
2
= o

K > K
J=———1- Bffz —1 . (129)

1+ BKOt/z 1+ BKot/z KO

Now for ﬁﬁot/ z << 1, the equation (129) becomes approximately
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J = o= o = 2 ’ 130
1+ B8R (1 + (o /RDD)t/z (130)

o

Thus the average flux is given by the deterministic equation for the parameter ﬁ effec-
tively increased by a factor depending on the square of the coefficient of variation of
K,. When (130) represents a local average flux, equation (130) is consistent with the
direct fit of the drainage equation (29), since d is greater than B for all locations.
Including the local variation of K, evidently compensates partially for the incorrect
assumption that 6h/dz = 0, by effectively decreasing conductivity for each value of 6.
Indeed, dh/dz is negative for the 1-m plots during drainage, so that numerically flux is
less than conductivity.

Spatial distribution of flux

The spatial distribution of K_ is usually log-normal because the scale factors a are
found to be distributed in that way. This result is a consequence of the scale relation:

InK =21Ino +1InK. (131)
o m

Equation (131) includes the assumption that 8, is constant. The result still holds,
however, if 6, is normally distributed, and this is often the case. The distribution of 1n J
is deduced from

In J=1n K - In(1 + BKOt/z). (132)
When t is sufficiently large,
In J = 1n(Bt/z) (133)

and the flux reduces to a single value determined by the common paramcterﬁ obtained
from scaling, provided the variation of the regression coefficient ¢ is negligible. In
general, the distribution of 1n J eventually assumes the distribution of 1n c. Initially
for t = 0, the flux is log-normally distributed, being identical to K. For sufficiently
small t, (132) becomes approximately

InJ=1n K - BK t/z. (134)
o o

Thus when (134) holds, flux is approximately log-normally distributed with a reduced
skewness. Standard deviation for the distribution described by (134) is given approxi-
mately by

olln J] = |1 - BKot/ZI o[ln K ] (135)

where IA(O denotes the geometric mean. Therefore for sufficiently small t such that (134)
is valid the standard deviation of 1nJ is reduced as time progresses.

The asymptotic behavior of flux indicated by (133) and (134) implies that the dis-
tribution of 1n J corresponding to spatial variation of K will be cut off at large K
values. Thus values of K, greater than a certain cut-off value given by

Kc = 2z/§t (136)

will contribute little to the extreme end of the flux distribution. Although the above
concerns the distribution of flux for unit hydraulic gradient, the conclusions also apply
to the actual flux described by equation (30). This is so because the drainage scale factors
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w of (56) are also log-normally distributed. Indeed, for the 1-m plots the scales a and w
are essentially equal for all locations.

In contrast to flux, the cumulative seepage begins without variation and eventually
assumes the distribution of In a. That is, after sufficiently long time the cumulative
seepage equals

% In(BK t/z) + ? 1n o. (137)
m
B B8
Thus, ultimately the spatial variability of the soil locations is reflected by the measured
variability of the cumulative seepage. Again the variability of 6, has been neglected in

(137). In view of the scale relation (38) and (35), in general the term zc(f, — 6,) must
be added to (137).

Exact statistics of seepage and flux

The above discussion applies only to the asymptotic behavior of the flux distribution
for scaled drainage profiles. In this section, an exact treatment which requires direct
computation of the statistics of (132) from the distributions of K_ and c is provided.
Previously, the variation of the regression coefficient c was neglected. Here the combined
variation of ¢ and K is taken into account. Scaling of the soil properties is assumed,
so that 8 is common to all locations. Again these results will apply to the actual measured
drainage scaled with equation (29) as well as for unit hydraulic gradient condition.

Another random variable defined by k = K /c is log-normally distributed if both
K, and c are log-normally distributed. The probability distribution of k will be denoted
by P(k). Expected cumulative change in water content is

Els] = [ aGo) P(R) dk (138)
where

20O = 6 = 6 = £ In[l + gke/z], (139)
and the expected cumulative seepage equals

2E[c] E[A]. (140)

The average seepage (140) assumes that ¢ and A are independent random variables,
which is approximately the case if K and c are independent. It should be noted when
applying (138) that the simple drainage equation (139) remains valid only for t such that
A <6,. The probability distribution of the cumulative change A is

k()
P(A) = g—Af P(k')dk' (141)
where 0
k(a) = z(eBA - 1)/8t. (142)

That is, (142) is the value of k that corresponds to A and satisfies equation (139). The
integral in (141) represents the cumulative probability for a value of A.

Cumulative seepage is distributed as the independent product of ¢ and A. Since the
distribution of ¢ is narrow, seepage has essentially the distribution of zcA. Variance of
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Ais

o.i = E[Az] - E[A]z, (143)
and variance of cumulative seepage equals

zz{oi oi + &2 ci + 32 ci}. (144)
The expected logarithm of flux is

E[1n J] = E[1n K] - BE[A] (145)
where

E[ln Ko] = E[1ln k] + E[ln c]. (146)
and variance satisfies

var[ln k] = var[ln KO] + var[ln c]. (147)

The logarithm of flux is distributed as the difference, In K, — BA, or InJ — 1lncis
distributed as 1n k — BA(k). Variance of 1nJ is

var[ln J] = var[ln k - BA(k)] + var[ln c]. (148)

The arithmetic mean of flux and variance of can be computed as follows. Mean flux is

3= (149)
and variance is
o> _ 2,2 2 -2 2 35% 2 (150)
J—z{ocv +c” v +(3t oc}
where
\)2 = var [-g—ﬁ-]. (151)

Usually, the distribution of k for each location r is found to be log-normal:
1

P (k) =
21 o k
r

expl-(In k - v )%/252] (5

where . and 02 denote the mean and variance of 1n k, respectively. This is the local
distribution. The index r can specify a collection of locations occutring with frequency
w, in a particular population of similar soil locations. A pooled distribution representing
both local and spatial variability for R locations is then given by

R

P(k) = w P_(k).
er rr (153)

It is the probability distribution (153) that determines the statistics of the random
functions of k, i.e., of steady state conductivity.

The utility of scaling is now evident. Averages of cumulative seepage and flux can be
computed with respect to a single parameter rather than require a multi-variate average
as discussed by Warrick ez @/, (1977).
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Spatial Extension of Conductivity

Before the various formulae for average seepage and flux can be applied to the
experimental field, it is necessary to ascertain conductivity at every location. Although
conductivity was measured for only a few locations, it can be estimated for all locations
by using similarity of soil properties. The scale factor distribution associated with scaling
pressure head provides an extension of conductivity measured in the 1-m plots to the
entire experimental field. All that is required by the procedure is an estimate of the
scale mean conductivity and an assumption of equality of scale factors derived from
pressure head and conductivity. This assumption is the principle of scaling and is verified
for the 1-m plots, as well as for some other soils (Wartrick, Mullen, and Nielsen, 1977).
Conductivity is then generated by its scale relation.

Because the scale factors satisfy the constraint of average equal to unity, the magni-
tudes of scales and scale mean conductivity depend on the number of locations. This
is demonstrated as follows. Consider the scaling of conductivity for a subset of locations.
Leta,, ..., ag denote a set of scale factors satisfying the scale relation

2
Kr =a. Km (r=1, ..., R) (159

and the constraint

1
E z Clr = 1. (155)

r=1
Notice that the conductivity is not required to satisfy a simple exponential model. Now
lee K, (@=1,..., Q with Q < R denote a subcollection of K,. New scales

’

ag relative'to a new scale mean K/ can be computed for the Q locations. The new scales
satisfy Q

z on('[ = 1. (156)

q=1

K =a'2 K' and
rq qQ m

Vol

The scale means K and K, are related by the mean conductivity for the subcollection
of locations:

1 2 < 2 1 - 2
== = i - = ] ]
K Q z qu Q Z arq Km ) aq K (157)
q=l -=l q=l
where
PR Y
1/2 _ 1 1/2
K "L Ko (158)
=1 1
The new scales are related to the original a by

' /1 Q (159)
a = o - o1 .
q r Q z r
q s

Now if the average in the denominator of (159) is less than unity, then the new scales
are greater than the originals for every location. Moreover, the scale mean conductivity
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for the subcollection of locations is less than that of the entire set. The opposite holds if
the denominator is greater than unity. Similar rescaling of the pressure head for a subset
of locations again yields (159); however, the scale mean pressure head for the subset
increases if K | decreases, and conversely.

Equation (157) provides the basis for estimating the conductivity for a set of R
locations from measurements on a smaller set of Q locations, when the scales ay, ..., ap
are known from the scaled soil-water characteristics. Furthermore, the two sets of loca-
tions need not overlap if the soil is similar over the combined set of locations.

Matching of scale distributions

A general method based on equation (157) for matching scale factor distributions and
spatially extending conductivity will now be established.

Two different sets of scale factors will be denoted by @ and a’. The number of scales
in each set is denoted by N and N, respectively, and these numbers correspond to the
number of locations. Scales satisfy the normalization constraints:

1

— = l ' =
N o 1 and ¥ o 1.

Now leta, (r=1, ... ,R)anda’(q=1, ..., Q) withR < Nand Z < N’represent
two subcollections of scales which correspond to conductivity measurements assumed
taken from the same sample distribution. For example, the two subcollections could
be scale factors from two different scaling experiments within similar soil, such as the
experimental field plots and the 1-m plots, and associated with all locations at the same
depth. Here conductivity measurements for a particular depth are assumed to be
obtained from the same sample distribution (population) for a similar soil. This is a
fundamental statistical assumption. The expected mean of the conductivity sample
distribution is denoted by K. Conductivity for each location is given by

2
Kr = o Km (r=1, ..., R) and

é Kl;l (¢=1, ..., Q.

R
K=l K and K' =
R T

Q
D,
q
q=1
are estimates of K with standard errors
Ox = v/YR  and Ot = v'//Q,
respectively, where

R
\)2=—-]-'—Z (K —K)2 and

Now the means

O

R-1 T
r=1
Q
v'? = ——Qfl 2 (Kc'l - k"2
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are the sample variances. The scale mean conductivity K. can be estimated from the
known scales and K, by equating estimates of K:

R
1 2 1 .2,
= + == . 160
K RZ"‘er q/, % n (160)
r=1 =1
Assuming a fixed distribution for the scale values @, an estimate of the error in K, is
given by Q
I W
°%k T Q ®q %k'* (161)
m
q=1
The error in estimated conductivity K at each location q is
Ogr = 017 Opue 162
ke 1 K (162)

If in addition @ are subject to error, then the effect of this on K’ must be included,
and (162) is not valid in that case. Thus the scale distributions are matched and the
proper scale mean conductivity K is estimated relative to another set of scales a’. A
method to estimate scale mean pressure head h relative to another set of scales is
based on the following equation:

Q
=4 A N T
h—thr-QZa (163)
r=1 =

Note that scale matching methods are not unique. Analogous methods based on
definitions of an average other than the arithmetic mean can be constructed. This is
expected, since there does not exist a single ‘‘best’’ way of defining scale factors.

Results and Discussion: Scaling

Hydraulic conductivity: finite difference estimates

Soil-water storage and flux for the four 1-m plots were computed for 15 cm intervals
down to the 120 cm depth. Conductivity was calculated at the 60, 75, 90, 105, and
120 cm depths, using direct finite difference estimates of flux and hydraulic gradient
based on pressure head differences between the 60 and 120 cm depths. The exponential
model in its linear form (32) was least squares fit to the estimated conductivity for
the 20 soil locations. Parameters for (32) and regression statistics are given in table 1.
The regression was restricted to conduction of positive or downward flux, so that the
logarithm has a defined value. This was necessary because the direct finite difference
estimates of conductivity did not involve prior data smoothing. Such estimates of con-
ductivity are expected to represent the largest possible measurement error, but are the
least biased. The steady state water content (initial value) given in table 1 is the actual
measured value, and the estimated steady state conductivity K, (initial value) is a
gcomctrlc mean value. As seen in table 1, generally both the parameters K, and f
increase with depth, and the standard errors of estimate of 1n K are approx1matcly
homogeneous over locations. Correlation coefficients, which range between 0.68 and 0.82,
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indicate that the exponential model adequately describes conductivity, within measure-
ment error. Standard errors of 6, and f8 are indicated by parentheses. Typically, the
initial value of water content 6, had the largest measurement error, and the error in 6
ranged between 0.001 and 0.005 after 2 days of drainage.

The finite difference estimates of conductivity used in table 1 were scaled with the
model (33) in terms of an approximate saturation variable 6/, and for s, equal 1 over
all locations. Estimated parameters and scale factors dctermmed relative to a common
value of b are given in table 2. The parameter B for the exponential model (31) in
terms of water content equals b/6,. Ideally, for perfect similarity, the parameters
obtained by scaling would equal those obtained by an independent direct fit of the
conductivity model for each location. Table 2 when compared to table 1 indicates that
scaling of conductivity holds approximately. Although the pattern of variation of K, is
different in tables 1 and 2, the standard error of estimate of 1n K is only slightly 1ncrcased

TABIE 1.

REGRESSIONS FOR HYDRAULIC CONDUCTIVITY EQUATION (31) FOR 20 LOCATIONS
IN THE 1-M PLOTS. PARENTHESES INDICATE STANDARD ERRORS. 0 DENOTES THE
STANDARD ERROR OF ESTIMATE. SAMPLE SIZE IS N AND CORRELATION COEFFICIENT
ISR. K, (CM/DAY) IS THE GEOMETRIC MEAN.

Depth
cm 6, K, B o[1nK] N R
PLOT 1
60 0.422 (.010) 2.80 22.3 (6.0)  0.782 16 0.70
75 0.415 (.014) 3.56 26.6 (6.4)  0.750 16 0.74
90 0.411 (.012) 4.50 31.8 (7.3)  0.784 16 0.76
105 0.409 (.004) 4.53 41.6 (9.1) 0.869 17 0.76
120 0.426 (.009) 5.21 46.9 (10.5)  0.868 16 0.77
PLOT 2
60 0.411 (.010) 2.55 24.8 (6.5)  0.856 14 0.74
75 0.412 (.012) 3.83 26.1 (6.3) 0.839 14 0.77
90 0.410 (.007) 4.84 29.8 (6.4)  0.794 15 0.79
105 0.414 (.007) 5.73 324 (6.7) 0.807 15 0.80
120 0.420 (.010) 6.66 35.3 (6.9)  0.805 15 0.82
PLOT 3
60 0.414 (.015) 0.94 33.3 (11.0) 1.058 16 0.63
75 0.421 (.020) 2.07 344 (8.8)  0.935 16 0.72
90 0.427 (.015) 3.43 37.8 (7.0) 0.811 16 0.82
105 0.428 (.013) 3.05 40.2 (8.6) 0.855 16 0.78
120 0.429 (.017) 3.47 33.1 (5.9)  0.772 17 0.82
PLOT 4
60 0.382 (.011) 3.23 25.3 (6.1 0.771 15 0.75
75 0.385 (.010) 4.01 28.5 (6.7) 0.791 15 0.76
90 0.391 (.010) 4.97 36.5 (9.7) 0.914 15 0.72
105 0.394 (.006) 4.90 35.1 (10.4) 0.995 15 0.68

120 0.415 (.006) 5.35 36.6 (10.0)  1.009 15 0.71
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Fig. 1. Scaled conductivity for the 60, 75, 90, Fig. 2. Conductivity versus water content at the
105, and 120 cm depths of the 1-m plots. Degree 60 cm depth in the 1-m plots. Curves are given by
saturation s equals 8/6. Solid line represents the equation (32). Solid lines are based on table 2 and
scale mean conductivity with parameters b = 13.0 broken lines on table 1.

andK_ = 3.79 cm/day.

in table 2. The most important statistic here is the standard error of estimate, since it
determines the accuracy of conductivity predicted by the model. Indeed, the uncertainty
in the parameters K and 3 caused by the considerable measurement error in conductivity
allows a range of possible values for these parameters. The estimated value of b is 13.0
and the scale mean value of steady state conductivity K., is 3.79 cm/day. Scale factors
in table 2 obtained with the scale relation (38) correspond to an estimated geometric
mean of K. Scaled conductivity for the entire 20 locations is shown in figure 1 where
the solid line represents the scale mean value. Data in figure 1 were coalesced with the
scale relation (38), that is, each conductivity measurement is divided by the squared
scale factor of the locations. Pooled standard errors of estimate of 1n K and degree
saturation are 0.89 and 0.06, respectively.

Figures 2 and 3 depict the fit of the exponential model (31) for the 60 and 120 cm

TABLE 2.

PARAMETERS AND SCALE FACTORS FOR THE SCALED CONDUCTIVITY EQUATION
(33) WITHs, = 1. 6, ARE THE VALUES IN TABLE 1. b = 13.0 AND K, = 3.79 CM/DAY,
WHERE K IS THE GEOMETRIC MEAN.

Depth PLOT 1 PLOT 2
cm K, B o[1nK] w K, B o[1nK] w

60 5.79 30.8 0.835 1.236 4.65 31.6 0.894 1.107
75 5.09 31.3 0.765 1.159 6.18 31.5 0.865 1.277
90 4.45 31.6 0.784 1.083 5.62 31.7 0.797 1.218
105 2.73 31.8 0.903 0.848 5.29 31.4 0.808 1.181
120 2.24 30.5 0.941 0.769 4.74 31.0 0.818 1.118

PLOT 3 PLOT 4
60 0.84 31.4 1.059 0.469 6.42 34.0 0.830 1.301
75 1.58 30.9 0.940 0.645 5.72 33.8 0.809 1.228
90 1.95 30.4 0.843 0.718 4.14 33.3 0.918 1.044
105 1.66 30.4 0.893 0.662 4.36 33.0 0.996 1.073

120 2.81 30.3 0.778 0.861 3.81 31.3 1.020 1.003
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Fig. 4. Scaled conductivity for the 60 and 120
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Fig. 3. Conductivity versus water content at the equals 6/6,. Solid line represents the scale
120 cm depth in the 1-m plots. Curves are given mean conductivity with parameters b = 13.0
by equation (32). Solid lines are based on table 2 and K, = 3.79 cm/day. Letters A,B,C, and D
and broken lines on table 1. denote measured values for the four plots.

depths, respectively. The broken line is determined by the parameters of table 1 and
the solid line by those of table 2. Figure 4 shows the scaled conductivity in terms of
approximate saturation for the 60 and 120 cm depths. In figures 2 through 4, the letters
A, B, C, and D denote data for the four 1-m plots. The graphs shown in figures 2 and 3
indicate that conductivity is not exactly linear for semi-log coordinates, showing pro-
gressive deviation for lower water content values. This suggests that the simple ex-
ponential conductivity model requires correction terms at lower water content, as de-
scribed by equation (96). However, accuracy of the present estimate of hydraulic head
gradient used to calculate conductivity does not warrant an improved fit provided by
such a complex model. Corrections to the estimation of conductivity deviates from an
exponential model, the scale factors still describe the relative position of measured con-
ductivity cutves.

