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Concepts of similar soil and scaling are applied to investigate the
spatial variability of the field-measured soil-water properties, soil­
water pressure head, hydraulic conductivity, and soil-water diffusivity
associated with unsaturated flow. The classical, analytical aspects of
scale factors as regards the invariance of the flow equations expressed
in terms of "reduced variables" are reviewed and extended by con­
sidering stochastic aspects of random variations in soil-water properties.
It is demonstrated that scaling can best be achieved when soil-water
properties are represented by a set of related model functions.

The scale distribution is obtained from soil-water pressure head and
water content measurements for soil sampling locations 30, 60, 120,
180, 240, and 300 em below the surface in 12 plots planted to com.
Scale factors are found to have an approximate log-normal distribution.

Methods of computing scale factors directly from soil-water pressure
head and hydraulic conductivity measurements and indirectly from
soil-water content profiles for a drainage experiment are derived. Im­
proved methods for estimating unsaturated hydraulic conductivity are
also presented. Stochastic behavior of flux and cumulative seepage as
random functions of the scale factors for a similar soil is described for
a simple drainage experiment.
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In contrast to the soil-water pressure head, which is a directly measurable and funda­
mental soil-water property, the hydraulic conductivity must first be computed from soil­
water flow measurements before scaling of conductivity can be verified. Moreover, the
estimated conductivity can vary drastically depending on the method of calculation
employed. Such computational variation can contribute to spatial variation and can
alter the results of scaling. For this reason a number of methods for computing conduc­
tivity are compared. These methods are based on ability to predict flux consistently
from available estimates of the pressure head gradient.

Scaling of conductivity is verified here for the measurements of the I-m plots drainage
experiment. A previous experiment of similar design (Nielsen, Biggar and Erh)
1973)has indicated that measurement of pressure head at only two depths in the profile
of each plot is sufficient to estimate conductivity at intermediate depths. Measurement
uncertainty allows for incomplete evaluation of pressure head gradient over a profile.
Therefore, the pressure head for the I-m plots was measured at only 60 and 120 ern.

Scaling of flux is demonstrated with modifications in the scale relations of Miller and
Miller (1956). Flux is scaled by scaling the measured water content profiles of the l-rn
plots. Stochastic behavior of flux as a random function of an exponential conductivity
model has been described by Warrick, Mullen, and Nielsen, (1977b). Their approach
uses a simplified drainage equation and requires averaging over all parameters. Here
it is demonstrated that description of stochastic behavior is considerably simplified by
representing spatial variability by scale factors. The method applies to a field of similar
soil, as found in the experimental field.

Calculation of Conductivity: Theoretical

Direct method

Conductivity can be computed directly by the instantaneous profile method using
flowdata from the drainage experiment. The general method is similar to that described
in detail by Nielsen, Biggar and Erh (1973).

The equation for drainage and redistribution in a covered soil profile is

z ~: = K(8,z) fl + ~~] (1)

where

A liZ
8 = i 0 8(z,t) dz (2)

defines the depth-averaged water content and z is the depth below the soil surface.
Equation (1) is an integral of Richards' equation with the boundary condition that
surface flux equals zero. The flux is

ae
J = z­at (3)
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and according to equation (1) the conductivity K(B,z)equals the flux divided by the
hydraulic gradient.

Finite difference estimates ofK(8,z)

Suppose that the water contents B and pressure heads h are measured at n times t1,

t2, ... , to and a k depths (nodes ZI' Z2' ... , zk below the surface, denoted by Zo = O.
Then, for each depth z = Zj (j = 1, ... , k), the conductivity K(Bi .z) for water content
B(z,t) (i = 1, ... , n) is estimated from

z (8 i +1 - 6i ) = K(e.,z) [1 + ~~ (z,ti)l (4)
t i +1 t i 1 'J

" "where Bi = B(z,t) and

3h • 1 (~hj ~hj+l)- (z t ) = - -- + ---~
dZ' 2 llZj llZj+1

with

~h . h (z . , t ) - h (z. l' t )
J J J-

and

e.
1

Equation (4) gives an advanced time, t i + i- estimate of water content based on a present
time, t i , estimate of conductivity and head gradient. A time averaged estimate of con­
ductivity, K(Bi , z), can be computed with the averages

12 (8 i +1 + 8 i )
and

3h 1 (3h 3h \
dZ (z , t i) ="2 az (z, t i) + az (z, t i+1)j

used in equation (4).
In the case that pressure head is measured for only two depths z' and z", the conduc­

tivity at an intermediate depth z can be estimated from

z (Si+1 - 8i ) = K(8.,z) f1 + 6hi l (5)
t i +1 - t i 1 ~ llz J

where

(6)
h (z" , t .) - h (z ' , t . )

1 1

zIt - z'

~h.
1

--=---~~-~---
~z

and

z8 (z , t )

J

L
j=l

1-2 (8(z. l,t) + 8(z.,t» ~z.
J- J J (7)

for z = Zj' j = 1, ... , k. Equation (7) is an estimate of cumulative storage to depth z.
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At the last depth z", the pressure head gradient is estimated as half of equation (6), so
that the pressure head gradient is assumed zero below z".

A difficulty with the direct finite difference methods is that measurement uncertainty
can produce extreme variability in conductivity estimates and even nonsense estimates,
such as negative conductivity.

Analytical estimates ofconductivity

When the condition of the data does not allow direct finite difference estimation of
conductivity, the pressure head gradient and flux can be smoothed and conductivity
computed analytically with the following methods.

Assuming scaled soil-watercharacteristics, the pressure head gradient can be estimated
from the scales a and the measured water-content profile with the following:

(8)
ah
-= -az

~(e) da. + 1:. dhm(e) de
2 dz a ae az

CL

where hm is the scale mean pressure head, which is explicitly independent of z. If the
rate of change of a with depth is negligible, then equation (8) becomes approximately

ah 1 ahm(8) ae
az = a ae az- (9)

(10)

An average pressure head gradient is obtained by averaging (9) over the scales.
If the soil-water characteristics are measured at only two depths, z' and z", an

estimate of pressure head gradient is given by

h (8 ") / a" - h (s ") / a 'ah. m maz = zit - Z t

(12)

where a', and a"are the scales and e', and e" the water contents for those depths.
Equation (10) is the estimate applicable to the l-rn plots. The pressure head gradient
(10) is independent of depth, but depends on time through e' and e".

The water content eand its time dependence can be expressed as a polynomial regres­
sion for each location and depth as follows:

p

e = I a k t
k

(11)

k=O
where the regression coefficients ao' aI' ... , ap depend on the location and depth. Esti­
mates of the water content gradient and depth-averaged water content are then given by

p
ae "\"' aak t k
az - L dZ

k=O
and

e
p

I
k=O

(13)
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where
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(k = 0, 1, ... , p).

(14)

~ = ; fZ a
k

dz

o
Usual finite difference methods are applied to compute derivatives and integrals of the
regression coefficients over the nodes of the measured water content profile. An estimate
of flux is then given by

p
~ A k-1

J(z,t) = z ~ k ak t •

k=1
The conductivity is obtained from the drainage equation (1) by using the estimate of
hydraulic gradient (9) in conjunction with the regression estimates (11) through (14).
Then

[
1 ahm(e) ae]-1

K.(e, z) = J (z , t ) 1 + a ae az (15)

gives the conductivity as an explicit function of time t (and an implicit function of e)
for each depth z. The conductivity can be found as an explicit function of water content
by using the regression

q

t = I b k ek (16)

k=O
in addition to (14). Flux as an explicit function of eis

(17)

(18)

and the water content gradient is given by

o = i ::k e
k

+ (f kbk e
k

-
1

) ~:
k=O k=1

or by substitution of (16) into (12). Substitution of (17) and (18) into (15) gives the
conductivity as an explicit function of e.

Other model functions for describing the time dependence of water content can be
applied in a similar way in place of (11). However, an advantage of (11) is the linear
dependence on regression coefficients. Standard regression methods are used to fit (11),
and the covariance matrix of the regression coefficients can be used to analyze propoga­
tion of measurement errors. A disadvantage of the polynomial regression (11) is the
dependence of the derivatives (12) and (14) on the particular choice of degree p. A P too
large will result in over-fitting of the data and a p too small will result in an incorrect
time dependence model. For the I-m plots data, it was found that a simple nonlinear
model used by Nielsen, Biggar, and Erh (1973) best described the water content. Appli­
cation of this model is discussed in the next sections.
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Regression ofdepth-averaged water content

It has been suggested by Nielsen, Biggar, and Erh (1973) that depth-averaged
water content (2) approximately equals water content at each depth. Now consider the
situation, during a drainage experiment, for which this suggestion is valid. Thus, sup­
pose that the drainage water content profile undergoes a parallel translation in time:

8(z,t) = 8 (z) + oCt) (19)
o

where 8
0(z)

is an initial profile, and d depends only on time. Then integration of (19)
gives

and

8 (z, t ) e (z) + 0 (t)
o

(20)

e(z , t) = e(z , t ) + d (21)

"where d = 8
0

- 8~. If the initial depth-averaged water content equals the water content,
i.e., d = 0, then e = 8 during the entire drainage at each depth.

So as to account for water content profiles that translate in time without remaining
parallel, a correction coefficient c is introduced into (21) to give

A

8(z,t) = c8(z,t) + d. (22)

Indeed, it is found that the drainage profile satisfies a linear regression given by (22)
where c and d depend only on depth z. For the I-m plots, equation (22) holds with
regression coefficients c in the range 0.6 to 1.0 and with correlations about 0.95, and
estimatesefrom 8 within measurement error.

By applying the regression (22), the fluxJ(z,t) is related to the rate of change in water
content according to the relation

d8
J(z, t ) = zc at (23)

Thus, drainage and redistribution take place according to the following stochastic first­
order partial differential equation:

a8 K(e ) (1 + ~hz).ZCat=,z 0

Unit hydraulic gradient drainage equation

(24)

Often a valid assumption for drainage of a profile at deep depths is that the hydraulic
gradient is unity, or the pressure head gradient is zero. Assuming an exponential con­
ductivitymodel and unity hydraulic gradient, the drainage equation (24) becomes

a8 S(8-8
0

)
zc - = K e (25)

at 0

where Ko and 8
0

are the steady state infiltration values, or initial values. Integration of
equation (25) with z positive below the soil surface gives

(26)
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and

(27)8
0

- : In[1 + BK t/z]
S 0

8

A

where (3 = (3/c.
Equations (26) and (27) were found to fit the water-content profile at every depth in

the I-rn plots. This result indicates that (26) and (27) apply with generality that goes
beyond the original assumptions, because hydraulic gradient is not unity over the entire
profile. In view of the flux equation (23), the implication is that flux is an exponential
functional of the form

J(8,z) = J
o

0(8-8 )
o

e (28)

where Jo is the steady state flux or initial flux, and the least squares fit parameters K,
and (3 are estimates ofJo and d, respectively. Thus, the parameters Jo and d represent
the exponential conductivity model only when the pressure gradient is zero. The general
drainage equation applicable to the entire profile is then

I
8 = 8 - 7" In[1 + J ot/cz] (29)o u 0

and flux as an explicit function of time is given by
J

o
J(z,t) = I + oJ t/cz· (30)

o
Least squares fit of the drainage equation (29) provides an indirect verification of the
model (28). Although not given here, we have verified (28) directly by a least squares
fit to finite difference estimates of the flux.

The representations of the flux, equations (28) and (30), can be substituted into
equation (1) along with any of the given estimates of pressure head gradient to yield
the conductivity. A drainage equation (29) was found to be superior to the polynomial
regression (11), at least for the I-rn plots.