Estimates of arithmetic mean and standard deviation of K along with corresponding
scale factors are listed in table 3. These estimates ate obtained by transformation to a
log-normal distribution, assuming a homogeneous normal distribution of errors in 1n K
at each location. The method follows equations (105) and (106), and uses the standard
error of estimate of 1n K given in table 2. The scale mean K | corresponding to the
arithmetic means of table 3 is 5.53 cm/day, and is greater than the geometric mean.
Coefficients of variation of K  are typically 100 percent of the mean value.

Uncertainty of measured conductivity also allows the possibility of scaling with the
model (34) in terms of water content. The approximate constancy of f8 in table 2
indicates that the conductivity curves are similar with a common value of 8. Scale factors
calculated relative to water content and corresponding to arithmetic mean K are given
in table 4. For table 4, the scale mean K, is 6.16 cm/day, and values of f and 8,
common to all locations are 31.6 and 0.411, respectively. Calculation of these scale
factors follows the approximate method given by equations (44) through (47), using the
values of K from table 3. Estimated error in the common f3 is 0.1. Scaling relative to a
common 8, yields substantially different scale factors for plot 4. This is so because the
6, of plot 4 used to obtain the scales in table 3 are less than those for the other plots.
That is, the 6, of plot 4 are not good estimates of water content under field saturated
conditions. Apparently, since the data begins about one day after steady state ponding
conditions, drainage in plot 4 was advanced beyond that of the other plots. The scale
factors of table 4 attribute the advanced drainage to greater relative conductivity in
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TABLE 3.

PARAMETERS AND SCALE FACTORS FOR THE SCALED CONDUCTIVITY EQUATION
(33). 6, ARE THOSE OF TABLE 1. b = 13.0 ANDK = 5.53 CM/DAY. K  (CM/DAY)

IS THE ARITHMETIC MEAN.
Depth PLOT 1 PLOT 2
cm K, o[K ] w K, o[K,] w

60 8.21 8.24 1.218 6.93 7.67 1.120
75 6.82 6.08 1.110 8.98 9.48 1.274
90 6.05 5.58 1.046 7.72 7.27 1.181
105 4.10 4.61 0.861 7.33 7.04 1.151
120 3.49 4.16 0.794 6.62 6.46 1.094

PLOT 3 PLOT 4
60 1.47 2.12 0.516 9.06 9.02 1.280
75 2.46 2.93 0.667 7.93 7.63 1.198
90 2.78 2.83 0.709 6.31 7.26 1.068
105 2.47 2.73 0.669 7.16 9.33 1.138
120 3.80 3.47 0.829 6.41 8.67 1.076

TABLE4.

SCALE FACTORS CORRESPONDING TO ARITHMETIC MEAN K_ FOR THE
CONDUCTIVITY EQUATION (34) IN TERMS OF WATER CONTENT. COMMON
PARAMETERS: § = 31.6,6, = 0.411, ANDK,_ = 6.16 CM/DAY.

Depth PLOT

cm 1 2 3 4
60 0.980 1.067 0.468 1.997
75 0.994 1.195 0.544 1.770
90 0.997 1.143 0.529 1.419

105 0.847 1.047 0.492 1.435

120 0.601 0.908 0.602 0.964

TABLE 5.

SCALE FACTORS CORRESPONDING TO ARITHMETIC MEAN K  FOR THE
CONDUCTIVITY EQUATION (36) IN TERMS OF ACTUAL DEGREE SATURATION, AND
NORMALIZED FOR THE 60 AND 120 CM DEPTHS. PARENTHETIC VALUES ARE
SATURATED WATER CONTENT. COMMON PARAMETERS: b = 14.0,5, = 1, AND
K, = 16.5 CM/DAY.

Depth PLOT
cm 1 2 3 4
60 1.083 (0.45) 1.020 (0.44) 0.448 (0.44) 2.230 (0.45)

120 0.665 (0.45) 0.868 (0.44) 0.763 (0.46) 0.922 (0.45)
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plot 4. Table 4 provides the best description of relative spatial variability, since effects
of different initial water contents 6, are removed. Moreover, when improved estimates
of saturated water content ¢ are employed with the correction method of appendix F,
the resulting scale factors for the model (36) in terms of actual degree saturation are
comparable to those in table 4. Table 5 demonstrates this for the 60 and 120 cm depths
for which ¢ is estimated from the measured soil-water characteristics. Actual ¢ for the
other depths in the 1-m plot profile was not measured. Note that the value of K,
16.5 cm/day, is considerably greater than that of table 3, as a consequence of the decrease
in degree saturation s. Estimates of conductivity, however, are not substantially changed,
since equation (36) with s, equal 1 is not defined beyond the saturation equal to 6,/¢
for each location. Indeed, the value of K | can be decreased, without altering the scales,
by defining (37) with s, equal to an average of 6,/¢.

Equality of pressure head and conductivity scale factors

Inasmuch as the pressure head was measured for only the 60 and 120 cm depths in
the 1-m plots, a comparison of scale factors is restricted to these depths or 8 soil locations.
Table 5 contains the scale factors for the conductivity model (36) in terms of actual
degree saturation with s, = 1. These scales correspond to arithmetic mean K, and are
normalized for the eight locations. Conductivity scales w in table 5 and pressure head
scales a in table 1 of Part I are compatible with respect to normalization, and both
models for those soil water properties are expressed in terms of actual degree saturation.
Thus, the scale factors are now in representations that are compatible for a proper com-
parison. Correlation of the scales a and w is demonstrated in figure 5. Error in the
scale factors, which is a consequence of local measurement error, is indicated by bars.
As is expected, error in conductivity scales is always greater than that in pressure head
scales. A regression with the constraint of zero intercept, w = Ba, yields the following
statistics: B = 1.04 = 0.10, standard error of estimate equals 0.284, and correlation
coefficient R = 0.97. Since the eight scale factors cover the range of scale values for all
locations having conductivity measurements, there is reason to expect that this regression
represents the entire profile of the 1-m plots. When examining figure 5, remember that
the bars represent the range of the errors not that of the standard deviations of the
means. Thus, within the limitation of statistical error, the scale factors @ and w can be
viewed as being equal.

The principle of scaling is valid if @ and w are identical over all locations. In actuality,
statistical and computational errors will cause « and w to differ. Thus, the principle of
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TABLE 6.

REGRESSION COEFFICIENTS ¢ FOR EQUATION (22). CORRELATION COEFFICIENT R
AND STANDARD ERROR OF ESTIMATE o. SAMPLE SIZE EQUALS 88 FOR EACH
LOCATION IN THE 1-M PLOTS.

PLOT
Depth 1 2 3 4

cm C R o C R o C R o C R o

15 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 100 O

30 0.32 0.64 0.019 0.75 0.94 0.005 0.71 0.91 0.006 0.82 0.96 0.006
45 0.61 0.92 0.011 0.5 0.95 0.006 0.62 0.93 0.006 0.72 0.96 0.007
60 0.86 0.83 0.017 0.62 0.96 0.006 0.66 0.96 0.005 0.74 0.96 0.007
75 079 0.79 0.018 0.69 0.96 0.007 0.66 0.97 0.005 0.79 0.92 0.010
90 0.97 0.90 0.012 0.80 0.98 0.006 0.66 0.95 0.006 0.97 0.94 0.009
105 0.90 0.78 0.017 0.86 0.98 0.005 0.80 0.96 0.006 1.00 0.95 0.008
120 0.89 0.76 0.017 0.8 0.93 0.010 0.66 0.97 0.005 0.97 0.97 0.006

scaling is considered to hold if @ and w represent estimates of the same expected mean
for the scale distribution of each location. This distribution of scales within each
location constitutes the local variation. Variation between locations of the estimated
mean scales is the spatial variation.

Water content profiles and cumulative seepage

Storage is the instantaneous amount of water within the soil profile down to each
soil depth and equals the integral of water content from the soil surface to each depth.
The storage at each experimental sample time was calculated by the trapezoidal rule
using the measured water content at 15 cm intervals to the 120 cm depth. Estimates
of storage were obtained for each of the four neutron access pipes in each 1-m plot for 22
sample times from 0.6 to 56.6 days after cessation of steady state ponding conditions.
The depth-averaged water content (2) was obtained by dividing the storage by the depth
for each of the depths 15, 30, 45, 60, 75, 90, 105, and 120 cm. Cumulative seepage at
each depth z is then equal to the difference in depth-averaged water content { -
multiplied by depth z where 8, is the initial value. )

Profiles of depth-averaged water content 6 and water content 8 were found to have
similar shapes during the drainage period. As a consequence, 8 and 6 were found to
satisfy a linear regression relation (22). Table 6 contains the regression coefficients c,
standard error of estimate of depth-averaged water content, and correlation coefficient
R for each depth in the 1-m plots. These regressions are based on the 88 individual
measurements of 6 and 8 at each soil location. Note that 6 and 8 for the 15 cm depth
are assumed equal. As indicated by table 6, b is usually less than 6 at all locations
because the intercept of the regression is approximately zero and c is less than 1. The
standard error of ¢ is about 0.03 for most locations.

The drainage curves for the depth-averaged water content as a function of time
satisfy the following equation:

B =6 - % In[l + J &t/z]. (164)

o 5 o
Estimated parameters for the least squares fit of (164) at each location are given in
table 7. The fit is to the means of 8 over the four neutron meter measurements, and

’
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is restricted to the first 31 days (19 points). Standard errors of estimate of § are within
the limits of measurement error, indicating a good fit. Because (164) and the regression
(22) imply that the draining profiles are desctibed by equation (29) with d equal to e,
the flux is an exponential function of water content, given by equation (28). It must be
emphasized that this conclusion is unique to the particular boundary conditions and the
validity of the regression relation (22). Table 7 shows that the initial flux J, increases
with depth. Flux as an explicit function of time is given by equation (30) and the
parameters of table 7. According to equation (164), after a sufficient period of drainage,
the spatial variability of flux is primarily due to variation in d. Five to ten days appears
to be such a period in the case of the 1-m plots.

The exponential flux model (28) can also be verified directly by linear regression for
the logarithm of finite difference estimates of flux and the water content. Table 8 con-
tains the estimates for the parameters of equation (28) obtained from such regressions.

Indirect scaling of flux

The flux described by the exponential model (28) can be scaled indirectly if the
drainage curves given by equation (29) are similar over the soil profile, and the drainage
curves are similar if equation (29) with a common value of d can be least squares fit
to the measured water content profiles. Simultaneous fit of equation (29) using a
common d for all locations was achieved with the drainage scaling program of appendix
D. Scale factors w and parameters for the scaled flux are presented in table 9. Observe
that according to the definition (59), the actual variable being scaled, that is, reduced,
is the time. Measured drainage cutves for all 32 locations in the 1-m plots are shown in

TABLE 7.

PARAMETERS FOR THE DRAINAGE EQUATION (164), BASED ON 31 DAYS OF
DRAINAGE IN THE 1-M PLOTS. SAMPLE SIZE = 19 AT EACH LOCATION. 6 DENOTES
THE STANDARD ERROR OF ESTIMATE OF WATER CONTENT.

Depth PLOT1 , R PLOT2 ,
m 8, 1, E) o 6, 1, s o
15 0.393 024 402 0.007  0.39% 0.27 903 0.005
30 0.390 0.79 485  0.005  0.393 0.65  79.5  0.005
45 0.401 255 477 0.005  0.395 1.67 674  0.005
60  0.408 487 467  0.006  0.399 372 59.8  0.005
75 0.396 6.94 520  0.005  0.401 6.28 563  0.006
90  0.399 8.95 52.0  0.006  0.403 9.04 545  0.007
105 0.401 1047 527  0.006 0404  11.16  53.4  0.007
120 0.403 11.17 535 0006 0406 1415  S53.4  0.007
PLOT 3 PLOT 4
15 0.380 0.27 825 — 0:406 137 66.6  0.004
30 0.383 0.56  61.0  0.018  0.404 3.07 642  0.004
45 0.388 0.55  69.8  0.004  0.402 5.11 58.6  0.004
60  0.393 136 69.5  0.004  0.399 6.90 535  0.004
75 0.398 283 675  0.005  0.396 820  SL1  0.005
90  0.403 5.2 655  0.005  0.395 9.33 509  0.005
105 0.406 6.68 640 0005  0.394 9.66  51.3  0.006

120 0.409 7.75 60.6 0.005 0.396 11.20 51.7 0.006
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TABIE 8.

REGRESSIONS FOR FLUX EQUATION (28) FOR 20 LOCATIONS IN THE 1 METER
PLOTS. 6, AND SAMPLE SIZE HAVE THE VALUES IN TABLE 1. o DENOTES ERROR FOR 4
AND STANDARD ERROR OF ESTIMATE FOR 1n]J. CORRELATION COEFFICIENT R.

J, (CM/DAY) IS THE GEOMETRIC MEAN.

Depth PLOT 1 PLOT 2
cm Jo d o o[ln]J] R Jo d o o[ln]] R
60 2.7 30.4 5.7 0.741 0.82 1.9 26.1 6.2 0.816 0.77
75 34 35.5 6.1 0.715 0.84 2.9 27.5 5.8 0.783 0.81
90 4.1 41.3 7.0 0.750 0.85 3.6 314 6.2 0.764 0.81
105 3.7 51.7 8.7 0.832 0.84 4.3 34.1 6.4 0.764 0.83
120 4.9 51.2 10.3 0.856 0.80 5.9 36.0 6.7 0.785 0.83

PLOT 3 PLOT 4
60 1.0 31.6 11.1 1.058 0.61 2.3 29.6 5.7 0.722 0.82
75 2.1 32.7 8.9 0.941 0.70 2.8 33.1 6.1 0.718 0.83
90 3.4 36.1 7.1 0.823 0.81 3.4 42.1 9.1 0.859 0.79
105 3.1 38.5 8.5 0.843 0.77 3.3 40.6 9.9 0.944 0.75
120 3.5 325 5.8 0.762 0.82 4.7 38.9 9.8 0.991 0.74

figure 6. The water content data shown are for 31 days of drainage and consist of 608
measurements of average values. Figure 7 demonstrates the scaling of the data in figure
6. Water content measurements were coalesced in figure 7 by plotting them in terms
of reduced time (59) for each location, relative to a common initial value 8. Ideally,
if the measured drainage curves were exactly similar, then the 8 in terms of reduced
time would coalesce into the drainage curve given by (60), which is indicated in figure
7. The measured 6 deviate from that curve with a pooled standard deviation equal to
0.008; a value comparable to the measurement error.

Examples of the scaled drainage curves for the 120 cm depth are shown in figure 8.
These curves expressed in terms of depth-averaged water content are compared with
measured values, and were obtained by multiplying calculated 6 by c. A corrected ¢
based on regression of mean differences @o - g and 6, — 6, however, is used instead
of ¢ from table 6. This c is calculated as part of the scaling program of appendix D. In
figure 8, drainage scaled in terms of 8 is converted to 6 so that cumulative seepage and
flux can be estimated directly. A drainage equation in terms of 8 with a common d for
all locations could also be scaled directly; however, the advantage of scaling in terms
of 6 is that an estimate of scaled conductivity as a function of 6 for unit hydraulic
gradient conditions is obtained.

The ‘average and standard deviation of J_ over all 32 locations equal 6.86 cm/day
and 5.06 cm/day, respectively, computed with the scale relation (56) and the scale factors
of table 9. It should be noted that these ], which are estimated relative to a common d
differ from those of table 7, for which d depends on the location. Statistical variations
allow both descriptions of the drainage profiles to be valid. Of course, the parameters
of table 7 provide the best possible fit of equation (164). In the ideal case, if the similarity
of the measured drainage curves were exact, the & (or d) obtained from independent
fitting for each location would be constant. Such an ideal situation, however, could
never be achieved with field measurements, in view of the inherent local variability.
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Thus, within the limitations of demonstrated similarity, the spatial variability of the
drainage flux is represented by the scale factors of table 9, where the variability is relative
to identical initial water contents (i.c., a common reference value 8,). It will now be
demonstrated that the conductivity manifests this same spatial variability over the soil
profile.
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Fig. 6. Soil water content versus time for
19 measurements at each of 32 locations in
the 1-m plots: Depths 15, 30, 45, 60, 75, 0.25 | | 1° |
90, 105, and 120 cm in four plots. Sample 7o 10 20 30 40 50
size = G08. TIME (days)
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Fig. 7. Scaled drainage curves for the data
of figure 6. Soil water content versus reduc-
ed time T, equation (59). Curve is equation
(60) with 6, = 0.408, 6 = 50,J, = 5.29
cm/day, and z;; = 120 cm. SCALED TIME T (days)

SOIL WATER CONTENT 6 (cm>/em")
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TABLE 9.