Scaling of Conductivity

Conductivity models

Conductivity is often represented within experimental measurement error for a re­
stricted range of water content by the exponential function

(3 (8-8
0

)

K = K e (31)
o

where eo is some reference value of water content, and K, is the corresponding conductiv­
ity. This result is common in the literature. In each case, the model is verified by least
squares fit of its linear form:

In K = In K + S(8-8 ). (32)
o 0

For the I-m plots, the direct finite difference estimates of conductivity based on the
pressure head gradient between two depths satisfy a regression (32) for each location.
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In terms of the degree of saturation s, the conductivity function is
b (s-s )

K = K e 0 (33)
o

where Ko is now the conductivity at the reference saturation so' Another representation
of conductivity is obtained by defining s in (33) as an approximate saturation equal to
eI eo' where eo is the water content during steady state infiltration. With So equal to 1,
the models (31) and (33) are then related by {3 = bleo ' These models yield equivalent
descriptions of conductivity when applied independently to each location with given
valuesof eo and saturated water content ~.

The conductivity can be scaled for a set of locations if either of the exponential models
can be least squares fit with a common value of (3 or b for all locations . As a consequence
of measurement uncertainty, the conductivity can scale possibly with respect to both
models, even though the scaling results are not equivalent. In general, the scaling with
respect to these models is not equivalent, because each emphasizes a different parameter
as being common for all locations, and the scale factors obtained with each model need
not be equal. Scaling will yield equivalent results for the two models only if eo and ~ are
constant over all locations.

Conductivity scale relation

Scale factors w for the conductivity models (31) and (33) are defined relative to
common reference values of eo and so' To obtain the scales, the models (31) and (33)
can be expressed in terms of averages eo and So over locations as follows:

6 (a-a)
K = K. e 0 (34)

o

where
8(8 -8 )

K K
o 0

= e
0 0

and
b (S-8 )

K K
0

e
0

where

(35)

(36)

(39)

(38)

(37)
b (8 -s )

K = K e 0 0
o 0

The transformed models (34) and (36) now have the same reference value of e and s.
Assuming that the measured conductivity for a set of locations is scaled with either of
the exponential models, the scale relation is

2
K = w Ko m

where w is the scale factor of each location and Km is the scale mean value of all Ko.
For a set of R locations, the scale mean Km is determined by the condition that the
averageof w over locations equals unity. The scale mean is then given by

R
1 ~ R1/2
R L or

r=l
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where subscript r denotes the location. Values of the scales wr (r = 1, ... , R) are then
established by the scale relation (38), for each location. .

Scaling of conductivity with respect to the exponential models (34) and (36) has an
important property: values of w do not depend on the particular common values of eo
and So used. That is, scaling results are invariant with respect to the choice of eo and so.
However, values of K; do depend through (35) and (37) on the particular (Jo and So used.
Moreover, the domains of the models are still determined by (Jo and So of each location.

A different symbol w is used to distinguish conductivity scales and pressure head
scales a. Indeed, the principle of scaling as proposed by Miller and Miller (1956) is
valid if, within limits of statistical and computational error, the conductivity .scales w
equal the pressure head scales a for every location. Equality of these scales is not a direct
consequence of Richards' equation, but further depends on the scaling behavior of flux.

Scaling in terms ofwater content

(40)

(41)

A common (Jo is defined ?y

(r = 1, .•. , R)K = Kr or
= (J / (Jor' and b is common for all locations.

R

~=!~_J:....
e R Le ·

o r=1 or

where s

Measured conductivity of the I-m plots was scaled with the model (33) for an approxi­
mate saturation variable s equal (J/ (J0 and for So equal 1. One would expect that scales
computed in terms of s will approximate those in terms of (J if (Jo does not vary much
over locations. This possibility will now be considered.

The following method provides an estimate of the effect on scales of changing con­
ductivity models. Suppose that conductivity is scaled for R locations with

b (s-1)
e

Let(3r = b/(Jor. Then in terms of(J, (40) becomes

Sr (e-e or)
K (e) K e

r or
where

K
or

IZ
o

S (e -e )r 0 or
e

Kor

S (e-e )
r 0

e (42)

(43)

Now define

Kor

S(e-e )
o

e (r 1, ••• , R) (44)

with
R

R
1 ~L Br

r=1

b/e •o
(45)

Then (44), which is scaled in terms of (J, is an approximation to (40). New scales OJ are
determined by

Kor
"2 "
w Kr m

(46)
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with R

iI
r=l

A1/2
Kor (47)

The standard deviation of {3r denoted 0f3' which equals b multiplied by standard devia­
tion of 1/eor' represents error in (3. Scales ware related to the original scales w by

A2 2 " b(8 /8 -1)
w = w (K /K ) e 0 or (48)

r r m m

The difference in (42) and (44) for each location is given by
"

In K
r

(8) - In Kr (8) = (S-Sr) (8-8
0

) • (49)

Thus the standard deviation over locations of the logarithm of conductivity equals

aBI8-8 0 I· (50)

Equation (50) constitutes an estimated deviation of the models when scaling representa­
tions are changed from saturation to water content.

Of course, scales in terms of ecan be obtained directly by least squares fit of (31) with
a common {3. Scales & are not expected to remain valid approximations of the directly
obtained scales when eor have large variation.

Indirect scaling offlux

The scaling of conductivity implies certain indirect scaling results for the water content
drainage profile and the flux. Consider a drainage profile with unit hydraulic gradient,
and suppose that eo is constant throughout the profile, so that the scale relation becomes

2
K = wK.o m

(51)

Let zm denote a reference depth, for example, the last depth in the profile. A macroscopic
length scale L is then defined by L = Z / zm. A reduced time T for each location will be
defined by

2
T = (~ /cL)t. (52)

(54)

Then, in terms of reduced time, the water content profile (26) is described by the same
equation:

8 = 8
0

- : 1n[1 + BKmT/Zm]· (53)

At each location, the flux is given by

J(z,t) = w
2

J (T)
m

where

J (T)
m

Km
1 + BK T/Zm m

(55)

defines the reduced flux.
Equation· (54) constitutes a scale relation for flux (23), and provides an indirect method

for scaling conductivity. Conductivity based on unit hydraulic gradient can be scaled
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with an exponential model if (26) can be least squares fit to measured water content of
all locations with a common (3. The fit estimates K, for each location, and the scales are
obtained from (38), using (35). An assumption of constant eo is not required here.

In general, however, the hydraulic gradient is not unity throughout the entire profile,
so that the fit of (26) actually represents equation (29) with a common d. Thus the flux
(28) can be scaled if the drainage equation (29) can be least squares fit with a common
d for all locations . Then drainage scales ware defined by

2J = w J (56)
o m

where
0(8 -8 )

J = J e 0 0 (57)
o 0

for each location, and eo is an average reference steady state eo. The scale mean flux]m is
determined relative to the common eo:

1/2 -1/2
J

m
= average J

O
• (58)

Equation (58) follows from the constraint that average w equals one. Reduced time is
then defined as

(

2 0 (8 -8 »)woo
T = cL e t , (59)

In terms of reduced time, the water content profile is described over all locations by

18 = 8 - 7 In[1 + oJ T/Z ].
o u m m

(60)

Hence, the water content profiles for a set of similar soil locations can be coalesced into
a single curve (60) by scaling time according to (59) and by transforming the water­
content reference from eo to eo' Dependence of flux on reduced time is given by

J(Z, t )

New scale relations

? 0 (8 -8 )
w~ J e 0 0

m
1 + oJ T/Zm m

(61)

Scaling of time and flux as in equations (52) and (54) suggests that another set of
reduced variables, which differ from those of Miller and Miller (1956), can be defined.
The flow equations are written as

and

J
2
a

K a2" az [z + h]
a

(62)

L ~z (J/r/) = - ae/a (a
2

t / L ) . (63)

Then invariance of Darcy's law (62) and the continuity equation (63) implies the follow­
ing scale relations:
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(i) h = ah_. m

(ii) K = K/a
2

m

(iii) z = z/L
m

(iv) J = J/a
2

m

(v) t = a
2

t / L
m

The subscript m denotes a reduced variable, i.e., a scale mean quantity, and a is the
scale factor. These scale relations differ only in the definitions of reduced flux (iv) and
reduced time (v). In terms of reduced variables, the flow equations are

Jm ~ r+ ~L ::~1 (64)

and
aJ

m asaz = - ate (65)
m m

Thus, the solution of the flow equations is invariant over locations if the pressure head
gradient is invariant; this is the case, for example, if dh/ dz = O. Note that the invariance
of (62) and (63) assumes a scale-homogeneous soil profile, or that the gradient of a is
negligible. In general, the reduced flux (64) is invariant over locations if aL is invariant,
and this is the same condition required by the original Miller and Miller definition.

Indirect estimate of conductivity and scales based on pressure head for
two depths

The following method for scaling conductivity avoids the difficulty of evaluating
the hydraulic gradient over a profile.

Soil-water characteristic curves h ' and h" are assumed determined at two depths
z ' and z". Then the conductivity at profile depths between z ' and z" for which drainage
as a function of time is measured can be calculated as follows. An integral equation

forK(B,z)isgivenby J.:"~~~::~ dz z" - z' + h" -h'. (66)

The water content Bis provided as data for the n depths z' = ZI' Z2' ... , zO_I' Zo = z",
and the flux](B,z) is described as a functional of B(z,t), or determined as an explicit
function of time,](z,t), at each depth. For example, a polynomial representation of flux
such as (14) can be used. Now let

fez) = J(S(z,t),z)/K(8(z,t),z) (67)

where conductivity K(B,z) is described by some choice of model function. A finite dif­
ference approximation of the integral (66) over the profile is given by

f
ZlI

f (z) dz = f (z1) 11;1+I f (Zj) (lIz j : IIZj_1) +f (zn) IIZ~_1. (68)

z' j=2
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(70)

Each f(zj) G= 1, ... , n) is an explicit function of time t, which depends on the param­
eters b., ... , bp of the conductivity model K(8, z: b., ... , bp) for each location. Thus
equation (66) with the approximation (68) depends on the np parameters b l l , ... , bpI;
b 12 , ... , bp2; ... ; bIn' ... , bpn· These unknown parameters can be estimated by a
direct nonlinear least squares fit of (66) using (68). The integral (68) is fit to the dif­
ference in hydraulic potential, Z + h, as a function of time.

In particular, the model (31) depends on two parameters: Ko and (3. With the flux
model (28), (67) becomes

J (o-s) (8-8 )
£(z) = K

O
e ° (69)

o
where all parameters may depend on z. Then conductivity can be estimated and scaled
simultaneously by letting

b. = 1/w: K U 1, ••• , n)
J J m

and by taking bn+ I = (3 as the common parameter. Then

(0 .-s) (8 .-8 )
J J 0f (z .) = b. J . e •

J J oj

forj = 1, ... ,nwhere8j = 8(zj,t)']oj,anddjareknownfrommeasurement.
Since the drainage flux can be scaled for the 1-m plots, dj corresponding to each loca­

tion can be replaced by a single common d. By the scale relations, a single average value
of 8

0
can be used.

Disadvantages of this method are that a prior choice of conductivity model causes
biased estimates and that a requirement of many parameters b l , ... , bn can make a
unique and accurate fit impossible.

Corrected Estimates of Conductivity

In circumstances for which direct measurements of the entire pressure head profile
are not available, the following methods are used to improve estimates of conductivity
by estimating hydraulic gradient from the scaled water-content profile.

Conductivity based on estimate ofpressure head gradient

Usually the soil profile of a field is scale heterogeneous, and computation of the
pressure head gradient requires evaluation of the scale factor's derivative. However,
when the pressure head scales, a, are incomplete over the profile, as is the case for the
1-m plots, the derivative da/dz cannot be estimated properly. But assuming that the
new scale relations are valid, the scales a are identified with those obtained by scaling
drainage according to (56). Then assuming that a equals w for all locations, the gradient,
of a can be estimated over the same profile for which 8 is measured.