SCALE FACTORS w AND PARAMETERS FOR THE SCALED EXPONENTIAL FLUX
EQUATION (28) FOR 32 LOCATIONS IN THE 1-METER PLOTS. §, HAVE THE VALUES
IN TABLE 1, AND ¢ DENOTES THE CORRECTED REGRESSION COEFFICIENT.
COMMON PARAMETERS: d = 50.0, 8, = 0.408,and ], = 5.29 CM/DAY.

PLOT
Depth 1 2 3 4

can ] W c Jo @ c Jo w c Jo @ c

15 0.35 0.375 1.00 0.10 0.195 1.00 0,067 0.190 1.11 0.62 0.361 0.99
30 345 0.696 0.60 0.53 0.483 0.69 0.29 0.332 0.75 2.40 0.822 0.84
45 12.35 0.839 0.65 4.65 0.937 0.53 1.03 0.487 0.62 7.37 1.555 0.77
60 12.5 0.084 0.81 11.6 1.377 0.60 2.54 0.596 0.56 9.74 2.599 0.85
75 9.68 1.136 0.87 16.4 1.592 0.68 6.27 0.787 0.57 7.52 2.120 1.0
90 8.07 1.146 1.00 14.6 1.583 0.80 8.68 0.797 0.64 5.39 1544 1.19
105 4.82 0932 1.26 14.3 1415 0.87 5.85 0.638 0.82 5.49 1.445 1.20
120 5.45 0.648 1.22 169 1.325 0.89 11.2 0.859 0.73 9.19 1.107 1.03
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Fig. 8. Depth-averaged soil water content
versus time for 120 cm depth for the four
1-m plots. Curves are given by equation
(164) with parameters from table 9, based
on scaled flux. Circles indicate means of
four measurements and bars indicate stan-
dard deviation.
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Comparison of scale factors

Correlation of the conductivity scale factors in table 4 and the drainage scale factors in
table 9 for the 60, 75, 90, 105, and 120 cm depths is shown in figure 9. The drainage
scale factors were renormalized for those depths, so that both scale factor distributions
are compatible with respect to representation in terms of 6. A regression of conductivity
on drainage scale factors with zero intercept has the following statistics: slope equal
0.998 + 0.024, standard error of estimate equal 0.115, and correlation coefficient R
equal 0.995. Thus the scale factors can be considered as equal, for all practical purposes.
Therefore the relative conductivity over the soil profiles is essentially described by the
drainage scale factors, at least for 60 to 120 cm. Moreover, these results tend to verify
the new scale relations for flux and reduced time, (iv) and (v). Figure 10 shows graphs
of the drainage scale factor profiles for the four plots.
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Fig. 9. Hydraulic conductivity scales a versus 3
drainage scales w for the 60, 75, 90, 105, and 120 © '~ . <,
cm depth of the 1-m plots. Scales are computed < )y
relative to the scaling relations (38) and (56) in 2 %
terms of water content with f = 31.6, K,=0616 « 05 ] | |
cm/day, 6 = 50.0,J = 9.39 cm/day, and , = § 0.5 I 1.5 2 25
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Fig. 10. Drainage scale factor profiles
for the 1-m plots. Scales w are from table 9.
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The drainage scale factor profiles in figure 10 show a repeated pattern: they are
minimum at the profile ends and maximum near the middle. Scale factors a obtained
for the pressure head show a similar pattern for the entire experimental field plots (figure
8 of Part I), which seems to suggest a layer effect. This conclusion is drawn from the
correlation of w and a. Inasmuch as the pressure head and conductivity scale factors
are correlated, assuming a transitive relationship, correlation of conductivity and drain-
age scale factors implies the result. Of course, the suggested correlation of w and « can
be tested directly by scaling flux in terms of degree saturation s.

Equality of conductivity and drainage scale factors provides an immediate applica-
tion. Apparently it is sufficient to measure conductivity at only one soil location in a
set of similar soil locations. Conductivity for all other locations can then be generated
by using the scale relations and the determined drainage scale factors. Similarity for a
particular soil region is first established by examination of the drainage profile scaling.
Such a method, which is based mainly on measurement of water content, substantially
reduces the need for tensiometer installation.

Hydraulic conductivity: corrected estimates

Two methods for calculating a corrected conductivity which include the effect of
hydraulic gradient are proposed. Both methods use improved estimation of the pressure
head gradient based on drainage scale factors. Method 1 which is based on the gradient
of the scale factors is given by equations (76) and (77), and method 2 which is based
on an integral equation for hydraulic head difference is given by equations (79) and (81).

Figure 11 compares conductivity estimated by those methods with the finite difference
estimates based on pressure head gradient between 60 and 120 cm (table 1). The com-
parison is restricted to the 60 and 120 cm depths where pressure head was measured. It
should be noted that the finite difference estimates used to determine the regressions
in table 1 consistently underestimate conductivity, because conductivity over each
measured interval of water content is associated with the higher end of those intervals
(i.e., an advanced time estimate of conductivity, equation (50)), rather than with the mid-
point. This causes a corresponding underestimate of K for each location. Translation
of the regression (32) by a value of 6 equal to half the interval 6, to 8,, where 6, is the
tirst measurement following 6, would approximately correct this discrepancy, i.e.,
assign the value K to (6, + 6,)/2 instead of 6,, so that the corrected steady state
conductivity equals K exp(3(6, — 0,)/2). Cotrected values average about 40 percent
higher than original K . Moreover, K  is underestimated, because the values in table
1 are geometric means instead of arithmetic means. In any event, the regressions of
table 1 best represent the approximate graph of conductivity on semi-log coordinates.
For reasons similar to those mentioned, steady state flux J, estimated indirectly from
the drainage equation (table 7) is consistently greater than the cotresponding finite
difference estimate (table 8). The result is a greater initial conductivity for both cor-
rection methods. On the other hand, the minimum conductivity for the experimental
range of water content is usually smaller for the correction methods. This is partially
a consequence of the fact that minimum flux predicted by table 9 is usually less than
that of table 8. It is the relative value of d that primarily determined the minimum
value of flux over the measured range of water content.

The conductivity of method 1 is calculated using the parameters of scaled pressure
head (Part I, table 1) and flux (table 9) and an average gradient da/dz equal to

-0.0055, while the gradient of 6, is based on the measured finite difference estimates.
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s Fig. 11. Hydraulic conducitivity for the 60
and 120 cm depths of the four 1-m plots
estimated by two analytical methods. Method
(1): solid line is based on equations (76) and
(77) with table 1 of Part I and table 9. Method
(2): dash line is based on equations (79) and

SOIL WATER CONTENT 6 (CM‘/CM,)

028 — g5~ T3 (81) with table 11. Measured conductivity of
10g,oK (CM/DAY) log, K (CM/DAY) table 1 is indicated by a broken line.
TABLE 10.

PARAMETERS FOR LEAST SQUARES FIT OF INTEGRAL EQUATION (79).
COMMON REFERENCE 6, EQUALS 0.411.

Plot A o[A] B o[B] o[h] D.F.
1 0.896 0.031 10.22 0.61 2.7 17
2 0.762 0.043 1.81 0.65 3.6 17
3 1.051 0.076 -1.18 1.09 7.8 17
4 0.931 0.106 7.62 1.48 6.0 17

Pooled estimates:

0.973 0.094 4.78 1.34 16.3 74

TABLE 11.

STEADY STATE CONDUCTIVITY K_FOR THE 60 AND 120
CM DEPTHS IN THE ONE METER PLOTS. K AND 8 ARE GIVEN
BY EQUATION (81) AND TABLE 10.

Depth PLOT
cm 1 2 3 4
60 12.5 15.3 2.4 13.0
120 5.2 21.8 10.8 9.6
B 39.8 48.2 51.2 42.4

Pooled estimates:

60 12.2 12.0 2.6 11.5
120 5.2 16.6 10.5 9.3
B 45.2 45.2 45.2 45.2

K, = 5.52cm/day, 6, = 0.408
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Method 1 gave extreme initial values at 120 cm in plots 1 and 4, but was consistent
with the condition that pressure head gradient approaches zero at deeper depths.
Conductivity by method 2 is calculated using the parameters of table 11, which are
obtained from the estimates of A and B for individual plots given in table 10. The
parameters A and B were obtained by least squares fit of (79) to measured water content
and pressure head. In table 10, pooled estimates represent the combined four plots.
The values of B in table 10 indicate that drainage in plot 3 is distinctly different than
that of the other plots: pressure head is positive, whereas it is otherwise negative.
Indeed, substitution of the parameters of tables 1 and 8 for plot 3 into equation (82)
yields a negative hydraulic gradient, consistent with actual measurement. Similar sub-
stitutions for plots 1, 2, and 4 yield positive gradients. Therefore the pooled estimates
of A and B associated with scaling the entire 1-m plots data includes an erroneous
implication that negative hydraulic gradient conditions prevail throughout. This error
is reflected by the increased standard error of estimate of hydraulic head difference,
when the data are pooled. Evidently, plot 3 is not compatible with the scaling of
conductivity by this method. Figure 12 compares the conductivity scaled by method 2,
using the pooled estimates of K and . Even though the pressure head gradient is
incorrectly predicted by a scaled exponential flux, the scaled exponential conductivity
still seems to provide a reasonable approximation at the 60 and 120 cm depths.

In general, scaling of conductivity for the case of pressure head gradient having a
fluctuating sign requires the application of equation (70) with a d that is variable. Even
then, scaling in terms of simple exponential models for flux and conductivity may not
yield correct results. In this situation, more general model functions would be required
to properly predict the pressure head gradient.
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Fig. 12. Scaled conductivity for the correction g | 035
method based on the integral equation (79) for the 460cm
60 and 120 cm depths of the four 1-m plots. The g o030 0120¢m 0.30
dash line indicates conductivity for the pooled S
. . . 025 Ll 0.25
estimates of K and B in table 11, and the solid 00l 01 1 10 100 00 Ol I 10 100
line indicates conductivity of table 1. HYDRAULIC CONDUCTIVITY (cm/day)

Millington-Quirk conductivity

An example calculation of Millington-Quirk conductivity (90) for the 60 cm depth
in plot 1 is shown in figure 13. Using the program of appendix E, the conductivity (95)
was matched with the parameters of table 3, for 6 equal to 0.3, and the soil-water
characteristic was determined by equation (94) with the parameters of table 1 in Part I.
Here the conductivity (90) is based on 20 pore classes. Larger numbers of pore classes
yield approximately the same conductivity for water contents below 6_; however, for 6
greater than 6 the estimates that approach saturated conductivity become greater.
Upper and lower limits of 6 corresponding to physical pore size limits were assumed to
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Fig. 13. Millington-Quirk conductivity for the = 03—
60 cm depth in plot 1 of the 1-m plots. Dots S
indicate equation (90) for 20 pore classes with s
matching factor equal to 0.013 and soil-water w 02—
characteristic (94). Solid line indicates the conduc- < ‘
tivity equation (95) with parameters of table 3. =
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Fig. 14. Millington-Quirk estimate of scale S
mean conductivity for 72 locations in the experi- Z
mental field. Dots indicate equation (99) for 20 r 03—
pore classes with s = 6/6, where 6, = 0.42 and é
matching factor equals 0.041, for 8. = 0.3. ©
Soil-water characteristic (94) is determined by & o2l
a_ = —114 cm and ¢ = -11.74. Solid line S
indicates conductivity equation (95) with K = =
12.7 cm/day, B = 31.0, 6, = 0.42. Parameters 2 ol | | | ] |
for equation (96) are K, = 12.7, 6, = 0.42, 3 -4 -2 0o 2
B, =35.7,andf, = 7.2. log,, K (cm/day)

equal 0.43 and 0.1, respectively. This upper limit of 6 corresponds to a — 12 cm pressure
head. The estimated matching factor is 0.013 with a standard etror of 0.001. Although
equations (90) and (95) are matched only in the 6 interval 0.3 to 0.422, their graphs
continue to agree below this interval, and substantial departure does not occur until
6 approaches 0.1. Least squares fit of the extended equation (96) with the restriction
that K, = 8.21 cm/day yields 8, = 30.5 and 8, = —11.1, and indicates that the
logarithm of Millington-Quirk conductivity is approximately linear, except near saturated
water content.

Figure 14 shows the Millington-Quirk calculation of scale mean conductivity for the
plots of the experimental field. The conductivity (99) was calculated in terms of an
approximate saturation variable 6/6,, using the experimental field’s scaled soil-water
characteristic curve, which is determined bya,, = —114and b = —4.93, and by using
the scale mean conductivity for the 1-m plots, matched with equation (160) to the 72
experimental field scale factors. The scale mean K equals 12.7 cm/day and was obtained
by matching scale factors for the 60 and 120 cm depths in the 1-m plots and expeti-
mental field. In figure 14, the conductivity is presented in terms of 6 for 6, equal 0.42.
Matching of Millington-Quirk conductivity in the approximate saturation interval 0.71
to 1.0 gave a matching factor equal to 0.041 with a standard error of 0.015.

Again Millington-Quirk conductivity was based arbitrarily on 20 pore classes. Increas-
ing the number of pore classes tends only to increase conductivity approaching satura-
tion. Least squares fit of the extended model (96) with the restriction that K equals
12.7 cm/day and 6, equals 0.42 yields 8, = 35.7 and 8, = 7.2 with correlation coeffi-
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cient of 0.98. The fit of (96) for 50 pore classes yields B, = 33.9 and 8, = 0.5 with
correlation coefficient of 0.99. Obsetve that the Millington-Quirk estimate of scale
mean conductivity for the experimental field plots is thus based on two matching
procedures: (1) the conductivity measured in the 1-m plots is matched to the experi-
mental field scale factor distribution—a spatial extension of conductivity, and (2) the
Millington-Quirk conductivity is matched to the exponential model of the scale mean—
an extension of the conductivity function (96) to lower water content values. In figure
14, the Millington-Quirk conductivity is compared with the exponential model (95)
when extended beyond the range of measurement. For the most part, the logarithm of
Millington-Quirk conductivity is approximately linear, but it is slightly less than that
predicted by the exponential model. This result, which also appears in figure 13, is
qualitatively consistent with the relationship of the exponential model and measured
conductivity seen in figures 2 and 3.

Predictions of the conductivity for each location in the experimental field are ob-
tainable from the scale relation (100). The error in this Millington-Quirk method of
estimating conductivity is then dependent on the errors in K, the matching factor
K,/K,., and the scale factor a. Apparently, the variance of 1n K(s) propagates as a linear
combination of the variances of the logarithms of K_, K/K, (= K,./K,), and a,
neglecting variations in other relevant parameters.

Results and Discussion: Flux

Variability of cumulative seepage and flux

The implications of spatial variability of the hydraulic conductivity are demonstrated
in figures 15 and 16 for the 120 cm depth in the 1-m plots. Figures 15 and 16 depict
the depth-averaged water content and flux under unit hydraulic gradient conditions
for the two extreme values of steady state conductivity occurring in plots 1 and 2. In
those figures, the depth-averaged water content, 8, defined by equation (27) and the
flux, which equals — 2d6/dt for z positive downward, are based on the parameters of
table 2 for the scaled exponential conductivity. For the sake of comparison, however,
the 8 curves are plotted with the same initial value 6 without altering estimates of
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Fig. 15. Depth-averaged water content at the Fig. 16. Flux at the 120 cm depth versus time
120 cm depth versus time for plots 1 and 2 of the for plots 1 and 2 of the 1-m plots. Curves are
1-m plots. Curves are given by equation (27) with given by equation (3) for figure 15. Circles indicate

parameters of table 2. measured flux, based on finite difference estimates.
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Fig. 17. Depth-averaged water content for the 240 cm Fig. 18. Soil water flux at the 240 cm

depth of the experimental field versus time for two values depth of the experimental field versus time
of scale factor a. Hydraulic conductivity parameters corres- corresponding to figure 17.

pond to those given in table 2.

seepage and flux. Then the difference of cumulative seepage between plots at any time
simply equals the difference in § multiplied by the depth, 120 cm. Thus corresponding
to the scale factors 0.769 and 1.118 the predicted difference in cumulative seepage after
25 days is 2.4 cm. The mean flux compared with actual finite difference estimates in
figure 16 manifests an asymptotic convergence property characteristic of scaled conduc-
tivity: after 10 days of drainage the flux within each plot is approximately the same.
Figures 17 and 18 depict the simulation of cumulative seepage and flux for scale factors
that are typical of the entire experimental field plots. The scale factors are 0.4 and 2.0,
and the parameters used in figures 15 and 16 are assumed for comparison. At the 240
cm depth, the difference in cumulative seepage is 14.4 cm in 5 days and 20.4 cm in
25 days. These figures also show the asymptotic convergence of flux, but to a less extent.
As indicated by equation (137), the residual difference in cumulative seepage after a
sufficient drainage period is proportional to the difference in the logarithms of a, and
the variability in 1n a is a direct indication of variability in cumulative seepage.

Approximate drainage curves

At deep depths the condition of unit hydraulic gradient is often found to be a
reasonable assumption, and the drainage curve for the depth averaged water content
(storage divided by depth) can be described approximately by equation (27), when the
conductivity satisfies a simple exponential equation (25). Figure 19 demonstrates the
prediction of depth-averaged water content based on the scaled conductivity for the 120
cm depth in the 1-m plots. In figure 19, the deterministic drainage curve (B) obtained
by substitution of a mean K into equation (27) and the local stochastic average curve
(C) obtained from equation (111) are compared with the directly fit drainage curve
(A) of equation (164). Curve (A) is based on table 7, and curves (B) and (C) are based
on the scaled arithmetic mean conductivity and standard deviations of table 3. For the
curves (B) and (C), /§ equals b/6 ¢, and the values are 34.3, 36.4, 45.9, and 32.3 for
plots 1 through 4, respectively. The best possible fit of equation (27) is represented by
that of curve (A). For all locations, the deterministic curve eventually gives values lower
than those measured, whereas the average curve, which is adjusted to account for local
variation of K, yields higher values. Evidently, the correction to the average curve (C),
which depends on the local variance of K, is over estimated. This can be a consequence
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Fig. 19. Drainage curves for the depth-
averaged water content at the 120 cm depth
in the four 1-m plots. Curve (A) is given by
equation (164) with table 7. Curves (B) and
(C) ate the deterministic and local average
forms of equation (27), respectively, based
on table 3. Bars indicate standard deviation
of measurements. ° TIME (oAvsz) .orms mnvsz)
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of equating the entire standard error of estimate to the standard deviation of K . Never-
theless, after 25 days of drainage, curve (C) provides good predictions of the cumulative
seepage. The cumulative seepages at 30 days based on the (A) curves are 11.2, 11.8, 9.5,
and 11.5 cm for the four plots. Such verification of the prediction of local seepage given
by equation (27) is a necessaty preliminaty to estimation of the spatial average of cumula-
tive seepage.