Suppose that the parameters of the pressure head model are estimated for at least
one location and that the drainage profile is scaled with (56) and (60). Then the head
gradient is

ah hm(.!.da\ + amp eP (8- <P ) ~
a;=- 0'. 0'. dz) 0'. az (71)
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where the pressure head model is

h = a (eP(6-</» - 1)
m m

and z is positive downward. Now from equation (29),

;: = ::
0

- 1 + ~~c t/ cz ~z ( ~0
)

o
and
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(72)

(73)

(74)
dJ de
__0 = l da J + oJ 0
dz a dz 0 0 ~

by the flux scale relation (56) with w equal a. Substitution of (74) into (73) and elimina­
tion of t with (29) gives

d6 0 (6-6 ) 0 (6-6 0 )

~ - ~ e 0 + (l-e ) (1 _2 ~ da) (75)
az - dz oz a dz

Then substitution of (75) into (71) yields the pressure head gradient as a function of e:

dh = _hm(.!. da.) + am P / (6-</»
az a. a dz a

~
de o 0 (6-6 ) 0 (6-6 )

o (1 - eO)
dz e + QZ

(76)

for z >0 downward. The gradient (76) neglects the gradient of c. With the flux given by
(28), the conductivity is then given by

o(e-e )
O'

K(e,z) = J e /(1 + ah/az). (77)
o

An advantage of this method is that conductivity is not restricted to a simple exponen-
tial model. On the other hand, a disadvantage is the required evaluation of the gradients
deo / dz and da /dz, since small errors in these gradients can easily yield nonsense results
such as negative conductivity. The formula (77) gives most reasonable results when the
gradients are estimated by their average values over the profiles. A suggested procedure
is to estimate de0/dz and da /dz from the slope of linear regressions over the profile.
Conductivity estimates can be further improved by using the actual a obtained from
direct scaling of the pressure head, when available.

It is notable that if the pressure head gradient (76) is replaced by its average over
scales a, then the conductivity (77) is scaled with the flux scalesof (56).

Conductivity based on scaled drainage flux

An improved method for simultaneously estimating and scaling conductivity is
obtained by applying the new scale relations (i) through (v). The method does not re­
quire detailed measurements of the hydraulic gradient over the entire soil profile;
however, it does require that conductivity scales equal drainage flux scales w. Further­
more, if pressure head scales a are assumed to equal flux scales, then measurement of
a soil-water characteristic at a single location within a field is sufficient to apply the
method.
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(78)
(8-8) (S-a )

o
e

J
m

K
m

The following method is based on application of the integral equation (66) associated
with indirect scaling of conductivity. Hydraulic conductivity and flux are assumed to
satisfy the exponential models (31) and (28), respectively. The water content profiles
are assumed to satisfy the drainage equation (29) with d common to all locations, so
that the flux scales ware given by (56) and (57). Then assuming that conductivity scale
factors equal w for each location gives

K(e, z) = JOe (8-13) (e-e0)

J(S,z) Ko

(79)

The parameters A = Jm/Kmand B = d - (3 are common to all locations. Under these
assumptions, the integral equation (66) becomes

•• B(e-e)
A e 0 dz = z " - z' + h tl

- h' + E

z'
where E represents error. This error is due to measurement error and the fact that (66)
need not constitute an equality when the various models for flux, conductivity, and
pressure head are substituted into the integral equation. Indeed, the soil-water prop­
erties represent only approximations of actual values for the experimental range. An
estimate of A and B is then obtained from least squares fit of (79) to the measured water­
content profile and the pressure head at the two depths z' and z", for all experimental
times. That is, the sum of squares of error in the hydraulic head difference between
z ' and z" over all experimental times for all soil profiles is minimized. If direct measure­
ments of the pressure head are not available, h can be estimated from a characteristic
given by (72) and the drainage scaleswith

h = h /w. (80)
m

Using the known parameters Jo and d from the scaled drainage profiles and the least
squares estimates of A and B, the conductivity parameters are obtained for each location
from

K
o

J BCe -S )
o e - 0 0 and f3 = 0 - B.

A
(81)

This method can also be applied independently to each soil profile (experimental
plot). In such application, the conductivity and flux need not scale over locations, that
is (3 and d need not be common to all locations, provided only that A and B are common
in a statistical sense.

Solution of the drainage equation

The drainage equation

($(8-8
0

)

J e
o

B(S-a )
o

= K eo (1 + ah/az) (82)

coupled with the pressure head model

h = a (eP (e-<j» - 1) (83)

constitutes a first order differential equation solvable for e. A computer program for the
Runge-Kutta solution of (82) was developed, which can simulate the water-content
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(84)

(85)

profile for known flux and conductivity model parameters. This program can be applied
to study layer effects as characterized by different scale factor distributions over the soil
profile (scale heterogeneous soil).

Millington-Quirk Conductivity and Scaling

Estimates of conductivity, which were calculated by the instantaneous profile method
applied to the 1-m plots, are restricted to a limited range of water content. Indeed, the
measured water content within the 1-m plots seldom decreased below a value of 0.3
even for 60 days of drainage. Accurate calculations of conductivity for smaller water­
content values are difficult, because the change in Bover long periods is comparable to
measurement error. Thus, for smaller water contents, another method is needed to
estimate conductivity. Such an extension of conductivity, which is compatible with the
scalerelations, is provided by the Millington and Quirk (1959) method.

Introduction

The Millington-Quirk formula for hydraulic conductivity is given by
• n

xo». =.e..&~ ~ (2j + 1 - 2i) r:
1 8n 2 ~ J

n ..J=l
where rl' ... , ro are the radii of pores corresponding to n pore classes. Millington and
Quirk take n to be the total number of pore classes and p = 4/3, and K(B)i denotes the
conductivity at a water content Bfor which the pore classes with radii ri , ri + l' ... , ro are
water filled.

In terms of the suction head h (negative of pressure head) corresponding to pores of
radius r remaining filled at suction h, the radius is given by the capillary equation

r = 2y/pgh.

Using (85) the conductivity becomes
n

2 El P "\ 2
K(El)i = 2~gfl n 2 Z: (2j + 1 - 2i)/hj (86)

j=i

where y2/2egYl = 2.7 x 102ern/ sec at 20°C. The sum in equation (86) begins with the
suction head hi corresponding to the radius of largest water filled pores and is over all
pore classeswhen Bequals the saturated water content (porosity).

The conductivity model (84) is derived from Poiseuillc's equation for flow through a
narrow tube of radius r, and for i equal 1 the sum

n

<1>; I (2j - l)r~ (87)

n · 1J=
represents an average cross sectional flow area of the connecting pore tubes, where cJ> is
the porosity. An average area (87) is obtained by counting the number of effective pore­
to pore connections for n classes, and the flow area of connecting pores is that of the
smaller pore or neck of contact. The average (87), which was derived by Marshall (1958),
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assumes an effective pore area fraction per unit area of section equal to ep. Millington­
Quirk estimated that fraction to be ep2/3. Substitution of an average radius r corresponding
to (87) into Poiseuilles equation for the effective flow velocity through the pore volume
gives p = 2 for Marshall's method and p = 413 for the Millington-Quirk method. In
the Marshall method, however, the n included in the term OP 1n2 is replaced by
(n - i + 1), which is the number ofwater-filled pore classes up to O. Thus the particular
power p used in these methods is determined by the particular estimate of effective
pore flow area and pore interaction (continuity of pore contact).

Both Marshall and Millington-Quirk methods estimate h j corresponding to pore
radius rj by dividing the water range 0 to ep into n equal intervals, and the h j equal the
suction head evaluated at the midpoint of the water content intervals. Then

where

and

h. = h(8.)
J J

8j = (2n - 2j + 1) rp/2n

(j = 1, ••• , n) (88)

(89)

The actual pore distribution is unknown and the uniform distribution implied by (88)
and (89) is assumed. A matching factor, Ks/Ksc' is introduced to correct the calculation
error inherent in the assumptions of a capillary flow model with pore radii correspond­
ing to uniformly distributed water content (89). Here K, is the actual conductivity at
saturation and Ksc is the value calculated from equation (86). Conductivity is then given

by K(6). = (Kg ~ (LJ ~ ~Ln (2j + 1 _ 2i)/h~. (90)
1 K] 2pgn7 2 JBe n . .

J=1

Modifications to Millington-Quirk conductivity

The pore radius corresponding to suction head given by (88) can become arbitrarily
large for water-content values near saturation, when the number of pore classes n is
large. Physically realizable radii of pores are actually restricted by an upper limit to pore
size. Thus, a critical value of water content less than saturation must occur for which the
pore radius determined by (88) and (89) cannot be greater than

r = 2y/pgh(8 ), (91)
c c

where 0c denotes this critical value. For a sample drying from saturation, 0c is the lowest
value of 0 for which all pores remain filled, and all pore classes contain water when
0c <0 ~ep. The critical value 0c is the extreme limit of the capillary fringe of a soil-v.:ater
characteristic curve. The summation in equation (90) is therefore terminated for OJ of
(89) greater than some 0c' which is to be estimated from the soil-water characteristic
curve. In a similar way, the sum in equation (90) is truncated for pore classes with radii
below some physical limit size. This lower limit of pore radii is considered as correspond­
ing to 0 for an air-dry soil.

Matching factor

The matching factor Ks/Ksccan be estimated from any measured value of conductivity
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for water contents other than saturated. Let f = Ks/Ksc and K(B)i denote conductivity
calculated with equation (86). The measured conductivity K(B) is described by a model
function which is least squares fitted to measurements in the interval Bmin to Bo ' A best
fit estimate of the matching factor f for n pore classes is obtained by minimizing the
sum of squares of errors Ei given by the following:

In K(8.} = In f + In K(8). + £.
~ . ~ 1.

(92)

(93)

< 8. < 8 •
:I- - 0

Minimization yields

N

In f = ~ I In(K/Ki )

i=l
where N is the number of Bi values between Bmin and Bo '

Suction head required in equation (86) is computed from the model soil-water charac­
teristic curve fitted to measured pressure head and water content. A model function for
h(B) allows extrapolation beyond the experimental range as required in order to compute
conductivity for low water contents not attained in the field experiment.

for e .nun

Computer program for Millington-Quirk conductivity

A special computer program was developed to compute conductivity from equation
(90) with the following features:

(i) The summation in equation (90) is truncated for pore classes with pore radii
larger or smaller than predetermined physically realistic pore size limits. These
pore size limits are determined by limits on the corresponding water content.

(ii) The best fit model soil-water characteristic curve

h(8) = a(eP ( 8- </» - 1) (94)

is used to estimate suction head and extrapolate beyond the range of experi­
mental water content.

(iii) The best fit matching factor, f = Kact/Kcalc' is computed for the model
conductivity function

K(8) = Ko

S(8-8 )
o

e (95)

fitted to experimental values in the range 8. < 8 < 8 •
m1n - 0

(iv) An extended model function given by

(96)K(8)

P

Ko exp L Sk (8-8 o ) k

k=l
is least squares fit to the conductivity computed from equation (90), using
the best fit matching factor of (iii). The fit of (96) includes the optional con­
straint that (31 equals (3. Then (96) is consistent with measured K for Bnear Bo '

The program computes (31' ... , (3p step-wise with polynomial degree P incre-
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mented by one until a desired accuracy of fit is reached. As a result of this
method, the conductivity model (95) is extended to low water contents in a
way compatible with field measurement and the Millington-Quirk model.

The scaling of Millington-Quirk conductivity follows directly from the scaling of the
soil-water characteristics. This result is demonstrated by letting a be the scale factor
for any location where ah = hm and by assuming that the matching factor has a fixed
value. Conductivity is computed from equation (90) for each location, and the scale
mean conductivity is defined by

K(6). = (Ks
) (L) ~ ~ (2j + 1 - 2i)/h

2
(8 . ) (97)m 1 K 2pgn 2 ~ m . J

sc n ..
_ J=1

for OJ G= 1, ... , n) given by (89). Then
2

K(8). = a K (8).. (98)
1. m 1

The exact scaling relationship (98) is a consequence of the scaling of the capillary equa­
tion and Poiseuille's equation, which is just a special case of Stokes' equation.

Differences between the conductivity scales w computed directly from measurements
at each location and the pressure head scales a can be attributed to spatial variation in
the estimated matching factor. Variations in the actual pore size distribution used to
define the summation in equation (90) for each location can also cause deviations from
the ideal scale relation (98).

Since porosity usually changes with location, best scaling results are obtained when
the pressure head is expressed as a function of the saturation variable s = 0/ ~. In terms
of saturation, the Millington-Quirk formula becomes

K(s)i = (~s \)(zy2) <j>P s~ ~ (Zj + 1- 2i)/h~ (99)
sc pgn n ~ J

J=J.
with ~ = e. /~ and h j = h(~). Now if ~P does not vary appreciably over locations, which
is usually the case, then conductivity given by (99) scales with the pressure head scale
factor a according to the relation

K(s). = a
Z

K (s). (100)
~ m ~

where the scale mean conductivity is defined by using (99) with hm(s). It is observed
that conductivity can be estimated for all locations if the matching factor can be estimated
for at least one location. This result assumes, of course, that the pressure head can be
scaled and the pore size distributions for each location are similar. Indeed, the latter
requirement is valid for locations having similar soil.

Average Drainage Flux

The effects of uncertainty in measurements of water content and conductivity have
not been considered in any of the foregoing analyses. It was a tacit assumption in the
previous sections that soil-water variables 0, h, and K and model function parameters
represent mean values to be used in the Richards' equation. In this section, the view is
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taken that Richards' equation is stochastic, because the soil-water variables are stochastic.
The effect of both local and spatial variability on estimation of flux will now be con­
sidered. Random behavior of conductivity results from measurement error and fluctua­
tion phenomena inherent in soil-water transport, and this random behavior propagates
asstatistical error in the water-content profiles.

Local variation ofconductivity

The conductivity is described effectively with a regression model (32), which assumes
normal distribution of errors in In K and homogeneous variances within each location
for a normal distribution of errors in e. Conductivity is scaled by obtaining an estimate
of {3 common to all locations under consideration, but Ko and eo depend on the location.
In the following analyses of error propagation, {3 is assumed to be estimated with negligible
error by the scaling method. Then conditional on this value of {3, a single measurement
of conductivity K for a value of e is sufficient to estimate a xalue of K,.{> from (32). The
expectation of In Ko for these estimates is denoted by In Ko where Ko represents the
geometric mean for each location. That is,

In K
o

= E[ln K
o]

(101)

for each location. Now neglecting errors in (3 and eo the standard deviation of In Ko is
given by

a[ln K ] = a[ln K]o
where o[ln K] is the standard error of estimate for the regression

(102)

(103)In K = In K + s<e-e ).o 0
A

The standard error of estimate of the mean In K, is estimated as

o[ln K] = o j Ln K ] / IN (104)o 0

where N is the number of conductivity measurements for the location. Notice that (102)
A -

and (104) attribute a maximum error to In Ko ' Estimates of the arithmetic mean K, and
standard deviation 0Koare obtained by transformation to a log-normal distribution as
follows:

E[K
o]

= K
o

exp(02[1n K
o]/2)

(105)

and

The error in 1(0is

a [K ]
o

E[K] (exp(02[1n K ]) _ 1)1/2.
o 0

(106)

a[K] = arK J/IN. (107)o 0

Asindicated in Part I both the arithmetic mean conductivity and standard error depend
exponentially on e.

Flux as a stochastic function

Prediction of flux for conditions of unit hydraulic gradient will now be investigated.
Since K, can be viewed as a random variable which reflects the variability of the conduc­
tivity (31), the drainage equation (25) is a stochastic differential equation. Furthermore,
the flux is a stochastic function of the random variable Ko ' characterized by the statistics
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(111)

(105) and (106). The average water-content profile, B(z,t), is obtained by averaging the
solutions of equation (25) over the distribution of Ko ' It is an approximation to assume
that B(z,t) satisfies the same drainage equation (26) for the average' Ko .

. Random variations of Ko occur between locations (spatial) due to changes in soil
properties such as texture and composition and within locations (local) due to fluctua­
tion in transport phenomena and measurement errors. Therefore, the water content
B(z,t) must be averaged both between and within locations in order to compute the
averages of cumulative seepage and flux through a field at any time. Variations in K,
can also be due to progressive deviation of measured conductivity and the exponential
model (31), but this effect caused by lack of fit will be neglected. Hence, the local
component of variability is represented by the standard error or estimate of conductivity
and the spatial component by the scale distribution for the mean Ro • Note that the
mean steady state conductivity, ~o' expressed relative to a common average 8

0
in the

scale relation (38) is the quantity Ro . That is, in previous sections K, represented a mean
value; here Ko represents a single measurement.

Average cumulative seepage

Cumulative seepage at depth z (positive) equals zA(Ko) where

A A 1 A

liCK) = e - e = -;;:- In[l + SK t/z]. (108)
o 0 B 0

1\

{3 is constant over locations if the variation in c is neglected, and the water content dif-
ference (108) is a stochastic function of the random variable Ko '

Local expected seepage

The local variation in Ko will be considered first. Denote the expectation of (108) as

K = E[ Li (K )]. (109)
o

A second order Taylor series expansion about the mean 1<0 gives
Li" 2I1(K) =11(K)+Li'(K)(K -K)+-2 (K)(K -K). (110)

o 0 000 000

Taking the expectation of (110) yields the following approximation:

l\ = ~(Ko) + ~ ~1I(Ko) cr~ •
o

Similarly, a first order approximation of the standard deviation is given by

and

o [A] = I~ , (K0) [ crK •
o

The derivatives required in the equations (111) and (112) are

t/z
Li'(K ) = --A""';"'-"--

o 1 + BK t/z
o

(112)

(113)

~II(K ) = - S(- ~/z )2 = _ B[A'(K )]2. (114)
o \1 + SK t/z 0

o
Equation (111) demonstrates explicitly that the local average depends on the sample
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variance of Ko as well as on the mean of Ko ' For times sufficiently later than initial
drainage, equations (111) and (112) simplify to

X = L\(.K ) - ~ (0 li)2 (115)
° 2S Ko °

and

1 -
o[~J = A (OK /K ).

S 0 0
(116)

Equation (111) with (114) indicates that the expected seepage is always less than the
deterministic estimate obtained by substituting 1(0 into equation (108). Average flux
within a location is given by

- aX ( )J = z at. 117

Thus the average flux does not equal the deterministic estimate.

Spatial variation in seepage

(118)

Next, consider the spatial variation in Ko ' Ar will denote the mean water-content
difference at each location r, according to equation (111). The spatial average of (108) is

R

- 1 L -~ = - ~R r
r=l

and spatial variance is

2v

R

= R:l L
r=l

(119)

(120)

(123)

(121)

r=l

where

Variance in the spatial average (118) due to variation within locations is
R

2 - 1 I 2-(J [~J = -- (J [~ J
R2 r

r=l
where o[Ar] is the standard error of the mean ~r' i.e., standard deviation o[ar] divided
bythe square root of sample size. The variance (120) assumes independent distributions
of Ar for all locations . The avarage local error equals

R

i Lo[X r]·
r=l

Using a second order expansion, the spatial average (118) is given approximately by

t. = ~(K ) +.!. ~"(K ) [V 2 +.!. f 0
2 l (122)

o 2 ° 0 RL K~I
r=l 0:J

R R

Ko = i I Ko r and v~ = R~l I «,
r=l
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The term in the brackets of (122) is recognized as the sum of spatial and average local
variance of Ko ' It can be shown that the spatial variance (119) has the following ap­
proximation:

R

I1
R-l

2
v

r=l
Replacement of the local variances in equation (124) by average local variance yields a
further simplified approximation:

(125)
2v ~'(K ) + 1. <Li')' (K ) (1. ~ i ) 2 \)2.

o 2 -0 RL K 0
r=l or

Equation (125) indicates that the spatial variance depends on the local variance of K, as
well as on the spatial variance of Ko '

The total variance ofK, is
R

2 2 + 1. ~ 2
(J v0 R L OK (126)

r=l or
And according to equation (122) the complete spatial average of cumulative seepage
equals 2

~ In[l + BKot/Z] - zS ( ~~z ) 0
2

• (127)
S 1 + SK t/ z

o

The average flux equals the derivative of (127) with respect to time.
Although (127) is not an exact estimate of average cumulative seepage, it does

demonstrate explicitly the departure from a deterministic estimate using only the mean
Ko . It is noted that the above derivations apply as well to the actual drainage described by
equation (29). The parameters need only be changed to 3andJo '

Estimate of average flux

A first order expansion of the flux for unit hydraulic gradient conditions can be used
to investigate the effect of variance of K, on average flux. Here o~ will re~esent either
the local or spatial variance. A first order expansion of flux about the mean Ko gives

J
S(K - K )t/zl

o 0 ~ I
1 + BiZ t/ z I·

o j

(128)

Then the expectation of flux is approximately given by

K ~ A. (oi )~J = 0 1 _ St/z __0_

1 + BKot/Z 1 + SKot/Z Ko ·
(129)

"'-Now for (3Kot / l << 1, the equation (129) becomes approximately
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Ko

(130)1 + BKOU + (a
K

/KO) 2) t / Z •
o

"Thus the average flux is given by the deterministic equation for the parameter f3 effec-
tively increased by a factor depending on the square of the coefficient of variation of
Ko. When (130) represents a local average flux, equation (130) is consistent with the
direct fit of the drainage equation (29), since d is greater than f3 for all locations.
Including the local variation of K, evidently compensates partially for the incorrect
assumption that dh I dz = 0, by effectively decreasing conductivity for each value of e.
Indeed, dh/ dz is negative for the l-rn plots during drainage, so that numerically flux is
lessthan conductivity.

Spatial distribution of flux

The spatial distribution of K, is usually log-normal because the scale factors a are
found to be distributed in that way. This result is a consequence of the scale relation:

In K = 2 In a + In K • (131)o m
Equation (131) includes the assumption that eo is constant. The result still holds,
however, if eo is normally distributed, and this is often the case. The distribution of In)
is deduced from

A

In J = In K - Ln Cl + 6K t/ z) •o 0
(132)

When t is sufficiently large,

In J = In(St/z} (133)

and the flux reduces to a single value determined by the common parameter ~ obtained
from scaling, provided the variation of the regression coefficient c is negligible. In
general, the distribution of In) eventually assumes the distribution of In c. Initially
for t = 0, the flux is log-normally distributed, being identical to Ko . For sufficiently
small t, (132) becomes approximately

(135)

(134)

,..,..
a[ln J] = 11 - SK t/zl o[ln K ]o 0

"where Ko denotes the geometric mean. Therefore for sufficiently small t such that (134)
isvalid the standard deviation of In) is reduced as time progresses.

The asymptotic behavior of flux indicated by (133) and (134) implies that the dis­
tribution of In) corresponding to spatial variation of K, will be cut off at large Ko
values. Thus values of K, greater than a certain cut-off value given by

A

,..

In J = In K - 8K t/z.
o 0

Thus when (134) holds, flux is approximately log-normally distributed with a reduced
skewness. Standard deviation for the distribution described by (134) is given approxi­
mately by

K = 2z/St (136)
c

will contribute little to the extreme end of the flux distrib'utioo. Although the above
concerns the distribution of flux for unit hydraulic gradient, the conclusions also apply
to the actual flux described by equation (30). This is so because the drainage scale factors
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w of (56) are also log-normally distributed. Indeed, for the 1-m plots the scales a and w

are essentially equal for all locations.
In contrast to flux, the cumulative seepage begins without variation and eventually

assumes the distribution of In a. That is, after sufficiently long time the cumulative
seepage equals

Z A 2z
~ In(~K t/z) +~ In a.
S m S

(137)

Thus, ultimately the spatial variability of the soil locations is reflected by the measured
variability of the cumulative seepage. Again the variability of eo has been neglected in
(137). In view of the scale relation (38) and (35), in general the term zc(eo - eo) must
be added to (137).

Exact statistics ofseepage and flux

The above discussion applies only to the asymptotic behavior of the flux distribution
for scaled drainage profiles. In this section, an exact treatment which requires direct
computation of the statistics of (132) from the distributions of Ko and c is provided.
Previously, the variation of the regression coefficient c was neglected. Here the combined
variation of c and K, is taken into account. Scaling of the soil properties is assumed,
so that (3 is common to all locations. Again these results will apply to the actual measured
drainage scaled with equation (29) as well as for unit hydraulic gradient condition.