Figure 20 shows the spatial average and standard deviation of the depth-averaged
water content at 120 cm in the 1-m plots. That is, figure 20 represents the average over
plots of the deterministic drainage curves (B) of figure 19. This average was calculated
with equation (122), neglecting local variances of K, while considering only the effect
of the spatial variance v2. Thus, the spatial average is obtained by subtracting the
average difference A from a reference value of average 9 Standard deviation indicated
by dash curves is that for A given by (125), so that this does not include the variation of
8,. Indeed, the indicated standard deviation is that associated with spatial variation of
cumulatlvc seepage, not with that of storagc The average parameters used in figure 20
are K, = 5.08 cm/day, [3 = 37.2, and 9 .404, while the spatial standard deviation
of Ko isv, = 1.66. Now since the average local standard deviation of K is 5.7 and is
greater than v, the major contribution to the total variance (126) required in equation
(122) is from the local variability of K, which was neglected in figure 20. For the same
reason, the indicated standard deviation is mainly due to local variability of K . Thus
for this particular range of scale values, spatial variability observed at the 120 cm depth
can be viewed as actually a consequence of local measurement errors. Similar results
and conclusions hold for the average 8 which is simulated with the K, associated with
the experimental field’s scale factors for 120 cm, table 12. On the othcr hand, simula-
tion of 8 for the 240 cm depth in the experimental field shows mainly spatial variability.



148 Simmons, Nielsen, and Biggar: 1. Hydraulic Conductivity

TABLE 12.

MEAN AND STANDARD DEVIATION OF K (CM/DAY) SIMULATED WITH THE
PRESSURE HEAD SCALE FACTORS FOR PLOTS OF THE EXPERIMENTAL FIELD.

Depth 60 cm 120 cm 240 cm
PLOT K, o K, o K, o
1 2.9 3.9 5.6 4.6 2.7 2.2
2 5.6 4.4 3.9 1.7 6.3 2.8
3 2.5 1.3 1.9 1.2 45.6 40.8
4 6.3 6.1 2.0 1.5 798.4 591.0
5 4.8 5.7 3.1 1.8 2.3 1.3
6 3.5 2.1 9.9 6.1 2.6 2.0
7 2.6 1.6 4.8 4.0 24.4 19.4
8 4.2 2.2 3.6 2.1 515.8 191.0
9 2.4 1.7 6.0 3.2 3.6 2.0
10 11.3 5.8 5.6 2.7 14.8 9.7
11 10.5 11.4 7.4 8.6 74.1 45.2
12 20.3 9.4 6.9 5.1 86.7 39.1
Avg. 6.4 4.6 5.1 3.5 131.4 78.9
std. dev. 5.3 2.3 254.4
K_ 11.1 15.6 _ 15.6
B 45.1 37.2 37.2

Simulation of experimental field flux

The spatial extension method associated with equation (160) was applied to the 12
plots of the experimental field, and drainage was simulated with the pressure head scale
factors for the 120 and 240 cm depths, by using equation (127) for unit hydraulic
gradient conditions. The matched conductivity measurements were obtained from the
scaled conductivity at 60 and 120 cm in the 1-m plots. Cumulative seepage predicted
by this method represents the maximum possible drainage that could occur for a sat-
urated soil profile with spatial variability typical of the experimental field, when there
is no evaporation or transpiration. Actual seepage at deep depths could be estimated by
subtracting total water lost through evapotranspiration.

Table 12 contains the mean steady state conductivity and standard deviation for the
60, 120, and 240 cm depths in the experimental field. An estimate of K and f3 restricted
to each depth is also provided, where f8 is an average obtained from the 1-m plots.
Standard deviation of K was estimated from that of the local distribution of 1n a, by
assuming a log-normal distribution. At the 120 cm depth, the mean and standard
deviation of K  from table 12 are 5.07 cm/day and 2.33 cm/day, respectively. The
graph of cumulative seepage at this depth in the experimental field is nearly identical
to that of figure 20, since the statistics are essentially the same. This result assumes that
B is constant over locations. Of course, variation of 8 could invalidate the result. How-
ever, acommon f3 is 1mp11cd by the principle of soil similarity.

Simulated average 8 for the 240 cm depth in the experimental field is shown in
figure 21, which is based on table 12. The corrected average 8, which is based on equa-
tion (122), is substantially greater than the corresponding deterministic estimate based
on the average K  equal to 131 cm/day (dashed cutve). Drainage curves for two other
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Fig. 23. Mean depth-averaged water content for
the 120 cm depth in the 1-m plots. Triangles de-
note the expected mean based on figure 22, and
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tion. Solid curve indicates the deterministic estimate
based on averages § = 30.8, K, = 4.9 cm/day,
00 = 0.404, and ¢ = 0.85. Circles indicate meas-
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Fig. 22. a. Cumulative probability of the pooled
distribution for 1n (K /c) at the 120 cm depth in
the 1-m plots.

b. Pooled probability distribution of 1n (K /c),
equation (153) with K = 4.9 (0 = 5.4)and ¢ =
0.85 (0 = 0.15). The class interval length equals 0.4.
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Fig. 24. Mean flux for the 120 cm depth in the
1-m plots. Expected mean and standard deviation
are indicated by triangles and bars. The deter-
ministic estimate corresponding to figure 23 is
indicated by a dashed curve. Measured average
based on table 7 is indicated by a solid curve.

extreme values of K, 2.6 and 382 cm/ day, are also indicated in figure 21. At this
depth, the main component of variability i is, spatlal with a standard deviation of K
equal to 254 cm/day. The initial value of 9 is that used in figure 20. But bccause
cumulative seepage and flux do not depend on initial depth-averaged water content,
this value is arbitrary. Simulated flux is simply the negative slope of the drainage curve
multiplied by depth.

Distributions of water content and flux

If the local variability of K is described by a log-normal distribution, the statistics of
cumulative seepage and flux can be estimated with the pooled distribution of 1n (K, /c)
given by equation (153). Moreover, the distributions of random functions of K, and ¢
can be obtained.

Figure 22 is the pooled probability distribution of 1n (K,/c) for 120 cm in the 1-m
plots, and is based on table 2. This distribution, which is the sum of four normal distri-
butions, describes both the local and spatial variability. The graph of cumulative prob-
ability for figure 22, which is nearly linear, indicates that the pooled distribution is
again approximately normal, with mean and standard deviation of 1n (K /c) equal
1.19 and 0.89, respectively. In figures 23 and 24 the average and standard deviation of
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depth-averaged water content and flux corresponding to figure 22 are shown for some
selected drainage times. The measured flux, which is indicated by a solid curve in
figure 24, is the mean of the best fit curves (A) of figure 19. A dashed curve indicates
the deterministic flux given by equation (132) with mean values of 8, K, and c equal to
30.8, 4.9 cm/day, and 0.85, respectively. In this case, the deterministic curve approxi-
mates the mean flux computed from the sample distribution, figure 22. The experi-
mental flux, however, is less than both estimates based on the unit hydraulic gradient
assumption. This would be the expected relationship, since the hydraulic gradient was
usually negative. Expected values of depth-averaged water content (assuming that 6,
equals 0.404 without error) and measured values are compa.red in figure 23. In that figure,

the solid curve represents the deterministic cstlmatc given by equation (27) with the
mean values of 8, K , and c. Both the flux and B are computed with a common value of
B3, so that scaling holds. As seen in figure 23, the expected standard deviation envelopes
both measured and deterministic values of 6. For the most part, measured standard
deviations also fall within that envelope. Consistent with the qualitative behavior pre-
dicted by equation (127) the expected b is greater than the deterministic estimate,

since expected seepage is reduced by the variance of K . Moreover, the deterministic
cumulative seepage is greater than that actually measured after 10 days, which is con-
sistent with the greater estimate of deterministic flux.

Figures 25 and 26 show the cumulative probability of the difference cA, equation
(139) multiplied by c, and the flux at some selected times. These distributions correspond
to figure 22. By 3 days of drainage the distribution of cA is essentially normal, reflecting
the normal distribution of 1n (K /c). Initially, the flux, being equal to K , is log-
normally distributed; but after three days, the skewness is diminished; and the distribu-
tion’s tail is cut off by the asymptotic property of equation (132). By 30 days the flux
distribution has nearly reduced to a single value, as a consequence of soil similarity.

In general, the pooled distribution of K, for local and spatial variability is given by a
weighted sum of log-normal distributions associated with each location. The distribu-
tion for each location represents local (within sample) variation, while the weighted sum
of these (pooled) represents spatial (between samples) variation. This pooled distribu-
tion for a particular set of soil locations may or may not again be log-normal, depending
on soil similarity of the set of locations. Indeed, a pooled distribution can be multi-
modal, and thus not be a simple log-normal distribution. In the case of the 1-m plots,
the pooled distribution for 120 cm (figure 22) is again log-normal. Inspection of the
pooled scale factor distribution for 120 cm in the plots of the experimental field (figure
9, Part I) reveals the same result. The distributions for the 240 and 300 cm depths in the
field, however, appear to be multi-modal.

Initially for t = 0, flux given by the drainage equation for unit hydraulic gradient
is distributed as K , and as time proceeds the skewed flux distribution is cut off by the
asymptotic behavior of that equation. Therefore in a similar soil, which is characterized
by a single value of 3, the distribution becomes narrow and skewness vanishes. This
result is observed in figure 26. Thus convergence of the flux distribution to a single
value is a distinguishing property for a set of similar soil locations. Apparently, only
sets of locations belonging to nonsimilar soil groups, that is, with variable 8, can exhibit
large flux variations after initial drainage has taken place. Of course, the concept of
scaling model functions for soil-water properties is at best an approximation, and com-
mon parameters such as § will have statistical variation, which can cause deviations from
an ideal behavior. Regarding this possibility, it is of interest to consider the investigations
of Warrick, Mullen, and Nielsen (19774) on the prediction of flux, for which a log-
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figure 22 for the 1-m plots.

normal distribution was found to hold at all times. In contrast, for the 1-m plots the
log-normal distribution vanishes within 3 days. Those authors also find that the mean
flux is greater than the deterministic value, whereas the opposite holds in figure 24.
This difference in results can be attributed to the introduction of the coefficient c:
Warrick ez a/. (1977) did not distinguish between water content and the depth-averaged
water content. The observed relation of mean flux and measured flux depends on the
prevailing pressure head gradient. Evidently, the gradient was positive in the Panoche
soil experiment, whereas it was mainly negative in the 1-m plots (except for plot 3).
Residual variation of flux after elapse of a sufficient drainage period is due to variation
in B, since asymptotically the flux satisfies (133) and becomes distributed essentially as
- 1n B, neglecting variation in c. Inspection of the cumulative probability for 8 and
In B given by Warrick ez @/. (1977; figure 1) indicates that f3 is approximately log-
normally distributed as well as 1n f8; and moreover, the f8 distribution is narrow, which
suggests that the middle 50 percent of the conductivity sample could be identified with
a common mean value of 8 by neglecting a small error. Indeed, the scaling operation
applied to the 1-m plots determines a common representative f—an average value.

Of course, the direct fit of the exponential conductivity model (table 1) indicates
that f3 is actually a random parameter; however, the coefficient of variation is relatively
small: c.v. = 0.19 compared with c.v. = 0.9 for the Panoche soil. Now, the coefficients
of variation of flux and 3 are approximately related asymptotically by

GJ/J = oB/B, (165)
where variation in ¢ has been disregarded. Observations for 1n J (Warrick, Mullen, and
Nielsen, 19774; fig. 2) are consistent with equation (165) for 10 days of drainage, and
perhaps sooner, but statistics were not provided. Furthermore, cumulative probability
for 1n J at 10 days is just a translation in time of the distribution of 1n B (Warrick,
Mullen and Nielsen, 197754; fig. 1) according to equation (133) with ¢ equal 1.

In conclusion, perhaps a claim that flux is always log-normally distributed is not
justified, at least when based on variation of K alone. To understand the origin of
variability in 3, it is important to note that # depends on the range of measured 6 and
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the sample size, and is subject to statistical error within the conductivity estimate at
each soil location (Fluhler, Ardakani, and Stolzy, 1976). Also, in the case of the 1-m
plots, an inadequate determination of the pressure head profile might have caused a
reduced estimate for the variance of 8. The asymptotic behavior of flux, however, still
remains a useful property for testing the validity of scaling when applied to a particular
soil.

Summary and Conclusions

Within the limitations of local measurement errors and an approximate evaluation
of the pressure head gradient, the scaling of conductivity was adequately achieved with
an exponential function of water content. Verification of scaling for the conductivity,
however, was not as certain as that for the pressure head. This occurred because estima-
tion of conductivity is confounded by calculational error, whereas pressure head, being
a directly measured property, does not include that difficulty. On the other hand,
theoretical methods for calculating conductivity from soil pore distributions, such as
the Millington-Quirk method, are consistent with the scale relations, since the principles
of soil similarity are implicitly included in their derivation. Those methods are particu-
larly useful because conductivity estimates are extended into the dry range of water
content. Moreover, by using the scaled soil-water characteristic curves and associated
scale factor distribution, the conductivity can be predicted at all locations within a field
from measurements taken at only a single location: a spatial extension of conductivity.
Application of the Millington-Quirk method with the model soil-water characteristic
equation (94) was found to be consistent with an exponential conductivity model. But
variation in the steady state infiltration value of water content 6, presents a special
difficulty to the spatial extension of conductivity, since etror in conductivity depends
exponentially on the error in 6. Therefore an accurate determination of 6, at each loca-
tion is required in order to estimate conductivity from its scale relation.

For the 1-m plots drainage experiment, the flux was scaled and scale factors estimated
indirectly by scaling the water content profiles. Those results suggested that flux satisfies
an altered scale relation, which differs from the original relation and is identical in form
to that of the conductivity. All indications are that the method is applicable to any
similar drainage experiment involving a region of similar soil. Using the scale factors for
flux, the conductivity can be calculated over the entire profile; and the calculation,
which is based on an integral of Darcy’s law, requires measurements of pressure head
at only two extremes of the soil profile. Although the methods that were presented
utilized simplified equations, each involving only two parameters, those methods can be
generalized for more complex functional relations. For example, a more general drainage
equation given by

P
do _ N k
c 3 = I, exp{ Z_.ék (e-eo) } (166)
k=1
could be used in conjunction with the integral equation
22
J P .
o .
g exp{ Z (Gk-Bk) (6-60) } dz = zy) = 2z, + 112 - hl (167)

1 ° k=1
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to simultaneously estimate and scale the conductivity, equation (96). Considerably more
mathematical detail is involved, but the concepts are not changed.

As an example application of the matching of scale distributions, flux can be estimated
for the experimental field at a depth for which conductivity is unknown. An unknown
flux J/ at depth z" is related to the flux J at depth z and the measured water content

profile as follows: 2"

3

J =3t

8 dz + J', (168)

2z

where the depth below the surface is positive and z’ greater than z. Of course, this
conservation equation must be applied to depths below the sink of crop roots. At each
location with scale factor a, J could be obtained as

J = az Km(e) (1 + Ah/Az) (169)
where K_ () is derived from measurements at depth z in the 1-m plots, and the required
pressure head gradient is calculated by usual finite difference techniques using the scaled
soil-water characteristics of the experimental field. A best choice for depth z is such
that a is least variable over locations. The utility of this method is the reduction in
conductivity measurements and the avoidance of a need to estimate evapotranspiration.
Indeed, this method allows estimation of the flux using measurements only below the
soil surface.

Provided that the fundamental principle of scaling is satisfied, that is, pressure head
and conductivity scale factors are essentially equal, the stochastic behavior of water
movement through a spatially varying region of similar soil can be characterized com-
pletely by a distribution of scale factors. The scaling method could provide a particular
advantage if combined with computer simulation models of water movement in
combined soil and plant systems. This is so because predictions obtained from deter-
ministic simulation models must be treated as stochastic estimates of actual behavior
under field conditions. When scaling is applicable, the number of Monte Carlo com-
puter runs required to represent an average over entire crop seasons can be considerably
reduced, since the number of random parameters is reduced. Now, because the eventual
fate of fertilizer nitrate in the environment is inseparably linked to variations in water
movement, prediction of nitrate movement and best irrigation practice depend on the
effects of soil variability. The scaling method, which applies to regions consisting of
similar soil, provides a simplified method for dealing with the spatial variability of
soil.
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APPENDICES
APPENDIX A

Method to minimize sum of squares and estimate model parameters

A general method for nonlinear least squares fitting which is applicable
to scaling is derived below. The function f represents any soil water property
or transformation of such a property.