Another random variable defined by k = Ko / c is log-normally distributed if both
Ko and c are log-normally distributed. The probability distribution of k will be denoted
by P(k). Expected cumulative change in water content is

E[6] = f ll(k) P(k) dk (138)

where

ll(k) .= eo - e = ~ In[I + Skt/z],

and the expected, cumulative seepage equals

zE[c] E[A].

(139)

(140)

The average seepage (140) assumes that c and A are independent random variables,
which is approximately the case if Ko and c are independent. It should be noted when
applying (138) that the simple drainage equation (139) remains valid only for t such that
A~eo. The probability distribution of the cumulative change Ais

k(~)

P(ll} = LJ P (k I )dk' (141)
d~

where 0

k(ll) = z(eBll - l}/St. (142)

That is, (142) is the value of k that corresponds to A and satisfies equation (139). The
integral in (141) represents the cumulative probability for a value of A.

Cumulative seepage is distributed as the independent product of c and A. Since the
distribution of c is narrow, seepage has essentially the distribution of zeA. Variance of



HILGARDIA • Vol. 47, No.4· September, 1979

Ais
222

rr
A

= E[~ ] - E[~J ,

and variance of cumulative seepage equals
2 2 2 -2 2 -2 2}

z {a c a~ + c a~ + ~ ac •

The expected logarithm of flux is

E[ln J] = ErIn K ] - SE[~]o
where

E[ln K ] = E[In k] + E[In c].
o

and variance satisfies
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(143)

(144)

(145)

(146)

var I ln k] = var[ln K ] + var[ln c]. (147)
o

The logarithm of flux is distributed as the difference, In K, - (JA, or In] - In c is
distributed as In k - (JA(k). Variance of In] is

var[ln J] = var[ln k - S~(k)] + var[ln c ] . (148)

The arithmetic mean of flux and variance oJ can be computed as follows. Mean flux is

and variance is

- - aXJ = zc­at (149)

where

2a
.J

- 2
2{ 2 2 -2 2 + (a~) a2}

z ac v + c v at c
(150)

2 a~
v = var [at].

Usually; the distribution of k for each location r is found to be log-normal:

(151)

(153)

P (k) = 1 exp(-(ln k - 11 )2/202] (152)
r l21Tak r r

r
where JJr and 0; denote the mean and variance of In k, respectively. This is the local
distribution. The index r can specify a collection of locations occurring with frequency
wr in a particular population of similar soil locations. A pooled distribution representing
both local and spatial variability for R locations is then given by

R

P (k) = '\' w P (k) ,L r r
r=l

It is the probability distribution (153) that determines the statistics of the random
functions of k, i.e., of steady state conductivity.

The utility of scaling is now evident. Averages of cumulative seepage and flux can be
computed with respect to a single parameter rather than require a multi-variate average
asdiscussed by Warrick et al. (1977).
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Spatial Extension of Conductivity

(156)

(154)

(155)

(r = 1, ••• , R)

a.' = 1.
q

Q

~L
q=1

and= 0.,2 K'
q m

K
r

q

Kr
and the constraint

R

i L Clr = l.

r=l
Notice that the conductivity is not required to satisfy a simple exponential model. Now
let K, (q = 1, ... , Q) with Q < R denote a subcollection of K; New scales
a~ relative'to a new scale mean K~ can be computed for the Q locations. The new scales
satisfy

Before the various formulae for average seepage and flux can be applied to the
experimental field, it is necessary to ascertain conductivity at every location. Although
conductivity was measured for only a few locations, it can be estimated for all locations
by using similarity of soil properties. The scale factor distribution associated with scaling
pressure head provides an extension of conductivity measured in the I-m plots to the
entire experimental field. All that is required by the procedure is an estimate of the
scale mean conductivity and an assumption of equality of scale factors derived from
pressure head and conductivity. This assumption is the principle of scaling and is verified
for the l-rn plots, as well as for some other soils (Warrick, Mullen, and Nielsen, 1977).
Conductivity is then generated by its scale relation.

Because the scale factors satisfy the constraint of average equal to unity, the magni­
tudes of scales and scale mean conductivity depend on the number of locations. This
is demonstrated as follows. Consider the scaling of conductivity for a subset of locations.
Let aI' ... , a R denote a set of scale factors satisfying the scale relation

= 0.
2

Kr m

The scale means Km and K~ are related by the mean conductivity for the subcollection
of locations:

where

Kr
q

Q

= ~ L
q=l

2
a.

r q
(157)

(159)

(158)

Q

K~1/2 = ~ L K;/2.
q=l q

The new scales are related to the original ar by

Cl~ = Clr / ~ i Clr ·
q q=l q

Now if the average in the denominator of (159) is less than unity, then the new scales
are greater than the originals for every location. Moreover, the scale mean conductivity
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for the subcollection of locations is less than that of the entire set. The opposite holds if
the denominator is greater than unity. Similar rescaling of the pressure head for a subset
of locations again yields (159); however, the scale mean pressure head for the subset
increases if Km decreases, and conversely.

Equation (157) provides the basis for estimating the conductivity for a set of R
locations from measurements on a smaller set of Q locations, when the scalesaI' ... , aR
are known from the scaled soil-water characteristics. Furthermore, the two sets of loca­
tions need not overlap if the soil is similar over the combined set of locations.

Matching ofscale distributions

A general method based on equation (157) for matching scale factor distributions and
spatially extending conductivity will now be established.

Two different sets of scale factors will be denoted by a and a ' . The number of scales
in each set is denoted by Nand N ' , respectively, and these numbers correspond to the
number of locations. Scalessatisfy the normalization constraints:

~ Lex = 1 and ~Lex' = L
Now let a r (r= 1, ... , R) and a' q(q = 1, ... , Q) with R~ Nand Z~ N' represent
two subcollections of scales which correspond to conductivity measurements assumed
taken from the same sample distribution. For example, the two subcollections could
be scale factors from two different scaling experiments within similar soil, such as the
experimental field plots and the l-rn plots, and associated with all locations at the same
depth. Here conductivity measurements for a particular depth are assumed to be
obtained from the same sample distribution (population) for a similar soil. This is a
fundamental statistical assumption. The expected mean of the conductivity sample
distribution is denoted by K. Conductivity for each location is given by

2
K a K (r = 1, ••• , R) and

r r m

K ' = a' 2 K' (q = 1 Q)q q m ' ••• , .•
Nowthe means

r=1
areestimates of Kwith standard errors

K

R

iI K
r

and

Q

K' = ~ I
q=1

K'
q

and

v'/IQ,

(K - K)2
r

and

R

L
r=1

1
R-1

2v

a = v/IR
K

respectively, where

,2v

Q

= 1 "\' (K' _ K') 2
Q-1 L q

q=1
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(160)

(162)

are the sample variances. The scale mean conductivity K~ can be estimated from the
known scales and Km by equating estimates ofK:

R Q

K = 1:. ~ a 2 K =.!. L~ a ,2 K'.
R L.., r m Q q m

r=l q=l
Assuming a fixed distribution for the scale values a', an estimate of the error in K~ is
given by

(161)

The error in estimated conductivity K~ at each location q is
_ ,2

aK' - a aK, .
q q m

If in addition a~ are subject to error, then the effect of this on K~ must be included,
and (162) is not valid in that case. Thus the scale distributions are matched and the
proper scale mean conductivity K~ is estimated relative to another set of scales a'. A
method to estimate scale mean pressure head h~ relative to another set of scales is
based on the following equation:

R Q

ii = ~ L h r = ~ L ~, h~. (163)

r=l q=l q

Note that scale matching methods are not unique. Analogous methods based on
definitions of an average other than the arithmetic mean can be constructed. This is
expected, since there does not exist a single "best' , way of defining scale factors.

Results and Discussion: Scaling

Hydraulic conductivity: finite difference estimates

Soil-water storage and flux for the four 1-m plots were computed for 15 em intervals
down to the 120 em depth. Conductivity was calculated at the 60, 75, 90, 105, and
120 em depths, using direct finite difference estimates of flux and hydraulic gradient
based on pressure head differences between the 60 and 120 em depths. The exponential
model in its linear form (32) was least squares fit to the estimated conductivity for
the 20 soil locations. Parameters for (32) and regression statistics are given in table 1.
The regression was restricted to conduction of positive or downward flux, so that the
logarithm has a defined value. This was necessary because the direct finite difference
estimates of conductivity did not involve prior data smoothing. Such estimates of con­
ductivity are expected to represent the largest possible measurement error, but are the
least biased. The steady state water content (initial value) given in table 1 is the actual
measured value, and the estimated steady state conductivity K, (initial value) is a
geometric mean value. As seen in table 1, generally both the parameters Ko and {3
increase with depth, and the standard errors of estimate of In K are approximately
homogeneous over locations. Correlation coefficients, which range between 0.68 and 0.82,
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indicate that the exponential model adequately describes conductivity, within measure­
ment error. Standard errors of eo and (3 are indicated by parentheses. Typically, the
initial value of water content eo had the largest measurement error, and the error in e
ranged between 0.001 and 0.005 after 2 days of drainage.

The finite difference estimates of conductivity used in table 1 were scaled with the
model (33) in terms of an approximate saturation variable eI eo and for So equal lover
all locations. Estimated parameters and scale factors determined relative to a common
value of b are given in table 2. The parameter (3 for the exponential model (31) in
terms of water content equals bleo' Ideally, for perfect similarity, the parameters
obtained by scaling would equal those obtained by an independent direct fit of the
conductivity model for each location. Table 2 when compared to table 1 indicates that
scaling of conductivity holds approximately. Although the pattern of variation of K, is
different in tables 1 and 2, the standard error of estimate of In K is only slightly increased

TABLE 1.

REGRESSIONSFOR HYDRAULIC CONDUCTIVITY EQUATION (31) FOR 20 LOCATIONS
IN THE 1-M PLOTS. PARENTHESES INDICATE STANDARD ERRORS. 0 DENOTES THE

STANDARD ERROR OF ESTIMATE. SAMPLESIZE IS N AND CORRELATION COEFFICIENT
IS R. x, (CM/DAY) IS THE GEOMETRIC MEAN.

Depth
em 9

0
Ko fJ o[lnK] N R

PLOT 1

60 0.422 (.010) 2.80 22.3 (6.0) 0.782 16 0.70
75 0.415 (.014) 3.56 26.6 (6.4) 0.750 16 0.74
90 0.411 (.012) 4.50 31.8 (7.3) 0.784 16 0.76

105 0.409 (.004) 4.53 41.6 (9.1) 0.869 17 0.76
120 0.426 (.009) 5.21 46.9 (10.5) 0.868 16 0.77

PLOT 2

60 0.411 (.010) 2.55 24.8 (6.5) 0.856 14 0.74
75 0.412 (.012) 3.83 26.1 (6.3) 0.839 14 0.77
90 0.410 (.007) 4.84 29.8 (6.4) 0.794 15 0.79

105 0.414 (.007) 5.73 32.4 (6.7) 0.807 15 0.80
120 0.420 (.010) 6.66 35.3 (6.9) 0.805 15 0.82

PLOT 3

60 0.414 (.015) 0.94 33.3 (11.0) 1.058 16 0.63
75 0.421 (.020) 2.07 34.4 (8.8) 0.935 16 0.72
90 0.427 (.015) 3.43 37.8 (7.0) 0.811 16 0.82

105 0.428 (.013) 3.05 40.2 (8.6) 0.855 16 0.78
120 0.429 (.017) 3.47 33.1 (5.9) 0.772 17 0.82

PLOT 4

60 0.382 (.011) 3.23 25.3 (6.1) 0.771 15 0.75
75 0.385 (.010) 4.01 28.5 (6.7) 0.791 15 0.76
90 0.391 (.010) 4.97 36.5 (9.7) 0.914 15 0.72

105 0.394 (.006) 4.90 35.1 (10.4) 0.995 15 0.68
120 0.415 (.006) 5.35 36.6 (10.0) 1.009 15 0.71
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in table 2. The most important statistic here is the standard error of estimate, since it
determines the accuracy of conductivity predicted by the model. Indeed, the uncertainty
in the parameters Ko and f3 caused by the considerable measurement error in conductivity
allows a range of possible values for these parameters. The estimated value of b is 13.0
and the scale mean value of steady state conductivity Km is 3. 79 em / day. Scale factors
in table 2 obtained with the scale relation (38) correspond to an estimated geometric
mean of Ko . Scaled conductivity for the entire 20 locations is shown in figure 1 where
the solid line represents the scale mean value. Data in figure 1 were coalesced with the
scale relation (38), that is, each conductivity measurement is divided by the squared
scale factor of the locations. Pooled standard errors of estimate of In K and degree
saturation are 0.89 and 0.06, respectively.

Figures 2 and 3 depict the fit of the exponential model (31) for the 60 and 120 em

TABLE 2.

PARAMETERSAND SCALEFACTORS FOR THE SCALED CONDUCTIVITY EQUATION
(33) WITH So = 1. 8

0
ARE THE VALUESIN TABLE 1. b = 13.0ANDKm = 3.79CM/DAY,

WHERE KoISTHE GEOMETRIC MEAN.

Depth

em Ko

60 5.79
75 5.09
90 4.45

105 2.73
120 2.24

60
75
90

105
120

0.84
1.58
1.95
1.66
2.81

PLOT 1

f3 o[lnK]

30.8 0.835
31.3 0.765
31.6 0.784
31.8 0.903
30.5 0.941

PLOT 3

31.4 1.059
30.9 0.940
30.4 0.843
30.4 0.893
30.3 0.778

w

1.236
1.159
1.083
0.848
0.769

0.469
0.645
0.718
0.662
0.861

PLOT 2

Ko f3 o[lnK]

4.65 31.6 0.894
6.18 31.5 0.865
5.62 31.7 0.797
5.29 31.4 0.808
4.74 31.0 0.818

PLOT 4

6.42 34.0 0.830
5.72 33.8 0.809
4.14 33.3 0.918
4.36 33.0 0.996
3.81 31.3 1.020

w

1.107
1.277
1.218
1.181
1.118

1.301
1.228
1.044
1.073
1.003
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depths, respectively. The broken line is determined by the parameters of table 1 and
the solid line by those of table 2. Figure 4 shows the scaled conductivity in terms of
approximate saturation for the 60 and 120 em depths. In figures 2 through 4, the letters
A, B, C, and D denote data for the four 1-m plots. The graphs shown in figures 2 and 3
indicate that conductivity is not exactly linear for semi-log coordinates, showing pro­
gressive deviation for lower water content values. This suggests that the simple ex­
ponential conductivity model requires correction terms at lower water content, as de­
scribed by equation (96). However, accuracy of the present estimate of hydraulic head
gradient used to calculate conductivity does not warrant an improved fit provided by
such a complex model. Corrections to the estimation of conductivity deviates from an
exponential model, the scale factors still describe the relative position of measured con­
ductivity curves.

Estimates of arithmetic mean and standard deviation of Ko along with corresponding
scale factors are listed in table 3. These estimates are obtained by transformation to a
log-normal distribution, assuming a homogeneous normal distribution of errors in In K
at each location. The method follows equations (105) and (106), and uses the standard
error of estimate of In K given in table 2. The scale mean Km corresponding to the
arithmetic means of table 3 is 5.53 em/day, and is greater than the geometric mean.
Coefficients of variation of Ko are typically 100 percent of the mean value.

Uncertainty of measured conductivity also allows the possibility of scaling with the
model (34) in terms of water content. The approximate constancy of f3 in table 2
indicates that the conductivity curves are similar with a common value of f3. Scale factors
calculated relative to water content and corresponding to arithmetic mean K, are given
in table 4. For table 4, the scale mean Km is 6.16 em/day, and values of f3 and 8

0

common to all locations are 31.6 and 0.411, respectively. Calculation of these scale
factors follows the approximate method given by equations (44) through (47), using the
values of Ko from table 3. Estimated error in the common f3 is O.1. Scaling relative to a
common eo yields substantially different scale factors for plot 4. This is so because the
eo of plot 4 used to obtain the scales in table 3 are less than those for the other plots.
That is, the eo of plot 4 are not good estimates of water content under field saturated
conditions. Apparently, since the data begins about one day after steady state ponding
conditions, drainage in plot 4 was advanced beyond that of the other plots. The scale
factors of table 4 attribute the advanced drainage to greater relative conductivity in
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TABLE 3.

PARAMETERS AND SCALE FACTORS FOR THE SCALED CONDUCTIVITY EQUATION
(33).8

0
ARE THOSE OF TABLE 1. b = 13.0 AND Km = 5.53 CM/DAY. Ko (CM/DAY)

IS THE ARITHMETIC MEAN.

Depth PLOT 1 PLOT 2

em Ko a[Kol c.o Ko a [Kol c.o

60 8.21 8.24 1.218 6.93 7.67 1.120
75 6.82 6.08 1.110 8.98 9.48 1.274
90 6.05 5.58 1.046 7.72 7.27 1.181

105 4.10 4.61 0.861 7.33 7.04 1.151
120 3.49 4.16 0.794 6.62 6.46 1.094

PLOT 3 PLOT 4

60 1.47 2.12 0.516 9.06 9.02 1.280
75 2.46 2.93 0.667 7.93 7.63 1.198
90 2.78 2.83 0.709 6.31 7.26 1.068

105 2.47 2.73 0.669 7.16 9.33 1.138
120 3.80 3.47 0.829 6.41 8.67 1.076

TABLE 4.

SCALEFACTORS CORRESPONDING TO ARITHMETIC MEAN Ko FOR THE
CONDUCTIVITY EQUATION (341IN TERMS OF WATER CONTENT. COMMON

PARAMETERS:{J = 31.6,8
0

= 0.411,ANDKm = 6.16CM/DAY.

Depth PLOT

em 2 3 4

60 0.980 1.067 0.468 1.997
75 0.994 1.195 0.544 1.770
90 0.997 1.143 0.529 1.419

105 0.847 1.047 0.492 1.435
120 0.601 0.908 0.602 0.964

TABLE 5.

SCALEFACTORS CORRESPONDING TO ARITHMETIC MEAN Ko FOR THE
CONDUCTIVITY EQUATION (36) IN TERMS OF ACTUAL DEGREE SATURATION, AND

NORMALIZED FOR THE 60 AND 120 CM DEPTHS. PARENTHETIC VALUES ARE
SATURATED WATER CONTENT. COMMON PARAMETERS: b = 14.0, So = 1, AND

Km = 16.5 CM/DAY.

Depth

em

60
120

1.083 (0.45)
0.665 (0.45)

2

1.020 (0.44)
0.868 (0.44)

PLOT

3

0.448 (0.44)
0.763 (0.46)

4

2.230 (0.45)
0.922 (0.45)
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plot 4. Table 4 provides the best description of relative spatial variability, since effects
of different initial water contents 8

0
are removed. Moreover, when improved estimates

of saturated water content ~ are employed with the correction method of appendix F,
the resulting scale factors for the model (36) in terms of actual degree saturation are
comparable to those in table 4. Table 5 demonstrates this for the 60 and 120 em depths
for which ~ is estimated from the measured soil-water characteristics. Actual ~ for the
other depths in the 1-m plot profile was not measured. Note that the value of Km ,

16.5 cml day, is considerablygreater than that of table 3, as a consequence of the decrease
in degree saturation s. Estimates of conductivity, however, are not substantially changed,
since equation (36) with s:, equal 1 is not defined beyond the saturation equal to 8

01
~

for each location. Indeed, the value of Km can be decreased, without altering the scales,
bydefining (37) with s:, equal to an average of 8

01
~ .

Equality ofpressure head and conductivityscalefactors

Inasmuch as the pressure head was measured for only the 60 and 120 em depths in
the 1-m plots, a comparison of scalefactors is restricted to these depths or 8 soil locations.
Table 5 contains the scale factors for the conductivity model (36) in terms of actual
degree saturation with So = 1. These scales correspond to arithmetic mean Ko' and are
normalized for the eight locations. Conductivity scales w in table 5 and pressure head
scales a in table 1 of Pan I are compatible with respect to normalization, and both
models for those soil water properties are expressed in terms of actual degree saturation.
Thus, the scale factors are now in representations that are compatible for a proper com­
parison. Correlation of the scales a and w is demonstrated in figure 5. Error in the
scale factors, which is a consequence of local measurement error, is indicated by bars.
As is expected, error in conductivity scales is always greater than that in pressure head
scales. A regression with the constraint of zero intercept, w = Ba, yields the following
statistics: B = 1.04 ± O.10, standard error of estimate equals 0.284, and correlation
coefficient R = 0.97. Since the eight scale factors cover the range of scale values for all
locations having conductivity measurements, there is reason to expect that this regression
represents the entire profile of the 1-m plots. When examining figure 5, remember that
the bars represent the range of the errors not that of the standard deviations of the
means. Thus, within the limitation of statistical error, the scale factors a and w can be
viewed as being equal.

The principle of scaling is valid if a and ware identical over all locations. In actuality,
statistical and computational errors will cause a and w to differ. Thus, the principle of

~ 2.5

2f-

1.5 -

II-

2.5

Fig. 5. Correlation of conductivity and pressure
head scale factors for the 60 and 120 em depths of
the 1-m plots. Scalefactors correspond to arithmetic
mean values. Bars indicate standard errors.
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TABLE 6.

REGRESSION COEFFICIENTS e FOR EQUATION (22). CORRELATION COEFFICIENT R
AND STANDARD ERROR OF ESTIMATE o, SAMPLESIZE EQUALS 88 FOR EACH

LOCATION IN THE 1-M PLOTS.

PLOT
Depth 2 3 4

em C R a C R a C R a C R a

15 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0
30 0.32 0.64 0.019 0.75 0.94 0.005 0.71 0.91 0.006 0.82 0.96 0.006
45 0.61 0.92 0.011 0.59 0.95 0·006 0.62 0.93 0.006 0.72 0.96 0.007
60 0.86 0.83 0.017 0.62 0.96 0.006 0.66 0.96 0.005 0.74 0.96 0.007
75 0.79 0.79 0.018 0.69 0.96 0.007 0.66 0.97 0.005 0.79 0.92 0.010
90 0.97 0.90 0.012 0.80 0.98 0.006 0.66 0.95 0.006 0.97 0.94 0.009

105 0.90 0.78 0.017 0.86 0.98 0.005 0.80 0.96 0.006 1.00 0.95 0.008
120 0.89 0.76 0.017 0.85 0.93 0.010 0.66 0.97 0.005 0.97 0.97 0.006

scaling is considered to hold if a and w represent estimates of the same expected mean
for the scale distribution of each location. This distribution of scales within each
location constitutes the local variation. Variation between locations of the estimated
mean scales is the spatial variation.

Water content profiles and cumulative seepage

Storage is the instantaneous amount of water within the soil profile down to each
soil depth and equals the integral of water content from the soil surface to each depth.
The storage at each experimental sample time was calculated by the trapezoidal rule
using the measured water content at 15 ern intervals to the 120 ern depth. Estimates
of storage were obtained for each of the four neutron access pipes in each l-rn plot for 22
sample times from 0.6 to 56.6 days after cessation of steady state ponding conditions.
The depth-averaged water content (2) was obtained by dividing the storage by the depth
for each of the depths 15, 30, 45, 60, 75, 90, 105, and 120 ern. Cumulative seepage at
each depth z is then equal to the difference in depth-averaged water content Bo - ~,

multiplied by depth z where ~o is the initial value. "
Profiles of depth-averaged water content eand water content ewere found to have

similar shapes during the drainage period. As a consequence, Band ewere found to
satisfy a linear regression relation (22). Table 6 contains the regression coefficients c,
standard error of estimate of depth-averaged water content, and correlation coefficient
R for each depth in the I-m plots. These regressions are based on the 88 individual
measurements of eand ~ at each soil location. Note that eand Bfor the 15 ern depth
are assumed equal. As indicated by table 6, ~ is usually less than e at all locations
because the intercept of the regression is approximately zero and c is less than 1. The
standard error of c is about 0.03 for most locations.