The experimental measurements are LNPRE for locations r = 1, ..., R

and values i = 1, ..., n_. Let

y =fx; a, b

. s bys eees D) (x=1, ..., R) @)

be the assumed functional relation between two properties x and y. Assume X 4

are measured without error and Y are experimental estimates of Yri with

error €__. given b
ri & y

~

ri - Yri + Eri (2)
where E[e_.] = 0, var[e_.] = 02 and Cov[e e .] =0
ri ’ ri ri’ ri’ “rj *
Assuming a normal distribution of errors, the minimum function (Chi-square)
by the method of maximum likelihood is
R Tr
M= I = ei./cii (3)
r=1 i=1 .
or
R Oy 2 2
M= I 'Z [f(xri; a, b) - yri] /Ori (4)
r=1 i=1

The parameters 815 cevy @ and common parameters b = (bl’ ceey bm) are

R

estimated such that (4) is minimum.
In general f is not a linear function of its parameters and therefore the
following iteration method is employed to minimize (4). The function (1) is

. . s . o
linearized about some initial estimates a; °, b° of the parameters:
"""aR

o o
f(x; as b) = f(x; a

o of o o
, b))+ 32~(x, a_, b )(ar - ar)

o o
+ g Gl By - b )

~ % ) S 6
Then y . =y, +A4. (ar a’) + B, (b - b°) (6)
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. "o o .0
for (r =1, ..., R), 1i1=1, ..., nr) where Vi = f(xri; a, b )

H ao, bo)

= —_— . o o = ——
and Ari = % (xri’ a, b)), B (xri’ r

rij 9b
for (j =1, ..., m) and b in column vector form. Now let

. =A _,a_ +B_. 8, (7)

o o
where . = _— ., 0 =a_ = a and = - .
ei ™ Yri = Yri* % r r’ B=b-b

Then minimize the following approximate minimum function:
R Mr ~ 2

M= I I gri (g = npy) (8
r=1 i=1

= 2 .
where 8.4 = l/ori. The parameters Gps cees Ops and B are determined by the

conditions
Moo @=1, .00y B and Moy G=1, .ees m 9)
o, 3Bj

Conditions (9) give

n

r
iil Ay o +B B-n ), =0 (=1 ..y B) (10)
and
R Mr
E .E Brij(Ari oL + Bri B - nri) 8.y = 0 (=1, «voy m) (11)
r=1 i=1 :
Define
n
r 2
Cr = ‘E Ari 8.i (r=1, ..., R)
i=1
n
r
Drj = ‘Z Ari Brij 3 Gg=1, ..., m)
i=1
n
r
Foap= 2 Gk=1, .u., m)

nr
G, = I An 8. (r=1, ..., R)
i=1
n
r
Hrj = iil Brij Nei Bri G=1, ..., m) (12)

Then the following system of equations is solved:

T . _ -
Cr oL + Dr B = Gr (r=1, ..., R) (13)
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(mxm) (14)

I~
o
Q
+

I~
]
™

[
™
=]

r=1 r

Substitution of oL from equation (13) into (14) yields

R DD
r
r=1 r Cr r

T
r

R
=z |m -—LEF (15)
=1 T

Equation (15) is an mxm system of linear equations for B. With B determined,
o are found by back solving equations (13).
Special methods are required to determine an initial estimate of the
o

parameters a., ..., ao, b°. These depend on the particular function f. The
1 R

corrected parameters are given by

o
a =a. + oL (r=1, ..., R)

b =1t° + 8. (16)

Iterations using the corrected parameters (16) as new initial parameters are
continued according to the scheme until a desired accuracy is obtained. The
convergence of this iteration method depends on the function f and initial

parameter estimates.

Special method to obtain initial parameter estimates

The soil water characteristic model function is

h(s) = a(eb(s-l)

-1). (17)
Using second order Taylor series expansions, the model (17) has the following

approximate equations:

h(s) = alb(s-1) + b>(s-1)2/2] (18)
and
s(h) = % [h/a - h2/2a2] + 1. (19)

Estimates of a and b at each location can be obtained by standard
polynomial regression methods using either (18) or (19). An average common
b can be taken as initial common parameter. Also, initial estimates of a,
and b can be obtained by using the above iteration method with the approximate
model function (19) and "any'" initial estimates for the parameters. In fact,
equation (19) was found to provide as an acceptable model for soil water charac-
teristics, even though as an approximate series expans%on it does not correspond
to the model (17) with equal parameters. The convergence, of course, depends

on the range of h.
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Best scaling results were obtained by taking saturation s as the dependent
variable y and pressure head h as the independent variable x. The convergence
of the iteration method is strong for the model (17). Equal a_ are taken as
initial estimates and the values of a and b need only be of proper order of
magnitude, provided they are within the domain of the model function (17).
Variances were assumed equal: Oii = oi; and the minimum sum of squares of
deviation in saturation at each location were used to provide an estimate of
variance 02 at each location, in a way similar to standard regression techniques
Computer programs provided in the Appendices are in Fortran IV language
adapted for a Burroughs B6700/B7700 computer system. Plot subroutines are

those implemented by the University of California Computer Center. All

programs use data input from disk files.

GENERAL SCALING PROGRAM

[
100 $RESET FREE

200 $CET SEPARATE
300 $SET LIBRARY

400 SUEROUTINE SCALE(NsMsyNRyX»sYsAsEHyNCOEF »Gy ITMAXy REROR)
500 DIMENSTION X(M) o Y (M) G (MY o NRIND s ACN) s RCNCOEF)

600 DIMEHSION AD(C100)sEO(S) »11(100+5) vE(100)

700 DIMENSION SE(100)sSEQ(100) s NCUM(101)

300 DIMENSION H(S5)sZ(5) sR(Tr5) yAMAT(S96) r BVEC(S)

1000 C AR AKIK IR IR IRHORIR KK RO KK KKK KA K KKK R KKK KKK
1106 C  CHI SQ. FIT OF Y=F(X3A(K)sE) FOR K=1 TO N GROUFS OF
12060 €  DATA (X»Y). REQUIRES FUNCTION F(X;ArE) AND DERIVATIVES
1360 € GIVEN AS SUBFROGRAM DERIV. R(NCOEF) ARE COMMON COEFFS.
1400 € INiTIALLY G IS TiE STD., ERROR OF Y GIVEN FOR EACH

1500 C  GROUF. NUMBER OF ITERATIONS IS ITMAX.

1600 C  NR IS THE NUMRER OF DATA FOINTS IN EACH GROUP

1760 C HORKKAK AR KA KRR AR KKK AR KOKIOOKK KRR IORKIOKK KKK KKK
1800 ITHAX=ITMAX+1j BEROKO=BEROR

1900 DO 100 K=1yNi NCUM(K+1)=NCUM(K)+NR(K)

2660 DO 100 I=NCUM(K)+1sNCUM(K+1)$ STDE=G(I)

2160 G(IY=1.; IF(STOE.EQ.0) GO TO 100

2200 GCIY=1,/G(I)k%2

2300 100 CONTINUE
23%0 € WEIGHT EQUALS 1 IF STD ERRORS ARE ZERO

2400 1 IT=IT+15 CHI=03 SSQA=0

2500 DG 2 I=1yNCOEF FRBVEC(I)=03 DO 2 J=1,NCOEF
2600 2 AMAT(Is ) =0

2700 DO 10 K=1,Ni C=0i E(K)=0j SE(K)=0

2890 DO 3 I=1yNCOEF$ D(KyI)=03 H(I)=03 DO 3 J=1,NCOEF
2960 3 R(I»J)=0

3500 DO % I=NCUM(K)+1y NCUM(K+1)

31060 CALL DERIV(XC(I) rACK) yByFyWr2Z)

3260 F=Y(I)-F3 FF=FXFi SE(K)=SE(K)+FF

3300 CHI=CHI4GCT)XFF§ GUW=G(I)%XW

3400 C=C+6WAxWi E(RK)=E(N)+GWXF

3550 DO 4 II=1,NCOEFi H(II)=H(II)+Z(II)XFXG(I)
3600 D(Ky TT)=D(Ky ITI)+GWXZ(IT)

3700 L0 4 JJ=1»NCOEF

3800 4 RAIIyJD=ROITyJNIH+ZCITIIKZ(IIIKG(I)

3700 S CONTINUE

4000 E(K)=F(K)/C? SSA=SSA+SE(K)

4100 D0 6 I=1yNCOEFF DC=D(KyI)/C

4200 BVECC(I) =RVEC(I)+(H(I)-D(Ky IIXKEC(K) )

4300 DO 6 J=1+NCOEF

4400 & AMAT Ty )=ARMAT(Iy D) H(RCI»J)-DCXD(Ky ) )

4500 00 7 I=1+NCOEF
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4600
4700
4800
4900
5000
$100
5200
5300
5400
$500
5600
5700
5800
5900
6000
6100
6200
6300
$400
6500
6600
6700
6800
6900
7600
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
3200
8300
8400
8500
84600
8700
8300
8900
9000
9100
9200
9300
9400
2500
9600
9700
98060
9900
10000
10100
10200
10300
10400
10500
10600
10700
10600
16900

10006
11100
11200
11300
11400
11500
11600
11700
11800
11700
12000
12100
12200
12300
12450
12500
»

[sEeNsisEeNsReNy]

10
XK

16

17
18

19
20
21
XK
25
26

30

“ N >

40
50
100

200

D(KsI)=D(KyI)/C

CONTINUE

CORRECT COEFFS. ANDN STORE ITERATION RESULTS.
IF(IT.EQ.1)GO TO 157 IF(CHI.GT.CHIO) GO 7O 18
IT0=1IT-17 SSQA0=88Q% CHIO=CHI

DO 16 I=1yNCOEF

BOCI)=R(I)

DO 17 K=1sNi SEO0(K)=SE(K)

AD(K)=A(K)

IF(IT.EQ.ITMAX)GO TO 25

IF (BEROR.LT.BERORO)GO TO 25

CALL SOLVE(AMAT,»BVEC»ZyNCOEF)

BEROR=03 DO 19 J=1,NCOEF3 BEROR=BEROR+ABS(Z(J)/B(J))
B(J)=R(J)+Z(J)3 BEROR=100%EEROR/NCOEF

DO 21 K=1yNi DA=0¢ DO 20 J=1,NCOEF
DA=LA+D(KrJ)%XZ(J) # DA=E(K)-DA

A(K)=A(K)+DA

TFITY VEW.1)FPRINT/» “INITIAL CHI SQ.=‘»CHIv’ TOTAL SSQG=",S8Q
GO 12 1

FRINT RESULTS OF ITERATIONS.

§80=8SQRUs CHI=CHIO

D0 26 J=1yNCOEF

BCH=RBOC))

FRINT/»ITOy ITERATIONS? FINAL CHI SQ.=’yCHI»’ TOTAL S5Q=’,SS0
FRINT/»*

PRINT/»  HUMBER OF GROUFS='sN

FRINT/» NUMRER OF DATA FOINTS=’»NCUM(N+1)

PRINT/y" ¢

PRINT/»’A COEFFICIENTS AND STD. ERROR FOR EACH GROUP’
NCOEF=NCOEF+13 NT=NCUM(N+1)-NXNCOEF

DO 30 K=1sNi3 A(K)=A0(K)
SE(K)=SART(SEQ(K)/(NR¢K)-NCOEF))
FRINT/yKyACK) ySE(K) » “D.F o=’ yNR(K)~NCOEF
NCOEF=NCOEF-13 PRINT/»’ *

FRINT/»’COMMON COEFFS. B =‘»B

PRINT/+’FPOOLLED STD. ERROR=’,SART(ESA/NT)r DeF o=’ s NT
PRINT/v»’ERROR TOLERANCE IN COEFFS. B =‘»BEROR
RETURN

END
SUBROUTINE SOLVECArYs»XrN)

THIS SUBROUTINE SOLVES THE MATRIX EQUATION AXX=Y FOR X WHERE
A IS A TWO DIMENSIONAL MATRIX OF ORDER N AND X AND Y ARE
ONE DIMENSIONAL VECTORS OF ORDER N

THE ORIGINAL MATRIX A IS DESTROYED DURING THE SUBROUTINE

DIMENSION A(Ss6) rY(N) ¢ X(N),LOC(S)»CK(S)
NFP=N+1
DO 1 I=1,N
ACI/NF)=Y(I)
CK(I)=0.0
DO 100 I=1sN

IF=I+1

FIND MAX ELEMENT IN I-TH COL
AMAX=0.,0

DO 2 K=1yN

IF (AMAX-ABS(A(KYI)))3+2,2

IS NEW MAX IN ROW PREVIOUSLY USED A PIVOT
IF(CK(K)) 4,4,2

Loc(1) =K

AMAX=ABS (AKY I))

CONTINUE

MAX CLEMENT IN I-TH COL I8 A(L:I)
-=1.0C(D)

CK(L)=1,

FERFORM ELIMINATION» L IS PIVOT ROWy ACLyI)» IS PIVOT ELEMENT
DO SO J=1sN

IF(L-J) 695006

F=-A(JryI)/A(LsI)

L0 40 K=IPvNP

A K =AUy K)+FXACLPK)

CONTINUE

CONTINUE

DO 200 I=1yN

L=L0C(I)

X(I)=A(L/NP)/A(LI])

RETURN

END

159
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APPENDIX B. Computer program for scaling pressure head.

100 $RESET FREE

200 $55T AUTORIND

300 $FIND = FROM OBRJECT/SUER/STAT, FORTRANLIRRARY

400 $CET SUPRS

S00 FILE 7(NIND=DISK, FILETYFE=7yTITLE="AVGHTHETA")
600 FILE G(KIND=REMOTE, MAXRECSIZE=22)

700 FILE 4=0NEMCOEFFyUNIT=DISKySAVE=30

800 DIMENSION S(176)9sH(176) yERR(22)»NODE(8) yA(8)
900 DIMENSION ALFHA(B)» TH(8)»SE(8)

1000 LIMENSION XTITLE(6)y YTITLE(S)

1100 COMMON NCUM(100)

1200 DATA XTITLE(1)/*-HEAD®*/yYTITLE(1)/*SAT.*/
1300 C %% FROVIDE THE INITIAL PARAMETERS HERE; A(NPLOT) AND Z.
1400 DATA A/0%-200./

1500 DATA Z/-1./

16006 C %k A IS CIVEN AS THE K OF FHYSICAL MODEL

1700 DATA NFLOT»IASK/8+0/

1800 DATA TTMAXs BEROR/450/

1900 IFCIASK.EQ.1IREADCAY/) NFLOT»D»Zy (ACI) »I=1,NPLOT)
2000 C %x PHYSICAL MODEL FUNCT1ON DEFINED HERE

2100 SFN(XvByZ)=1,+ALOG(1.+X/B)/2Z

2200 HEN(Xy By Z) =BX (EXP (ZX(X~14))=1.)

2300 SHALL=1

2400 FRINT/+’LIST OF DATA SCALED’

2500 [0 2 IFLOT=1,NPLOT

2600 READCZy/) NCODEsNIEPTHy THSATyNODECIPLOT)

2700 NCUMCTFLOTH+1)=NCUMCIFLOT)+NODE(CIPLOT)

2800 K1=NCUMCIFLOT) t15 K2=NCUMCIFLOT+1)

2900 READC79/) (S(I)yI=K1sK2)

27450 READC7y/) (ERR(I)»I=1,NODE(IPLOT))

3000 READ(79/) (H(I)yI=K1,K2)

3050 READC7y/) (ERRCIDyI=1yNODECIFLOT))

3100 IF(THCIFLOT) WNE.O) THSAT=TH(IFLOT)

3200 SLOW=13SHIGH=05HLOW=1000, 3 HHIGH=0

3300 00 1 I=K1,K2% S(I)=S(I)/THSAT

3460 HH=H(I)} S5=5(I)

3500 IF(SS.LT.SLOW)SLOW=SS;IF(SS.GT.SHIGH)SHIGH=SS
3600 IF(HH. LT o HLOW)HLOW=HH} IF (HH+GT s HHIGH) HHIGH=HH
3700 1 CONTINUE

3300 IF(SLOW.LT.SMALL)SMALL=5L0W

3200 ACIFLOT)=-1./(Z¥ACIFLOT))

4000 IF(IASK.GT.0) GO TO 2

4100 NE=NODE(IP.OT)

4200 FRINT/»IFLOT» “LOCATION’ yNCODEy ‘DEFTH’ ¢yNDEPTH» SAT. THETA’»THSAT
4300 FRINT/»*SATURATION LIMITS “»SLOWs “TO’ ySHIGH
4400 PRINT/» 'FRESSURE HEAD LIMITS ‘sHLOWy’TO’yHHIGHy 'NUMBER=’¢sNR
4500 WINT/9? 7

4600 2 CONTINUE

4700 NTOTAL=NCUM(NFLOT+1)

4800 PRINT/»/TOTAL DATA FPOINTS SCALED =’yNTOTAL
4900 CLOSE 7

S000 FRINT/Z » 7 3AOKKOK KK KKK KK KKK KKK KKK K XOK KKK XK 7

5100 FRINT/» "FHYSICAL MODEL SCALED’

5200 FRINT/» ‘FOR SOTIL WATER CHARACTERISTICS”

5300 FRINT/»’ FUYSICAL MODEL IS’

54006 FRINT/ v S-1=1/7 LOG(1+H/E)

U500 FRINT/ 2 KKKKKAKKORK AR K K KK KKK KKK AR KKK KK 7

$600 PRINT/y ‘% % X % X %X X%’

5700 FRINT/»‘STANDARD ERROR IN SATURATION’

5800 CALL SCALE(NFLOTyNTOTALsNODE»H»SrA»ZySE» ITMAX» REROR)
5900 PRINT/»* % % % % X% X’

6000 PRINT/»'COEFFS. FOR EQ. S-1=1/Z LOG(1+H/B)’
6100 DO S IPLOT=1,NPLOT

6200 ACIFLOT)=~1,/(ZXACIFLOTY)) 3 B=ACIFLOT)

6300 EM=BFY1./%5 BAVUG=RAVGHR

6400 S CONTINUE

£500 FRINT/v’Z='+2

5400 FRINT/» "B="y (ACI) » I=1sNFLOT)

6700 C %% COMFUTE SCALE FACTORS AND SCALE MEAN FUNCTION
L4300 R=NPLOT

4700 EM=R/IMs BAVG=RAVG/R} FAC=[AVG/EM

7000 FRINT/»y’SCALE MEAN FUNCT1ON COEFFICIENTS’
7100 FRINT/ 9 BM=’yBMy "Z="+2Zy " AVG. E=',»BAVG

7200 WRITE(Ay/) NPLOTyEM»Zy (ACI)»I=1sNFLOT)

7300 PRINT/»’ “3PRINT/»’? ? 2 7 7 7 7 ?*

7400 FRINT/»XrkkxXx GIVE AN IASK VALUE FOR PLOTS: O » 1 » 2

7500 PRINT/ vy’ INFUT =1 TO EXIT’
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7600 READ/» IASK

7700 IF(IASK.LT.0)G0O TO 50

7800 IF(IASK.LT.1) GO TO 12

7900 INT=10,%SHALLS SMIN=INT/10.

8000 INT=10~INT# ISFACE=INTX10

8100 CALL HASH;CALL ISETIT(100yISFACEr10rINT»0r250.»SMINv1s)
8200 12 FRINT/» “SCALE FACTORS AND STD. ERRORS’

8300 PRINT/»’STANDARD ERIKOR IN PRESSURE HEAD’

8400 D0 15 K=1sNFLLOT$# NR=NODE(K)

8500 IF(IASK.EQ.3) EBM=BAVG

8400 ALFHA(K) =EM/A(K)

8700 K1=NCUM(K)>+1s K2=NCUM(K+1)

8800 SSE=07 DO 14 I=K1,K2

8900 H=~HEN(S(I) 1 ACK) 9 Z)

9000 14 SSE=85E+ (HO-H(I) ) k%2

?100 STIE=SART(SSE/(NR-2)) 3 SE(K)=STDE

9200 S5U=S50+SSEXKALFHA (K) X%k2

9300 IF(IASK.LT.1) GO TO 15

2400 D0 15 I=K1,K27 HA=ALFHA(K)XH(I)

9500 CALL DATAINC*X*yHAYSC(I))

9600 195 CONTINUE

9700 FRINT/» " *

9800 PRINT/»’SCALES ALFHA=’» (ALPHA(I)»I=1/NPLOT)

9900 PRINT/»’

10000 FRINT/»’STH, ERRORS=’»(SE(I)yI=1yNPLOT)

10100 WRITE(4y/) (SECI)sI=1sNPLOT)

10200 LOCK 4

10360 FRINT/»’ /

10400 FRINT/»’SUM SQ. OF DEV. FOR SCALE MEAN FUNCTION’,SGQ
10500 PRINT/» *STD. ERROR=’ySQRT(SSA/(NTOTAL-2))r’DsF+=’yNTOTAL-2
10400 IF(IASKLLT.1)G0 TO S0

10700 N0 20 I=1y?3 HO=25.XI

10800 SAT=GIN(-HIykM»Z)

10700 20 CAalL DATAINC"C®yHDySAT)

11000 PRINT/y’ *% FRINT/»’

11050 FRINT/y’HOLD FOR FPLOT’# READ/,HOLD

11100 FRINT/»’ FLOT OF SCALED DATA’7 FRINT/»’

11200 CALL PRNTIT(2y2sXTITLE»SyYTITLE,4+6)

11200 IF(IASK.LT.2)60 TO %0

11400 CALL HASHICALL ISETIT(100yISFACEs»10sINT»Or250,SMINv1,)
11500 [0 30 IFLOT=1,NFLOTS DO 30 I=NCUMCIPLOT)+1sNCUMCIPLOT+1)
11600 30 CALL DATAINC"®*yH(I)»S(I))

11700 Do 40 IFLOT=1yNFLOT

11800 DO 40 I=1,93 HD=20.%I

117200 SAT=SFN(-HIACIFLOT)»2)

120600 40 CALL DATAIN(®C®sHDySAT)

12100 FRINT/Z » 7 0KKKKRKCAKOKAOKK KKK KKK KORKOKOK KK KKK KKK K KK KKK KKK KK KKK 7
12200 FRINT/»’FLOT OF DATA AT EACH LOCATION’iPRINT/y’
12200 CALL PRNTIT(2s2sXTITLEsS»YTITLE»4+6)

124060 S0 STOF

12500 END

12600 C %% DERIVATIVES OF FHYSICAL MODEL
12700 C *x SFECIAL TRANSFORMATION A=1/ZR.

12800 SUBROUTINE DERIV(HrA»Z»SyDSDA»DSDZ)
12900 AZH1=A%ZXH+1.5 S=ALOG(AZH1)/Z

13000 DENA=H/AZHL

131¢0 DSLZ=(-C+AXDSDA)/Zi S=8+1.

13200 RETURN

13300 END

$

L

100 $RESET FREE

200 $SET SEFAKRATE

300 $SET LIBRARY

400 C xx LEAST SQ. FIT OF Y=F(X#A(K)>yB) FOR K=1 TO N GROUFS OF
SO0 C %%k DATA (XsY). REQUIRES FUNCTION F(X#?AyB) AND DERIVATIVES
400 C x4k GIVEN AS SUBROUTINE DEKIV. B IS COMMON COEFF.

700 SUBROUTINE SCALE(NsMyNRyUsYsAyBySEy ITMAX,» BEROR)
800 DIMENSTON UCM) s Y(M) yNR(N) yA(N) pSE(N)

900 DIMENSION A0(100)ySED(100)yC1(100)sC2¢100)

1000 COMMON NCUM(100)

1100 ITMAX=1ITMAX+15 BEROR=BERORO

1200 1 IT=1T+1751=0352=0455Q0=0

1300 D0 3 K=1sN

1400 SUMXF =035 SUMZF =03 SUMXX=03 SUMZZ=0+ SUMXZ=0

1500 SE(K)=07 DO 2 I=NCUM(K)+1»NCUM(K+1)

1600 CALL DERIV(UCI)sA(K) yBrFeXrZ)

1700 F=Y(I)~Fj SE(K)=GE(K)+FAx2
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1800 SUMXF=SUMXF+X¥F i SUMZF=SUMZF+ZXF

1900 SUMXX=SUMXX+X%X§ SUMZZ=SUMZZ+ZXZ

2000 2 SUMXZ=SUMXZ+X*Z

2100 C1(K)=3UMXZ/SUMXXi C2(K)=3UMXF/SUMXX
2200 $1=51+SUMZZ-SUMXZXC1(K)

2300 S2=82+SUMZF-5UMXZ*C2(K)

2400 SSU=SSA+SE(K)

2500 3 CONTINUE

2600 IF(IT.EQ.1) GO TO 4

2700 IF(SSQ.6T.8SQ0) GO 70 6

2800 4 ITO=IT-1% SSQ0=55Q+# BO=R

2900 D0 S K=1»,N# SEO(K)=SE(K)

3000 S AD(K)=A(K)

3100 [} IFC(IT.EQ.ITMAX) GO TO 8

3200 IF(BEROR.LT.BERORO) GO 70 8

3300 IFCITWEQ.1) PRINT/y INITIAL SSQ=’,SSQ
3400 UB=$2/513 IF(B.NE.O)BEROR=ABS(100%DE/B) $ B=B+DB
3500 V0 7 K=1,Ni DA=C2(K)-DBXC1(K)

3600 7 ACK)=AK) +DA

3700 GO TO 1

3800 C AR KKACAKACK KK A 3K KA OK K A KKK K KKK 5K 3K 3K K 30K K KK K K oK X oK Xk
3700 C x4 PRINT RESULTS OF ITERATIONS

4000 8 §50Q=55007 B=RO

4100 PRINT/sFINAL SSQ=’ySS0Asy’ FOR ITERATIONS='»ITO
4200 FPRINT/»* A COEFFICIENTS AND STD. ERROR FOR EACH GROUP‘
4300 D0 9 K=1yN# NT=NT+NR(K)-2

4400 SE(K)=SQRTI(SEQ(K)/(NR(K)~2))i A(K)=AG(K)

4500 9 PRINT/sKoA(K) pSE(K) v ‘DoF o=’y NR(K) -2

4600 PRINT/»’ COMMON CGEFF. B=’»B

4700 PRINT/y’ FOOLED 8TD. ERROR=’+SART(SSQ/NT)

4800 FRINT/9’ ERROR TOLERANCE IN B =’sBEROR

4900 RETURN

5000 END

*

APPENDIX C.
Computer program for scaling hydraulic conductivity.

100 SRESET FREF

200 $GET AUTORIND

300 $BIND = FROM OBJECT/SUB/STAT» FORTRANLIBRARY
400 $SET SUFKRS

500 FILE 7(KIND=DIGKy FILETYPE=7»TITLE="CONDK®)
600 FILE &6(KIND=REMOTEs» MAXRECSIZE=22)

700 FILE A4=0NEMKCOCFFyUNIT=DISKySAVE=30

800 DIMENSTON S(440)»C(440)9Y(440)yNODE(20)rA(20)
900 DIMENSION ALPHA(20)sTH(Z20)ySE(20)

1000 DIMENSION XTITLE(&)y YTITLE(S)

1100 COMMON NCUM(100)

1200 DATA XTITLE(1)/°L0OG K*/y»YTITLE(1)/*SAT."/

1300 C %x SFECIAL CASE! LINEAR REGRESSION MODEL
1400 C %xx SOLUTION IS EXACT - REGUIRES ONLY ONE ITERATION.
1500 C x¥x A IS GIVEN AS KO OF CONDUCTIVITY MODEL.

1600 DATA NPLOT» IASK/20,0/

1700 DATA TITMAX» BEROR/1v0/

1900 C %% FHYSICAL MODEL FUNCTION DEFINED HERE

2000 SFN(XrArB)=1,+ALOG(X/A)/B

2100 CFN(XsArEB)=AXKEXF (BX(X-1))

2200 SMALL=1

2300 FRINT/»’LIST OF DATA SCALED’

2400 DO 2 IFLOT=1,NPLOT

2500 READN(7y/) NCODEsNDEFTH» THSATyNODECIFLOT)
2600 NCUM(IFLOT+1)=NCUMCIFLOT)+NODECIFLOT)
2700 K1=NCUMCIFPLOT)+1% K2=NCUM(IPLOT+1)

2800 READ(79/) (S(I)yI=K1,K2)

2900 READC7+/) (CCI)»I=K1¢K2)

3000 IFCTHCIFLOT) WNE.O) THSAT=TH(IFLOT)

3100 SLOW=13GHIGH=07CLOW=100, i CHIGH=0

2200 DO 1 I=K1,K23 S(I)=S(I)/THSAT

3360 CC=C(I)#ST=6(1)

3400 IF(SS.LTSLOW)SLOW=8S7 IF(SS.GT.SHIGH)SHIGH=5S
3500 IF(CC.LTCLOW)CLOW=CC?IF(CC.GT.CHIGH)CHIGH=CC
3595 Y(I)=ALOG(C(I))

3600 1 CONTINUE

3700 TF(SLOW.LT.SMALL)SMALL=SLOW

2E00 IF(IASK.GT.0) GO TO 2
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3900 NR=NODEC(IPLOT)

4000 FRINT/y LOCATION’ »IFI.OT»‘ DEPTH’yNDEPTHy’SAT. THETA’»THSAT
4100 PRINT/» “SATURATION LIMITS ‘ySLOW, ‘TO"»SHIGH

4200 FPRINT/»’ CONDUCTIVITY LIMITS’»CLOWs‘TO’yCHIGH» 'NUMBER=’/yNR
4300 PRINT/y "

4400 2 CONTINUE

4500 NTOTAL=NCUM(NFLOT+1)

4600 FRINT/» TOTAL DATA FOINTS SCALED =',»NTOTAL

4700 CL.OSE 7

4300 FRINT/Z v KK000KKKKKPRORRORKOKKOK KKK KKK KKK KKK /

4900 PRINT/s’ MODEL CONDUCTIVITY SCALED’

an0n0 FRINT/»* FHYSICAL MODEL IS’

5100 FRINT/y’ K=K0 EXF(E(S-1))’ .

3200 FRINT /9 2 KRKHORKAKKKK K KKK KA AR KKK

5215 C %% REGRESSION VARIABLE IS Y=LOG K.
$225 C *x SFECIAL TRANSFORMATION FOR LOG VARIABLES.

5300 FRINT/y ‘% % % X% X X X’

5400 FRINT/»’ STANDARD ERROR IN LOG K’

9500 CALL SCALE(NPLOTsNTOTAL»NOI'Ev+S»YrAr»BrSEs ITMAX» BEROR)
5600 PRINT/»” % % X% %X X X’

5625 0o 200 K=1,NPLOT

5650 200 AK)=EXP(A(K))

5700 PRINT/»’ COEFFS. FOR EQ. LOG K=B(S§-1)+L0G A’
5800 PRINT/¢’B="yB

5900 PRINT/v/Am’y (ACI)»I=1,NPLOT)

6000 C %% COMFUTE SCALE FACTORS AND SCALE MEAN FUNCTION
6100 DO S IFLOT=1,NFLOT

6200 AM=AM+SQRT (ACIFPLOT) )i AVGA=AVGA+A(IPLOT)

6300 S CONTINUE

6500 R=NFLOT § AM=(AM/R) %%2i AUGA=AVGA/R

6600 FRINT/»'SCALE MEAN FUNCTION COEFFICIENTS’
46700 FRINT/y’ AM=’»AMs B='yBy» "AVG. A=’,»AVGA

6800 WRITECA4+/) NPLOTyAMy By (ACT) ¢ I=1,NFLOT)

6900 FRINT/»’ “3FRINT/»’? 2 27 ? 7 7 7 %/

7000 PRINT/y  %%%%%%x GIVE AN IASK VALUE FOR PLOTSS O » 1 » 2/
7100 FRINT/» "’ INPUT -1 TO EXIT’

7200 READ/» IASK

7300 IF(IASK.LT,.0)GO TO SO

7400 IF(IASK.LT.1) GO TO 12

7500 INT=10,%SMALLF SMIN=INT/10.

7600 INT=10-INT} ISFACE=INT*10

7700 CALL HASHICALL ISETIT(80sISPACEs8rINTry~2+,2,8MINy1.)
7800 12 PRINT/»/SCALE FACTORS AND STD. ERRORS’

7900 PRINT/ 9+ /STANDARD ERROR IN SATURATION’

8000 DO 195 K=1sNFLOTs NR=NUDE(K)

8100 IF(IASK.EQ.3) AM=AVGA

8200 ALFHA(K) =SQRTC(A(K) /AM)

8300 K1=NCUM{K) t17 K2=NCUM(K+1)

8400 SSE=0j 0 14 I=K1,K2

8500 SAT=SFN(C(I)sA(K)»B)

8600 14 SSE=SSE+(SAT-S(I))%%x2

8700 STDE=SQRT(SSE/(NR-2))3# SE(K)=STDE

8800 S3Q=S5Q+S8E

8900 IF(IASK.LT.1) GO TO 15

2000 00 15 I=K1,K2i COND=C(I)/(ALPHA(K)%%X2)

9100 COND=AL.0G10 (COND)

9200 CALL DATAINC"%"yCOND»S(I))

7300 15 CONTINUE

9400 PRINT/»* *

9500 PRINT/»'SCALES ALFHA=’/, (ALFHA(I)»I=1,NPLOT)
9600 PRINT/»* ¢

9700 PRINT/»‘STD, ERRORS=’y (SEC(I)yI=1»NFLOT)

9800 WRITEC4»/) (SECI)»I=1,NFLOT)

9900 LOCK 4

10000 PRINT/»’ ¢

10100 PRINT/» 'FOOLED STANDARDN ERROR IN SATURATION’
10200 PRINT/» ‘STD., ERROR=‘,SORT(SSQ/(NTCTAL=2))»'DeFe=’yNTOTAL-2
10300 IF(IASK.LT.1)G0 TO S0

10400 DO 20 I=1r11% SAT=1.,-0,05%(I~1)

10500 COND=CFN(SATyAMsE) i COND=ALOG10C(COND)

10600 20 CALL DATAINC"C*®,CONDySAT)

10700 FRINT/¢’ ‘3 FRINT/»’ *

10200 PRINT/» HOLD FOR FLOT’7 READ/»HOLD

10700 FRINT/»’ FLOT OF SCALED DATA’# PRINT/»’ *
11000 CALL PRNTIT(292/XTITLES»YTITLEr4r6)

11100 IF(IASK.LT.2)GO TO S50

11200 CALL HASHICALL ISETIT(80yISPACEs8yINTr-2s2ySMINs1.)
11300 D0 30 IPLOT=1,NFLOTS DO 30 I=NCUMCIFLOT)+1,NCUMCIPLOT+1)

11400 30 CALL DATAINC*X",ALOG10(C(I))»S(I))
11500 DO 40 IFLOT=1,NPLOT
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11600 DO 40 I=1y11i5AT=1,~0,05%(I~1)

11700 COND=CFN(SAT,»ACIPLOT) »B) 7 COND=ALOG10(COND)

118300 40 CALL DATAINC*C®*,»CONDsSAT)

11900 FRINT/ » 7 RKKKOK KKK KK KKK KK 3K KKK KIRAOK K KOK 50K KK 5 KKK KKK 3K 3K oK oK KK K
120060 FRINT/»FPLOT OF DATA AT EACH LOCATION’3PRINT/»‘

12100 CALL PRNTIT(2y29yXTITLEsSsYTITLEv4+6)

12200 50 S0P

12300 END

12400 C x% DERIVATIVES OF PHYSICAL MODEL
12450 C &% TRANSFORMATION Y=L0OG K.

12500 SUBROUTINE DERIV(SrA»B»YsDYDA,DYDB)
12600 DYDIE=5-1,
12700 DYDA=1,3 Y=BXDYDB+A
12800 RETURN
12900 END
APPENDIX D.

Computer program for scaling drainage.