The drainage curves for the depth-averaged water content as a function of time
satisfy the following equation:

A A I A

8 = e - ~ In[1 + J cSt/z]. (164)
0
00

Estimated parameters for the least squares fit of (164) at each location are given in
. "table 7. The fit IS to the means of eover the four neutron meter measurements, and
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is restricted to the first 31 days (19 points). Standard errors of estimate of eare within
the limits of measurement error, indicating a good fit. Because (164) and the regression

1\

(22) imply that the draining profiles are described by equation (29) with d equal to cd,
the flux is an exponential function of water content, given by equation (28). It must be
emphasized that this conclusion is unique to the particular boundary conditions and the
validity of the regression relation (22). Table 7 shows that the initial flux Jo increases
with depth. Flux as an explicit function of time is given by equation (30) and the
parameters of table 7. According to equation (164), after a sufficient period of drainage,

1\

the spatial variability of flux is primarily due to variation in d. Five to ten days appears
to be such a period in the case of the 1-m plots.

The exponential flux model (28) can also be verified directly by linear regression for
the logarithm of finite difference estimates of flux and the water content. Table 8 con­
tains the estimates for the parameters of equation (28) obtained from such regressions.

Indirect scalingofflux

The flux described by the exponential model (28) can be scaled indirectly if the
drainage curves given by equation (29) are similar over the soil profile, and the drainage
curves are similar if equation (29) with a common value of d can be least squares fit
to the measured water content profiles. Simultaneous fit of equation (29) using a
common d for all locations was achieved with the drainage scaling program of appendix
D. Scale factors wand parameters for the scaled flux are presented in table 9. Observe
that according to the definition (59), the actual variable being scaled, that is, reduced,
is the time. Measured drainage curves for all 32 locations in the 1-m plots are shown in

TABLE 7.

PARAMETERS FOR THE DRAINAGE EQUATION (164), BASED ON 31 DAYS OF
DRAINAGE IN THE I-M PLOTS. SAMPLE SIZE = 19 AT EACH LOCATION. 0 DENOTES

THE STANDARD ERROR OF ESTIMATEOF WATER CONTENT.

Depth
~em

0

15 0.393
30 0.390
45 0.401
60 0.408
75 0.396
90 0.399

105 0.401
120 0.403

15 0.380
30 0.383
45 0.388
60 0.393
75 0.398
90 0.403

105 0.406
120 0.409

PLOT 1 1\
1\

PLOT 2 1\

Jo d 0 8
0 Jo d 0

0.24 40.2 0.007 0.394 0.27 90.3 0.005
0.79 48.5 0.005 0.393 0.65 79.5 0.005
2.53 47.7 0.005 0.395 1.67 67.4 0.005
4.87 46.7 0.006 0.399 3.72 59.8 0.005
6.94 52.0 0.005 0.401 6.28 56.3 0.006
8.95 52.0 0.006 0.403 9.04 54.5 0.007

10.47 52.7 0.006 0.404 11.16 53.4 0.007
11.17 53.5 0.006 0.406 14.15 53.4 0.007

PLOT 3 PLOT 4

0.27 82.5 0~406 1.37 66.6 0.004
0.56 61.0 0.018 0.404 3.07 64.2 0.004
0.55 69.8 0.004 0.402 5.11 58.6 0.004
1.36 69.5 0.004 0.399 6.90 53.5 0.004
2.83 67.5 0.005 0.396 8.20 51.1 0.005
5.12 65.5 0.005 0.395 9.33 50.9 0.005
6.68 64.0 0.005 0.394 9.66 51.3 0.006
7.75 60.6 0.005 0.396 11.20 51.7 0.006
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TABLE 8.

REGRESSIONS FOR FLUX EQUAnON (28) FOR 20 LOCAnONS IN THE 1 METER
PLOTS. 80 AND SAMPLESIZE HAVE THE VALUESIN TABLE 1. 0 DENOTES ERROR FOR d

AND STANDARD ERROR OF EsnMATE FOR In). CORRELATION COEFFICIENT R.
)0 (CM/DAY) IS THE GEOMETRIC MEAN.

Depth PLOT 1 PLOT 2
em )0 d 0 o[ln)] R )0 d 0 o[ln)] R

60 2.7 30.4 5.7 0.741 0.82 1.9 26.1 6.2 0.816 0.77
75 3.4 35.5 6.1 0.715 0.84 2.9 27.5 5.8 0.783 0.81
90 4.1 41.3 7.0 0.750 0.85 3.6 31.4 6.2 0.764 0.81

105 3.7 51.7 8.7 0.832 0.84 4.3 34.1 6.4 0.764 0.83
120 4.9 51.2 10.3 0.856 0.80 5.9 36.0 6.7 0.785 0.83

PLOT 3 PLOT 4

60 1.0 31.6 11.1 1.058 0.61 2.3 29.6 5.7 0.722 0.82
75 2.1 32.7 8.9 0.941 0.70 2.8 33.1 6.1 0.718 0.83
90 3.4 36.1 7.1 0.823 0.81 3.4 42.1 9.1 0.859 0.79

105 3.1 38.5 8.5 0.843 0.77 3.3 40.6 9.9 0.944 0.75
120 3.5 32.5 5.8 0.762 0.82 4.7 38.9 9.8 0.991 0.74

figure 6. The water content data shown are for 31 days of drainage and consist of 608
measurements of average values. Figure 7 demonstrates the scaling of the data in figure
6. Water content measurements were coalesced in figure 7 by plotting them in terms
of reduced time (59) for each location, relative to a common initial value eo. Ideally,
if the measured drainage curves were exactly similar, then the 8 in terms of reduced
time would coalesce into the drainage curve given by (60), which is indicated in figure
7. The measured 8 deviate from that curve with a pooled standard deviation equal to
0.008; a value comparable to the measurement error.

Examples of the scaled drainage curves for the 120 ern depth are shown in figure 8.
These curves expressed in terms of depth-averaged water content are compared with
measured values, and were obtained by multiplying calculated 8 by c. A corrected c
based on regression of mean differences ~o - Band 8

0
- 8, however, is used instead

of c from table 6. This c is calculated as part of the scaling program of appendix D. In
1\

figure 8, drainage scaled in terms of 8 is converted to 8 so that cumulative seepage and
flux can be estimated directly. A drainage equation in terms of ~ with a common 3for
all locations could also be scaled directly; however, the advantage of scaling in terms
of 8 is that an estimate of scaled conductivity as a function of 8 for unit hydraulic
gradient conditions is obtained.

The "average and standard deviation of Jo over all 32 locations equal 6.86 cm/ day
and 5.06 cm/day, respectively, computed with the scale relation (56) and the scale factors
of table 9. It should be noted that these Jo which are estimated relative to a common d
differ from those of table 7, for which d depends on the location. Statistical variations
allow both descriptions of the drainage profiles to be valid. Of course, the parameters
of table 7 provide the best possible fit of equation (164). In the ideal case, if the similarity

1\

of the measured drainage curves were exact, the d (or d) obtained from independent
fitting for each location would be constant. Such an ideal situation, however, could
never be achieved with field measurements, in view of the inherent local variability.
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Thus, within the limitations of demonstrated similarity, the spatial variability of the
drainage flux is represented by the scalefactors of table 9, where the variability is relative
to identical initial water contents (i.e., a common reference value Bo) ' It will now be
demonstrated that the conductivity manifests this same spatial variability over the soil
profile.
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Fig. 6. Soil water content versus time for
19 measurements at each of 32 locations in -J

the 1-m plots: Depths 15, 30, 45, 60, 75, 0
90, 105, and 120 em in four plots. Sample en

size = 608.

Fig. 7. Scaled drainage curves for the data
of figure 6. Soil water content versus reduc­
ed time T, equation (59). Curve is equation
(60) with 80 = 0.408, d = 50, Jm = 5.29
em/day, and zm = 120 em.
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TABLE 9.

SCALE FACTORS wAND PARAMETERS FOR THE SCALED EXPONENTIAL FLUX
EQUATION (28) FOR 32 LOCATIONS IN THE I-METER PLOTS. 8

0
HAVE THE VALUES

IN TABLE 1, AND e DENOTES THE CORRECTED REGRESSION COEFFICIENT.
COMMON PARAMETERS: d = 50.0,6

0
= 0.408, andJrn = 5.29CM/DAY.

PLOT
Depth 2 3 4

em Jo w e Jo w e Jo w e Jo w e

15 0.35 0.375 1.00 0.10 0.195 1.00 ~067 0.190 1.11 0.62 0.361 0.99
30 3.45 0.696 0.60 0.53 0.483 0.69 0.29 0.332 0.75 2.40 0.822 0.84
45 12.35 0.839 0.65 4.65 0.937 0.53 1.03 0.487 0.62 7.37 1.555 0.77
60 12.5 0.084 0.81 11.6 1.377 0.60 2.54 0.596 0.56 9.74 2.599 0.85
75 9.68 1.136 0.87 16.4 1.592 0.68 6.27 0.787 0.57 7.52 2.120 1.0
90 8.07 1.146 1.00 14.6 1.583 0.80 8.68 0.797 0.64 5.39 1.544 1.19

105 4.82 0.932 1.26 14.3 1.415 0.87 5.85 0.638 0.82 5.49 1.445 1.20
120 5.45 0.648 1.22 16.9 1.325 0.89 11.2 0.859 0.73 9.19 1.107 1.03
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Fig. 8. Depth-averaged soil water content
versus time for 120 em depth for the four
1-m plots. Curves are given by equation
(164) with parameters from table 9, based
on scaled flux. Circles indicate means of
four measurements and bars indicate stan­
dard deviation.

10 20
TIME (DAYS)

30 10 20
TIME (DAYS)

30

Comparison of scale factors

Correlation of the conductivity scale factors in table 4 and the drainage scale factors in
table 9 for the 60, 75,90, 105, and 120 em depths is shown in figure 9. The drainage
scale factors were renormalized for those depths, so that both scale factor distributions.
are compatible with respect to representation in terms of e. A regression of conductivity
on drainage scale factors with zero intercept has the following statistics: slope equal
0.998 ± 0.024, standard error of estimate equal 0.115, and correlation coefficient R
equal 0.995. Thus the scale factors can be considered as equal, for all practical purposes.
Therefore the relative conductivity over the soil profiles is essentially described by the
drainage scale factors, at least for 60 to 120 em. Moreover, these results tend to verify
the new scale relations for flux and reduced time, (iv) and (v). Figure 10 shows graphs
of the drainage scale factor profiles for the four plots.
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Fig. 9. Hydraulic conductivity scales ex versus
drainage scales (.c) for the 60, 75, 90, 105, and 120
em depth of the 1-m plots. Scales are computed
relative to the scaling relations (38) and (56) in
terms of water content with fJ = 31.6, Km =_6.16
em/day, d = 50.0, Jm = 9.39 em/day, and 80 =
0.411.

Fig. 10. Drainage scale factor profiles
for the 1-m plots. Scales(.c) are from table 9.
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The drainage scale factor profiles in figure 10 show a repeated pattern: they are
minimum at the profile ends and maximum near the middle. Scale factors a obtained
for the pressure head show a similar pattern for the entire experimental field plots (figure
8 of Pan I), which seems to suggest a layer effect. This conclusion is drawn from the
correlation of wand a. Inasmuch as the pressure head and conductivity scale factors
are correlated, assuming a transitive relationship, correlation of conductivity and drain­
age scale factors implies the result. Of course, the suggested correlation of wand a can
be tested directly by scaling flux in terms of degree saturation s.

Equality of conductivity and drainage scale factors provides an immediate applica­
tion. Apparently it is sufficient to measure conductivity at only one soil location in a
set of similar soil locations. Conductivity for all other locations can then be generated
by using the scale relations and the determined drainage scale factors. Similarity for a
particular soil region is first established by examination of the drainage profile scaling.
Such a method, which is based mainly on measurement of water content, substantially
reduces the need for tensiometer installation.

Hydraulic conductivity: corrected estimates

Two methods for calculating a corrected conductivity which include the effect of
hydraulic gradient are proposed. Both methods use improved estimation of the pressure
head gradient based on drainage scale factors. Method 1 which is based on the gradient
of the scale factors is given by equations (76) and (77), and method 2 which is based
on an integral equation for hydraulic head difference is given by equations (79) and (81).