100 $HESET FKEE

200 $SLET AUTORIND

300 $KIND = FROM ORJECT/SUB/SCALEs FORTRANLIERARY

400 $CET SUPRS

U500 FILE 1=0NEMCONCOEF»UNIT=DISKysSAVE=30

600 FILE 2(KIND=DISKyFILETYFE=7,TITLE="THETAREGCOEFF")
700 FILE 3(KIND=DIGKyFILETYFE=7yTITLE="TIMES")

800 FILE A(KIND=DISKyFILETYFE=7,TITLE="AVGWTCONT®)

900 FILE &(KIND=REMOTE,MAXRECSIZE=22)

1000 FILE 7(KIND=LISKsFILETYFE=7,TITLE="DEPTHAVGTH®)

1100 DIMENSION THETA(22),U(22)yT(22)yDEFTH(B)»Z(32)

1200 DIMENSTION SE(B“)vRCOEF(478)rC(BZ)vTHO(32)vA(32)rALPHﬂ(BZ)
1300 DIMENSION X(32+19)y Y(32+19)

1400 DIMENSION XTITLE(S) »YTITLE(S)

1300 € xx PROVIDE INITIAL FARAMETERS HERE - A IS KO OF MODEL

1600 UDATAH AYR/E2%4.940/7

1650 C %% OFTION TO READ INITIAL VALUES OF FARAMETERS.

1675 READIN="YES"

1700 DATA XTITLE/®TIME ®»*(DAYS)"ya4%" */yYTITLE/*THETA®»5%" */
1300 NATA DEFTH/1593054556097%9909105y120/

1825 C %% OFYION TO DO SCALE REGRESSION WITH A FIXED COMMON R.
1850 FIXE=*NO®
1900 C *% INLICATE NUMBER OF ITERATIONS AS ITMAX.

2000 ITHAX=55 N=20

21¢0 NFLOT=4iNIEFPTH=B8sNTIME=19iNLESS=0

2200 C xx DRAINAGE EQUATION DEFINED HERE

2300 THFCT»THGrAYBY=THO-ALOG(1 . +AXEXT)/B

2400 FLXF(TsA»BI=A/ (1. +AKEBXT)

2500 C %% MODEL CONDUCTIVITY FUNCTION DEFINED HERE

2600 PONF(THFT&:THO;CONO;?)“CONO*EXP(B*(THETA THO))
2700 C

2RO C INDIRECT SCALING OF CONDUCTIVITY FROM WATER CONTENT PROFILE.
2700 C %X ASSUMES REGRESSION OF DEFTH AVUG., THETA ON THETA WITH REGRESSION
3000 C %k COUFFICIENTS C FOR EACH LOCATION AND UNIT HYDRAULIC GRADIENT.
3100 € ==mm= == o

3200 FRINT/ » 2 KO00K KKK KKK K AOROKAKKORAOKAORK KKK KK KKK KKK KK KKK AR AR K *
3300 FRINT/»’ INDIRECT SCALING OF CONDUCTIVITY’

3400 FRINT/»’ CONDUCTIVITY MODEL IS’

3500 FRINT/ K = KO EXF(B(THETA - THO))"

3600 FRINT/»’ DRAINAGE EQUATION IS’

3760 FRINT/ s’ THETA=THO - LOG(1+B KO T/C Z)/B’

2400 FRINT/»’ DEFTH AVG(THETA-THO) = CX(THETA-THRO)‘

3700 FRINT/Z 9 RAXAKKKAARRKKKKK KKK KKK KKK KKK KKK KKK KK AR KK KKK 4
4000 FPRINT/y’ 7

40235 IF(READIN.EQ."YES") REAN(3s/) ITMAXsFIXByBrA

4160 READ(3,/) Ti CLOSE 33 TO=T(1)

4200 DO 1 I=1yNTIME

4300 1 TCI)=T(I)-TO

4400 READC2y/) ((RCOEF(IyJ)yJ=1yNDEFTH)»I=1yNFLOT); CLOSE 2
4410 CALL HASHFCALL ISETIT(100v4051054+055004259.,45)

2560 DO 3 IFLOT=1,NFLOT? 0O 3 IDEP=1,NDEFTH

4600 READCA4,5) THETAF READC4,5) U

4700 S FORMATC 11(1XyF4.3) )

4800 IFCIDEF.LEWNLESS) GO TO 3

4900 NLOC=NLOC+13C(NLOC)=RCOLEF (IFLOTy» IDEF)

5000 Z(NLOC)=DEPTH(IDEF)$ THU(NLOC)=THETA(1)

5100 D0 2 I=1»NTIME? X(NLOC,I)=T(I)
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5150
5200
5300
5400
Y500
5600
S700
5800
5900
6000
6100
6200
4300
6400
6500
6550
6600
6700
6800
6900
7000
7100
7200
7300
7500
7600
7700
7800
7850
7900
8000
8100
8200
8300
8400
8500
8400
8700
€800
8900
9000
9100
9200
9300
7400
9500
9600
7700
9800

CALL DATAINC*X*»yT(IDyTHETACI))

2 Y(NLOC»I)=THO(NLOC)-THETA(I)

3 CONTINUE
PRINT/»‘ NUMBER OF LOCATIONS SCALED=’,NLOC
PRINT/»’ NUMBER OF SAMPLE TIMES=‘/sNTIME
FRINT/»’ NUMBER OF DATA POINTS SCALED='/,NLOCKXNTIME
FIRINT/»’ DRAINAGE FERIOD IS‘»T(NTIME)»’ DAYS’

*%k TRANSFORM INITIAL FARAMETERS FOR REDUCED TIME.
00 4 K=1rNLOC

4 ACR)=A(K) /(Z(K)IXC(K))

%% REGREGSION VARIAELE USED IN SCALE IS Y=THO-THETA

XK Y=L0G(i + A B T)/B
FRINT/9’ % X X X % X X % % X’
FRINT/»’ SCALE RESULTS‘
PRINT/»’ STANDARD ERROR IN WATER CONTENT’
IF(FIXB/.EQ.*YES*)FRINT/»’ B IS FIXED AT INITIAL VALUE‘
CALL SCALE(NLOCYNTIMEsX»YsAsBySE» ITMAX,FIXE)
FRINT/»” % % X X X X X X X %X’

*¥ CORRECT REG. COEFFS. C FOR TIME DEPENDENCE.
FRINT/»’ *
FPRINT/»’ STATISTICS FOR REGRESSION DEPTH AVG THETA VS TIME’
PRINT/»’ CORRECTED REG., COEFFS. C AT EACH LOCATION’
FRINT/»’
PRINT 25

25 FORMAT(4Xy»‘C COEF’»2Xs ‘NEW C’ 92Xy ‘ERROR’ »2X»*STD E‘v1Xs»’R COEF’)
[0 40 IFLOT=1,NFLOTS DO 40 IDEP=1,NDEPTH
READ(7»5) THETA# READ(7,5) U
IF(IDEF.LEJNLESSG) GO TO 407 M=M+1
IF(A(M).EQ.O0) GO TO 40
DTHO=THETA(1)$ [0 30 I=1,NTIME
THETACI)=DTHO-THETACI)

30 UCI)==THF(TC(I)»0rA(M) &B)
CALL CREGS(Uy»THETAYNTIME,CC»SCrySTDEsR)
FRINT 35y MsC(M)»CCrSCySTDEYR

35 FORMAT(1XyI293(3XrF4.2)93XvFA.393X9F4.2)
C(M)=CC

40 CONTINUE
FRINT/»*
00 6 K=1yNLOCi AVGTHO=AVGTHO+THO(K) i ACK)=C(K)XZ(K)IXA(K)
AM=AM+SART (A(K) )7 AVGA=AVGA+A(K)

[} CONTINUE
AM=(AM/NLOC) ¥x27 AVGA=AVGA/NLOC AVGTHO=AVGTHO/NLOC
FRINT/»’ SCALE MEAN CONDUCTIVITY COEFFICIENTS!’
FRINT/»’ B='yBy’SCALE MEAN KO='r,AM
FRINT/»’ AVUG., KC ='»AVGAs’ AVUG. THO =‘»AVGTHO
FRINT/»’
FRINT/v’ KO FOR EACH LOCATION:’
FRINT/» (ACK)»K=1,NLOC)
PRINT/»’

9900 C %% CUMFUTE SCALE FACTORS ALFHA FOR CONDUCTIVITY.
9950 C %% COMFUTE CORRECTED STEADY STATE KO FOR COMMON THO.

100600
10010
16620
10200
10300
10305
10310
102415
10320
10325
10330
10335
10340
10250
104%40
10460
10300
10600
10700
10750
10800
1VBL0
10830
10840
10850
16700
11000
11100
11200

DO 7 K=1»NLOC# ALFHA(K)=SQRT(A(K)/AM)
ACK) =ACK)XEXF (BX (AVGTHO-THO(K) ))

7 AMNEW=AMNEW+GART (ACK))
FRINT/»’ SCALE FACTORS ALFHAG’
FRINT/y (ALFHA(K) »K=19sNLOC)§ FRINT/»’ *

C %k CORRECT SCALES FOR AN AVERAGE STEADY STATE THETA OVER LOCATIONS

AMMEW=(AMNEW/NLUC) X2
PRINT/»’ CORRECTED CONDUCTIVITY SCALES FOR COMMON THOY

FRINT/»’ * .

FRINT/»’ NEW SCALE MEAN KO=’ysAMNEWs’ AVG THO=’,AVGTHO
PRINT/»? 7

PRINT/»’ NEW KO AND SCALES FOR EACH LOCATION’

DO 70 K=1sNLOC;OHMEGA=GQRT (ACK) /AMNEW)
70 FRINT 80y KyA(K)»THO(K) »y OHMEGA
80 FORMAT(2X» I3y 2A9F6.292XsFA4.392X9F7.4)
PRINT/v* HOLD FOR FLOT: IASK=0 OR 1’3 READ/» IASK
IF(IASK.EQ.0) GO TO 100
C %% STORE SCALED COEFFS.
WKITEC(Lr/) NLOC»BrsAMNEWr (ACK) yK=1»NLOC)
WRITE(1s/) (THO(K)s»K=1,NLOC)
WRITE(1»/) (SE(K)sK=1sNLOC)>i LOCK 1
FRINV/ ¥y
FRINT/» GRAFH OF WATER CONTENT VS EXFERIMENTAL TIME’
FRINT/» "
CALL PRNTIT(2,2¢XTITLEs12»YTITLEY6y6)
CALL HASH?CALL ISETIT(100940»10r4,0+50y.25¢,45)
ZM=DEFTH(NDEFTH) 7 DO 8 K=1+NLOC? SZ=Z(K)/ZM
FAC=ALFHA(K)X¥2/(C(K)XSZ)
C %% MACKO. DEFTH SCALE SZ W.R.T. LAST DEFTH.
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11300 C x% RELDUCE TIME AND FLOT THETA VS REDUCED TIME,

11400 DO 8 I=1,NTIME

11500 TIME=FACKX(Ky 1) TH=AVGTHO-Y(KrI)

11600 CALL DATAINC*X*»TIME,TH)

11700 8 CONTINUE

11800 CONO=AM/ZM3 DO 9 I=1,12% TIME=2.%(I-1)

11850 IF(I.GT.8) TIME=10.%(I-7)

11700 TH=THF (TIME»AVGTHO» CONO»B)

12000 ? CALL DATAIN(®C®»TIMEsTH)

12010 FRINT/»’ HOLD FOR PLOT’i READ/» ELANK

12100 PRINT/»* *

12200 FRINT/»’ GRAFH OF WATER CONTENT (THETA) VS REDUCED TIME’
12300 PRINT/»” *

12400 CALL FRNTIT(2y2sXTITLE»12yYTITLE»696)

12500 FRINT/»’

12600 FRINT/»’ REDUCED TIME = (ALPHAXX2/C 8Z) % T/

12700 FRINT/y’ DEPTH SCALE SZ=Z/ZM FOR ZM=’yZMy‘CM’

12800 FRINT/»* 7/

12900 PRINT/»’ MEAN CONDUCTIVITY AND FLUX AT REDUCED TIMES’
13000 FRINT/»*

i3100 FRINT 10

13200 10 FORMAT(1Xs "THETA’ »7Xy 'CONDI‘ y3Xs * TIME DAYE’»SX» ‘FLUX’)
13200 TH=03 THSTEP=AVGTHO/N} D=B/ZM

13400 DO 20 I=1yN

13500 TH=TH+THSTEP? TIME=2.%I

13600 COND=CONF (THyAVGTHO»AM» B) s FLUX=FLXF(TIME»AMsD)

13700 FRINT 1Sy THyCOND» TIMEyFLUX

13800 15 FORMAT(2X92F4.392X9E?43r’ | “»S5XsF4.191XrE9.3)
13900 20 CONTINUE

14000 100 STOF; END

14100 C %% DERIVATIVES OF DRAINAGE EQUATION.

14200 SUBROUTINE DERIV(XsArByYsDYDAsDYDH)
14250 IFCA.LT.0)A=0

14300 F=1.+tAXBXX} Y=ALOG(F)/R

14400 IYDA=X/F# DYDB=(AXDYDA-Y)/B

14500 RETURN

14600 END

&

100 $RESET FREE

200 $SET SErARATE

300 $SET LIBRARY

400 C %% LEAST SQ. FIT OF Y=F(X3A(K)sE) FOR K=1 TO N GROUFS OF
500 C %x DATA (XyY). REQUIRES FUNCTION F(XiAs»E) AND DERIVATIVES
600 C *X GIVEN AS SUBRROUTINE DERIV. F IS COMMON COEFF.

700 SUBROUTINE SCALEC(NYMySyYrAsRySEr» ITHAX FIXE)
800 DIMENSION SCNyM) s Y(NsM)rACN) »SE(N)

900 DIMENSION A0(S50)ySEO0(S0),C1(50)sC2(50)
1000 ITMAX=TTMAX+1

1100 1 IT=IT4+1751=0+82=0355Q=0

1200 D0 3 K=1,N

1300 SUMXF=03 SUMZF =03 SUMXX=03 SUMZZ=05 SUMXZ=0
1400 SE(K)=0% [0 2 I=1/M

1500 CALL DERIV(S(KyI)sA(K)rBrFsXsZ)

1600 F=Y(KyI)-Fi SE(K)=SE(K)+FkX2

1700 SUMXF=SUMXF+XXF i SUMZF=SUMZF+Z%F

1800 SUMXX=SUMXX+X%X$ SUMZZ=SUMZZ+Z%Z

1900 2 SUMXZ=SUMXZ+X%Z

2000 C1 (K)=SUMXZ/SUMXXi C2(K)=SUMXF/SUMXX
2100 81=81+8SUMZZ-SUMXZ*C1 (K)

2200 S2=824SUMZF-SUMXZXC2(K)

2300 SSA=GSQ+SE(K)

2400 3 CONTINUE

2500 IF(IT.EQ.1) GO TO 4

2600 IF(SSQ.GT.S8Q0) GO TO 6

2700 4 ITO=IT-1/ SSQ0=5507 EO=R

2800 DO S5 K=1sNi3 SEO(K)=SE(K)

2500 S ADCK)Y =A(K)

3000 6 IFCIT.EQ.ITMAX) GO TO 8

3100 IFCITWEQ.1) FRINT/»“INITIAL S8Q=’,SSQ
3200 DE=52/513 IF(R.NE.0)EEROR=100%X0E/R
3250 IF(FIXB.EQ."YES®) DRB=0

3275 B=H+DE

3300 DO 7 K=1,N$ DA=C2(K)-DBXC1(K)

3400 7 A(K)=A(K)+DA

3500 GO 70 1

J600 C XORAKNOKA KKK KKK KKK OK R KK KKK KKK KA KKK IR KKK AR oK K oK K KK

3700 C xx PRINT RESULTS OF ITERATIONS

3800 8 SSQ=8S5Q0% E=RKO

3700 PRINT/» “FINAL S$5Q=’»SS5Qy’ FOR ITERATIONS=‘,1TO

4060 FRINT/»’ A COEFFICIENTS AND STD. ERROR FOR EACH GROUFP’
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4100 DO 9 K=1sN3 NT=NT+M-2

4200 SE(K)=SART(SEQ(K)/(M~2))i A(K)=A0(K)
4300 9 FRINT/»KrACK) ySEC(K) s ‘DoF o=’y M~2

4400 FRINT/»’ COMMON COEFF. B='»E

4500 FRINT/y’ POOLED STD. ERROR=‘»SQRT(SSQ/NT)
4600 PRINT/»’ ERROR TOLERANCE IN B =‘»BEROR
4700 RETURN

4800 END

5000 C X% SOLVES LINEAR REGRESSION Y=BX.

5100 SUEBROUTINE CREGS(XyYsNsERySBySEWR)

5200 DIMENSION X(N)y Y(N)

5300 SUMXY=03 SUMXX=0§ SUMYY=0

5400 DO 1 I=1yNi SUMXY=SUMXY+X(I)XY(I)

53500 SUMXX=SUMXX+X(I)%%2

5600 1 SUMYY=SUMYY+Y (I)x%x%2

5700 B=SUMXY/SUMXX

5800 SGDEVR=SUMYY~BXSUMXY

$900 SE=SQRT(SSDEVR/(N~1))i SB=SE/SQRT (SUMXX)
6000 R=SUMXY/SART (SUMXXXSUMYY)

6100 RETURN

6200 END

L4

APPENDIX E.

Computer program for Millington—-Quirk hydraulic conductivity.

L
100
200
300
400
500
600
700
300
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1960
2000
2100
2200
2300
2400
2500
26G0
2700
2800
2900
3000
3i00
3200
3300
3400
3500
2600
3700
3750
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4300

$SET AUTOBIND

$BIND = FROM OBJECT/FOLYFIT
$SET SUFRS

$RESET FREE

C  FROGRAM CALCULATES MILLINGTON-QUIRK CONDUCTIVITY AND MATCHING
C FACTOR FOR EXFERIMENTAL DATA GIVEN AS MODEL CONDUCTIVITY
C FUNCTION. SUCTION HEADS CORRESFONDING TO FORE CLASSES ARE
C DETERMINED FROM SOIL-WATER CHARACTERISTIC MODEL.
€ MOLEL SOIL-WATER CHAKACTERISTIC IS
c H=A(EXF (RHO(THETA-THSAT)) =1).
C MODEL CONDUCTIVITY FUNCTION IS
c K=KO EXF(EETACTHETA-THO)).
C_PARAMETERS OF MONELS ARE REQUIRED AS INPUT DATA.
c-_-_
FILE 1(KIND=DISK»FILETYPE=7+TITLE=*HQCOND®)
DIMENSION THETA(S0) yH(50) s WK(50) »RSO(50)
DIMENSION U(S0)sV(50)sE(10)»BETAC10)
C-- - 22 s 2 o o o o
C ¥x INPUT DATA REQUIRED?!
C NUMBER OF FORE CLASSES-N. SATURATEDR THETA-THSAT.
C UPFER LIMIT TO THETA FOR CLASS WITH LARGEST PORE RADIUS-THFULL
C <(FORE RADIUS 1S ZERO FOR THETA HELOW THLOW)
c- =2 -

DATA Nr»THSAT» THFULLy THLOW/207r .42y .42,.1/

Crmmm e e e ———
C  STEANY STATE INFILTRATION THETA-THO.
€ LOWER ILIMIT THETA TO K DATA-THKMIN.
c
cC

LOWER THETA LIMIT FOR OUTPUT OF COMFUTED K -THOUT.

DATA THOsTHKMIN, THOUT/ .42+ .30,.20/
C %% CONDUCTIVITY AND SUCTION HEAD MODEL PARAMETERS GIVEN HERE.
C xx B IS THE BETA COEFF. OF K MODEL.
DATA CONOrE(1)rAsRHO9/12.72913.0+114,0,-4.93/
RHO=RHO/THSAT? B(1)=R(1)/THO
O e o e e e e e e e e e
C SET DEGREE OF FOLYNOMIAL FIT TO M-Q CALC, LOG K.
€ NB NUMBER OF K MODEL COEFFS. B REQUIRED ON INPUT FOR MATCHING.
C NG PRE-DETERMINED MODEL COEFFS FROM DATA USED IN FIT OF FOLY.
c
c
[o}
c

NR COEFFS. INCLUDED BY REGRESSION. FOLY. DEGREE F=NQ+NR.

DATA NBsNQyNR/1+0,3/
*X CONVERSION CONSTANT -C FROM FERMEARILITY TO UNITS OF CONDUCTIVITY
XX (CHM/DAY) . MILLINGTON -QUIRK POWER -F.
C=1.8BE04%60 . %2 i F=4./3,
C %x OPTION TO COMPUTE CONDUCTIVITY AS FUNCTION OF SATURATION?
C %X SET IASK=1.
IASK=1% THSATO=THSAT
IF(IASK.NE«1) GO TO 15 THFULL=THFULL/THSAT: THLOW=THLOW/THSAT
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4900
S000
5100
5200
5300
$400
S500
S600
5700
5800
5900
60060
6100
6200
6300

63500
6600
67G0
6300
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
8000
8100
8200
e300
8400
8500
8600
8700
8750
8800
8900
9000
9100
9260
9300
9400
9S00
9600
9700
9800
9900
10000
10100
10200
16200
10400
10500
10600
10700
10800
10700
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
11950
12000
12100
12200
12300
124060
12500
1259
12400

20
2
30

3

4
C xx

S

é

7
8
10

C xk FIT POLYNIOMIAL

35
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THO=THO/THSAT i THKMIN=THKMIN/THSAT i THOUT=THOUT/THSAT
B(1)=B(1)XTHSAT} RHO=RHOXTHSAT3? C=CXTHSATXXP; THSAT=1.0
C xx COMMUTE THE SQUARE RADIUS OF EACH FORE CLASS.

1 DELTH=THSAT/N7 NFULL=N

DO 2 I=1/sN}

THETA(M)=T

i TH=(N-I)XDELTH+DELTH? THMID=TH-DELTH/2.
IF(THMID.GT.THFULL)GO TO 20
IFCTHHIDLLT . THLOW)GO TO 30F M=M+1

H3

HU=HFN(THMID» THSATyArRHO)

RSQ(M)=1./HDK%X25 H(M)=HFN(TH» THSATsAsRHO)

GO T0 2

NFULL=NFULL=-1

CONTINUE

N=NFULL7 C=C/NXXP

C %% CALCULATE MILLINGTON-QUIRK CONDUCTIVITY FOR NFULL FORE
C %k CLASSES BELOW FULL VALUE OF THETA.

6400 C ** SUM TERMINATES FORM CLASSES WITH THEIR ABOVE THLOwW,
# SUM=03 DO 3 J=IsM
SUM=SUN+(24J+1-2%I)¥RSQ(J)

WKCI)=CX(THETA(I)%XF)XSUM

DO 4 I=1,M3

CONTINUE

CALCULLATE BEST FIT MATCHING FACTOR AT THETA OF FORE CLASSES.

NI'=Gj SUMY=

DO S I=1,M

SUMY=SUMY+
CONTINUE
F=SUMY/NPi

07

SUMYY=0

v TH=THETA(CI)
IF(TH.GT+THOWOR.TH.LT.THKMIN) GO TO S
NP=NF+13 CON=CFN(TH,THO,CONOsRyNB)
Y=ALOG(CON/UK(I))

Y

SUMYY=SUMYY+YXY

R=GUMYY-NPXFX%2

IF(NP.GT.1) VAR=VAR/(NF-1)3 STD=SQRT(VAR)
FRINT/Z 2 XCKRRAKKRKH AR KKOKK KK KIHOR KKK KKK 30 3KK K KK K KK KKK K 3 KKK KK K

PRINT/»’

MIL

LINGTON-QUIRK CONDUCTIVITY”

PRINT/ » 7 30KK00OKOKK KKK AOK KA OK KKK KKK KKK IOK KK KKK K XK KK KK 3K KKK KK KK 0K #

PRINT/»’

PRINT/»‘ MATCHING FACTOR F= K ACT./K CALC.’

PRINT/»’ MEAN LOG F='yFy’ STD., DEV. LOG F=',STD
F=EXF(F)# FGZO=F

FRINT/y’ GUOMETRIC MEAN F=‘,F

C XX ASSUME A LOG-NORMAL DISTRIBUTION OF MATCHING FACTORS.

E=EXF(VAR/2.
FRINT/y’ EST.

)i F=FXEj; STO=FXSQRT(EX%X2-1,)

MEAN F=’yFy’ EST. STD. DEV, F=’,8TD

FRINT/»’ NUMBER OF POINTS MATCHED ='sNFs’ D.F,=’'yNP-1

FPRINT/»’

FPRINT/y‘ CONDUCTIVITY FOR NUMBER OF PORE CLASSES =‘»N
IF(IASK.EQ.1)PRINT/y’ COMPUTED!' AS FUNCTION OF SATURATION’

FRINT/»% ¢
FRINT &

FORMAT (1X» “WATER CONT’ »3X»s'SAT,’»2Xy "HEAD CM' »2Xs "CONDUCTIVITY ')
i WR(I)=FGEOXWK(I)? SAT=THETA(I)/THSAT
IF(THETACI) LT THOUT) GO TO 10
IF(IASK.EQ.1)THETACI)=THETA(I)XTHSATO

THETAC(I) ySATyHC(I) yWK(I)

FORMAT (1Xs6XyF4.392XyFS5.393XsF6,094X9E10,4)

00 7 I=1,M

PRINT 8y

M=1-1

FRINT/y’
FRINT/»’
PRINT/»’
FRINT/»’
FRINT/¢’
FRINT/» "

WRITEC1,/

‘i

PRINT/y’ THETA LIMITS?’

THSAT="» THSATOy* THFULL=’sTHFULLs* THO=‘,THO
THKMIN='yTHKMINy * THLOW='yTHLOWs’ THOUT=',THOUT
MODEL FARAMETERSS’

HEAD “» "A='yAr 'RHO="yRHO

CONDUCTIVITY ‘“y’KO=’yCONOv BETA=’sB(1)
WRITE(1v/) MyTHSATOr (THETA(I)»I=1+sM)

Y«

HCI) v I=1sM)

WRITE(1s/) (WK(I)yI=1,M)7 LOCK 1
IF(NR.EQ.0) GO TO 100

TO LOG K CALCULATED BY M-Q METHOD.

ALOGKO=ALOG(COND)# D0 35 I=1+M
IF(IASKLEQ.1) THETACI)=THETACI)/THSATO

UG =THETA(I)~THO? V(I)=ALOG(WK(I))~-ALOGKO
IF(NQ.EQ.O0) GO TO 355 TH=1.

DO 3% J=1sNGi TH=THXUCI)§ V(I)=V(I)-B(JIXKTH

CONTINUE
FRINT/»’
PRINT/9’
FRINT/»’
FRINT/v "’
FRINT/»’
FRINT/ v’
FRINT/y "

PRINT 40y

’s
4

PRINT/»’

REGRESSION FOR MILLINGTON-QUIRK K-’
LOG K=LOG KO +B(1)(THETA-THO)+4+¢++B(P) (THETA-THO)XXP*
DEGREL P=’/,NQ+NR

’

PRE-DETERMINED COEFFICIENTS!

KO=
DO 45 J=1,NQ

Jr

‘+CONO JIF(NQ.EQ.0) GO TO 50
B(J)
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12700
12600
12900
13000
13100
13200
13300
13400
13500
13510
13600
13700
13800
13900
14000
14100
1420
14300
14400
14500
144600
14700
14800
14900
15000
i5100
15200
15300
15400
15500
¥

40

60
80
&5
70

75
100

FORMAT(2Xy ‘BC/ 912y )=’ yE12.6)

FRINT/y* *

NQ=NQ+1

PRINT/»’ COEFFS. INCLUDED EBY REGRESSION FOR M-Q K’

D0 60 J=1sNR

FRINT/ v 7 AOKAAKIOKKK KKK KNOKAOKOK K AOK 3K K 00K K KK 5K X KK 3K K K K 2K K oK K K KK K
CALL PREGS(UrVsyMyBETAYNQsJ)

PRINT/ p 2 RAHKKAKARAKKRK KK AOKAKKHOKAKOK KRR AOKHOK IR KK KK KKK KKK KK #
NG=NG-13 DO 80 J=1,NR$# K=NQ+J

B(K)=BETA(J)

FRINT 45

FORMAT(1X»7Xy ' THETA’ »7X9 “M-Q K’ y2X» ‘REG. CALC. K’)
NR=NQ+NR3 DO 70 I=1+M

COND=CFN(THETA(I) yTHO»CONOsByNR)

PRINT 75y THETACI)»WK(I)sCOND

FORMAT (1Xy7XrF54352(2X»E10.4))

STOF# END

C %% MODEL FUNCTIONS DEFINED EELOW

FUNCTION HFN(THETA»THSATs»A»RHO)
HFN=AX(EXP (RHOX(THETA-THSAT))~1,)
IF(HFN.LT.1.) HFN=1,

RETURN

END

FUNCTION CFN(THETA»THOsCONOsBsN)
DIMENSIUN B(N)

TH=THETA-THD}? THETAJ=1.3 S=0,

DO 1 J=1,Ni THETAJ=THXTHETAJ
S=S+B(J)KTHETAJ# CFN=CONOXEXP(S)
RETURN

END

L

100 $RESET FREE
200 $SET SEPARATE
300 $SET LIBRARY

400
500
600

700 C %% POLYNOMIAL REGRESSIONS

900

1000
1100
1200
1300
1400
1500
1600
i900
2000
21090
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
4800
4900
3000
5100
5200
3360
5400
5500
5550
5600
5700
3800
5900
6000
6100
6200
6300

1

SUBROUTINE PREGS(XrYsNrEsNQyNF)
DIMENSION X(N)sY(N)sB(NF)
DIMENSION Z(50y10)yC(10+10)y D(10)

DO 1 I=1,Ni XMULT=X(I)¥XNQ$ DO 1 J=1sNP3 Z(IsJ)=XMULT
XMULT=XMULT*X(I)

C %x COMFUTE CROSS FRODUCT MATRIX.

2

DO 2 I=1sNi DO 2 J=1sNF5 DCD=DC(HI4Z(I )XY (D)
DO 2 K=1yNP§ CCJryK)=CCJrKIFZ(IrIIRZCIIK)
CONTINUE

C x% SOLVE FOR REGRESSION COEFFS. B.

o0o

® N

N >W

CALL RSOLVE(CsDsRyNP)

DO S I=1sN3 YR=03 SUMY=SUMY+Y(I)
SUMYY=SUMYY+Y(I)%%23 DO 4 J=1sNP
YRE=YRAR(JIIKZ(IrJ) 5 SSE=SSE+(YR-Y(I))IKX2
CONTINUE

S5T=SUMYY~SUMYX%X2/N# SSR=SST-SSE
SE=5QRT(SSE/(N-NF))# R=SQART(SSR/SST)
WRITE(6r6)

FORMAT (1X» ‘REGRESSION COEFFICIENTS: v/)

DO 7 J=1sNP

WRITE(698) NQ+J-1y BC(J)

FORMAT(1Xy "BC/»I2y/)="yE12.6)

PRINT/y”

PRINT/»’ STD, ERROR OF ESTIMATE ='sSEs’D.Fem’yN-NP
FRINT/»’ MULT. CORRELATION COEFFICIENT R=’/sR
RETURN

END

SUBROUTINE RSOLVE(ArYsXsN)

SOLVES THE MATRIX EQUATION AXX=Y FOR X

A IS AN N BY N MATRIX.

ORIGINAL MATRIX A IS DESTROYED.

DIMENSION AC10s11) s Y(N)»X(N)»LOC(10)yCK(10)
NP=N+1 .

DO 1 I=1sNi ACIWNPI=Y(I)

CK(I)=0.0

00 100 I=1+N

IP=1+1

FIND MAX ELEMENT IN I-TH COL

AMAX=0,03 D0 2 K=1sNi IF(AMAX~ABS(A(KrI)))3s2,2
IS NEW MAX IN ROW FREVIOUSLY USED AS PIVOT
IF(CK(K))494,2

LOC(I)=K3 AMAX=ARS(A(K»I))

CONTINUE

MAX ELEMENT IN I-TH COL IS A(L»I)

Y=(D(1)+BC2) X400 o #BINPIXKKC(NP~1)) XKXNG

169
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6500 S L=L0C(I)3 CK(L)=1.

6600 C FERFORM ELIMINATIONy L IS PIVOT ROWs ACLsI) IS PIVOT ELEMENT
6700 D0 50 J=1sNi IF(L-J)6+50+6

6800 é Fe~A(JrI)/ALYI)

6900 DO 40 K=IFsNP

7000 40 ACTYKI=ACIIK)IHFXACLYK)
7100 50 CONTINUE
7200 100 CONTINUE

7300 [0 200 I=1,Ni L=LOCKI)
7400 200 X(I)=ACL/NP)I/A(L,I)
7500 RETURN
7600 END
14
APPENDIX F

Correction methods for scaling with an approximate saturation variable.

The effect of using an approximate saturation variable s equal to e/eo
for estimation of scale factors will be considered. Here the field measured
saturated water content 90 (initial value) is less than the actual saturation

value ¢.

Conductivity:
A corrected scale mean conductivity function in terms of the actual

saturation s' equal to 8/¢ for each location is

b'(s'-s )

K'(s') =K' e ° @)
where

JA/2 _ 1 ,1/2
Km = R z 1\0 (2)
%; = Kb exp[b(so¢/90—1)] 3
and

I =
b R I o/ )b =Db/s %)

for the sums taken over R locationms. I(b and b are the original parameters of

the model. New scales w' satisfy
2

K' =w'"K' (5)
o T

for each location with average equal 1. Let b0 = b¢/eo for each location and

o=R—fl->:(b-b') (6)

b o

where the sum is over R locations. Then % represents the error in replacing

b by a new common parameter b', where the original conductivity in terms of
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approximate saturation s is

'—
bo(s So)

Pl L gt e . ™

K(s) = Ko e

Thus (7) can be viewed as an approximation to

b'(s'—so)
K'(s') = K'O e (8)
which is scaled relative to s'. The difference in (7) and (8) satisfies
In K'(s') = 1n K(s) = (b' - bo)(s' - so) 9)

and the error over locations made by replacing (7) by (8) is

. R ) 172
[ifi ) (In K! - 1n K ) ] =0, [s' - sol. (10)

z
r=

Next consider the situation for which the scale factors are not altered.

Suppose that

for all locations, i.e., the ratio is constant. Then K; equals Kb for all
locations, and the scales w' are identical to those obtained relative to the

approximate saturation variable.

Pressure head:

Suppose that the pressure head is scaled in terms of the function

h(s) = a(e® gy (11)

where s is an approximate saturation. Define
_ dh(s)
Cls) =~ (12)

The quantity (12) can be scaled if the pressure head (11) can, that is,

ah(s) = hm(s) implies aC(s) = Cm(s).

An approximate scaling of pressure head relative to actual saturation s' is
.

obtained as follows:

b(¢/80-l) bo(s'—l)
e

)b e (13)

C(s) = (a o

o] @
[o]

where bO = bq>/6o for each location. Let
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b'==Ib =

= o

L o/o, (14)

where the sum is over R locations. HNow define

6, bls/6 -1)

a' = a $2 e . (15)
Then
C'(s'") = a' b’ eb’(s'-l) (16)

is an approximation to (13). The error made in replacing b by b' equals the
square root of the variance of b0 over locations. Integration of (16) yields

the corrected pressure head:

[P

n'(s') = a' (2 Dy an
where a' depends on location and b' is common to all locations. Rescaling
error equals Ih'(s') - h(s)l. Since the new scale factors depend only on (15),

they are identical to the original scales if 80/¢ is constant over locations.
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