Figure 11 compares conductivity estimated by those methods with the finite difference
estimates based on pressure head gradient between 60 and 120 em (table 1). The com­
parison is restricted to the 60 and 120 em depths where pressure head was measured. It
should be noted that the finite difference estimates used to determine the regressions
in table 1 consistently underestimate conductivity, because conductivity over each
measured interval of water content is associated with the higher end of those intervals
(i.e., an advanced time estimate of conductivity, equation (50)), rather than with the mid­
point. This causes a corresponding underestimate of K, for each location. Translation
of the regression (32) by a value of eequal to half the interval e1 to eo' where e1 is the
first measurement following eo' would approximately correct this discrepancy, i.e.,
assign the value Ko to (eo + ( 1) /2 instead of eo' so that the corrected steady state
conductivity equals K, exp(f3(eo - ( 1) /2). Corrected values average about 40 percent
higher than original Ko' Moreover, Ko is underestimated, because the values in table
1 are geometric means instead of arithmetic means. In any event, the regressions of
table 1 best represent the approximate graph of conductivity on semi-log coordinates.
For reasons similar to those mentioned, steady state flux]o estimated indirectly from
the drainage equation (table 7) is consistently greater than the corresponding finite
difference estimate (table 8). The result is a greater initial conductivity for both cor­
rection methods. On the other hand, the minimum conductivity for the experimental
range of water content is usually smaller for the correction methods. This is partially
a consequence of the fact that minimum flux predicted by table 9 is usually less than
that of table 8. It is the relative value of d that primarily determined the minimum
value of flux over the measured range ofwater content.

The conductivity of method 1 is calculated using the parameters of scaled pressure
head (Pan I, table 1) and flux (table 9) and an average gradient da / dz equal to
- 0.0055, while the gradient of eo is based on the measured finite difference estimates.
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Fig. 11. Hydraulic conducitivity for the 60
and 120 em depths of the four l-rn plots
estimated by two analytical methods. Method
(1): solid line is based on equations (76) and
(77) with table 1 of Part I and table 9. Method
(2): dash line is based on equations (79) and
(81) with table 11. Measured conductivity of
table 1 is indicated by a broken line.
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TABLE 10.

PARAMETERS FOR LEAST SQUARES FI't0F INTEGRAL EQUATION (79).
COMMON REFERENCE eo EQUALS 0.411.

Plot A orA] B o[B] o[h] D.F.

1 0.896 0.031 10.22 0.61 2.7 17
2 0.762 0.043 1.81 0.65 3.6 17
3 1.051 0.076 -1.18 1.09 7.8 17
4 0.931 0.106 7.62 1.48 6.0 17

Pooled estimates:

0.973 0.094 4.78 1.34 16.3 74

TABLE 11.

STEADYSTATECONDUCTIVITY Ko FORTHE 60 AND 120
CMDEPTHS IN THE ONE METER PLOTS. Ko AND {3 ARE GIVEN

BY EQUATION (81) AND TABLE 10.

Depth PLOT
em 2 3 4

60 12.5 15.3 2.4 13.0
120 5.2 21.8 10.8 9.6

(3 39.8 48.2 51.2 42.4

Pooled estimates:

60 12.2 12.0 2.6 11.5
120 5.2 16.6 10.5 9.3

{3 45.2 45.2 45.2 45.2

Km = 5.52 em/ day, Bo = 0.408
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Method 1 gave extreme initial values at 120 em in plots 1 and 4, but was consistent
with the condition that pressure head gradient approaches zero at deeper depths.
Conductivity by method 2 is calculated using the parameters of table 11, which are
obtained from the estimates of A and B for individual plots given in table 10. The
parameters A and B were obtained by least squares fit of (79) to measured water content
and pressure head. In table 10, pooled estimates represent the combined four plots.
The values of B in table 10 indicate that drainage in plot 3 is distinctly different than
that of the other plots: pressure head is positive, whereas it is otherwise negative.
Indeed, substitution of the parameters of tables 1 and 8 for plot 3 into equation (82)
yields a negative hydraulic gradient, consistent with actual measurement. Similar sub­
stitutions for plots 1, 2, and 4 yield positive gradients. Therefore the pooled estimates
of A and B associated with scaling the entire 1-m plots data includes an erroneous
implication that negative hydraulic gradient conditions prevail throughout. This error
is reflected by the increased standard error of estimate of hydraulic head difference,
when the data are pooled. Evidently, plot 3 is not compatible with the scaling of
conductivity by this method. Figure 12 compares the conductivity scaled by method 2,
using the pooled estimates of K, and (3. Even though the pressure head gradient is
incorrectly predicted by a scaled exponential flux, the scaled exponential conductivity
still seems to provide a reasonable approximation at the 60 and 120 em depths.

In general, scaling of conductivity for the case of pressure head gradient having a
fluctuating sign requires the application of equation (70) with a d that is variable. Even
then, scaling in terms of simple exponential models for flux and conductivity may not
yield correct results. In this situation, more general model functions would be required
to properly predict the pressure head gradient.
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Fig. 12. Scaled conductivity for the correction
method based on the integral equation (79) for the
60 and 120 ern depths of the four l-rn plots. The
dash line indicates conductivity for the pooled
estimates of Ko and (3 in table 11, and the solid
line indicates conductivity of table 1.

Millington-Quirk conductivity

An example calculation of Millington-Quirk conductivity (90) for the 60 em depth
in plot 1 is shown in figure 13. Using the program of appendix E, the conductivity (95)
was matched with the parameters of table 3, for 8min equal to 0.3, and the soil-water
characteristic was determined by equation (94) with the parameters of table 1 in Pan I.
Here the conductivity (90) is based on 20 pore classes. Larger numbers of pore classes
yield approximately the same conductivity for water contents below 8

0
; however, for 8

greater than 8
0

the estimates that approach saturated conductivity become greater.
Upper and lower limits of 8 corresponding to physical pore size limits were assumed to
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Fig. 13. Millington-Quirk conductivity for the
60 ern depth in plot 1 of the l-rn plots. Dots
indicate equation (90) for 20 pore classes with
matching factor equal to 0.013 and soil-water
characteristic (94). Solid line indicates the conduc­
tivity equation (95) with parameters of table 3.
Parameters for equation (96) are Ko = 8.21 cm/
day, 80 = .422, (31 = 30.5, and (32 = -11.1.
Matching is for 8min = 0.3.
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Fig. 14. Millington-Quirk estimate of scale
mean conductivity for 72 locations in the experi­
mental field. Dots indicate equation (99) for 20
pore classes with s = 8/8

0
where 8

0
= 0.42 and

matching factor equals 0.041, for 8min = 0.3.
Soil-water characteristic (94) is determined by
am = - 114 em and e = - 11.74. Solid line
indicates conductivity equation (95) with Ko =
12.7 cm/day, (3 = 31.0, 8

0
= 0.42. Parameters

for equation (96) are Ko = 12.7, 8
0

= 0.42,
fJ 1 = 35.7, and fJ2 = 7.2.

equal 0.43 and 0.1, respectively. This upper limit of 8 corresponds to a - 12 ern pressure
head. The estimated matching factor is 0.013 with a standard error of 0.001. Although
equations (90) and (95) are matched only in the 8 interval 0.3 to 0.422, their graphs
continue to agree below this interval, and substantial departure does not occur until
8 approaches O. 1. Least squares fit of the extended equation (96) with the restriction
that K, = 8.21 cml day yields {31 = 30.5 and {32 = - 11.1, and indicates that the
logarithm of Millington-Quirk conductivity is approximately linear, except near saturated
water content.

Figure 14 shows the Millington-Quirk calculation of scale mean conductivity for the
plots of the experimental field. The conductivity (99) was calculated in terms of an
approximate saturation variable 818

0
, using the experimental field's scaled soil-water

characteristic curve, which is determined by am = - 114 and b = - 4.93, and by using
the scale mean conductivity for the l-rn plots, matched with equation (160) to the 72
experimental field scalefactors. The scalemean Kmequals 12. 7 ernI day and was obtained
by matching scale factors for the 60 and 120 ern depths in the l-rn plots and experi­
mental field. In figure 14, the conductivity is presented in terms of 8 for 8

0
equal 0.42.

Matching of Millington-Quirk conductivity in the approximate saturation interval 0.71
to 1.0 gave a matching factor equal to 0.041 with a standard error of 0.015.

Again Millington-Quirk conductivity was based arbitrarily on 20 pore classes. Increas­
ing the number of pore classes tends only to increase conductivity approaching satura­
tion. Least squares fit of the extended model (96) with the restriction that Km equals
12.7 cmlday and 8

0
equals 0.42 yields {31 = 35.7 and {32 = 7.2 with correlation coeffi-
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cient of 0.98. The fit of (96) for 50 pore classes yields {3I = 33.9 and (32 = 0.5 with
correlation coefficient of 0.99. Observe that the Millington-Quirk estimate of scale
mean conductivity for the experimental field plots is thus based on two matching
procedures: (1) the conductivity measured in the I-m plots is matched to the experi­
mental field scale factor distribution-a spatial extension of conductivity, and (2) the
Millington-Quirk conductivity is matched to the exponential model of the scale mean­
an extension of the conductivity function (96) to lower water content values. In figure
14, the Millington-Quirk conductivity is compared with the exponential model (95)
when extended beyond the range of measurement. For the most part, the logarithm of
Millington-Quirk conductivity is approximately linear, but it is slightly less than that
predicted by the exponential model. This result, which also appears in figure 13, is
qualitatively consistent with the relationship of the exponential model and measured
conductivity seen in figures 2 and 3.

Predictions of the conductivity for each location in the experimental field are ob­
tainable from the scale relation (100). The error in this Millington-Quirk method of
estimating conductivity is then dependent on the errors in KID' the matching factor
Ks/Ksc' and the scale factor 0'. Apparently, the variance of In K(s) propagates as a linear
combination of the variances of the logarithms of KID' Ks/Ksc (= Kact/Kcalc), and 0',

neglecting variations in other relevant parameters.

Results and Discussion: Flux

Variability ofcumulative seepage and flux

The implications of spatial variability of the hydraulic conductivity are demonstrated
in figures 15 and 16 for the 120 cm depth in the l-m plots. Figures 15 and 16 depict
the depth-averaged water content and flux under unit hydraulic gradient conditions
for the two extreme values of steady state conductivity occurring in plots 1 and 2. In
those figures, the depth-averaged water content, e, defined by equation (27) and the

A

flux, which equals - zdB/dt for z positive downward, are based on the parameters of
table 2 for the scaled exponential conductivity. For the sake of comparison, however,
the ~ curves are plotted with the same initial value eo' without altering estimates of
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Fig. 15. Depth-averaged water content at the
120 em depth versus time for plots 1 and 2 of the
l-rn plots. Curves are given by equation (27) with
parameters of table 2.

Fig. 16. Flux at the 120 cm depth versus time
for plots 1 and 2 of the l-rn plots. Curves are
given by equation (3) for figure 15. Circles indicate
measured flux, based on finite difference estimates.
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Fig. 17. Depth-averaged water content for the 240 em
depth of the experimental field versus time for two values
of scale factor a. Hydraulic conductivity parameters corres­
pond to those given in table 2.

Fig. 18. Soil water flux at the 240 em
depth of the experimental field versus time
corresponding to figure 17.

seepage and flux. Then the difference of cumulative seepage between plots at any time
simply equals the difference in emultiplied by the depth, 120 cm. Thus corresponding
to the scale factors o. 769 and 1.118 the predicted difference in cumulative seepage after
25 days is 2.4 cm. The mean flux compared with actual finite difference estimates in
figure 16 manifests an asymptotic convergence property characteristic of scaled conduc­
tivity: after 10 days of drainage the flux within each plot is approximately the same.
Figures 17 and 18 depict the simulation of cumulative seepage and flux for scale factors
that are typical of the entire experimental field plots. The scale factors are 0.4 and 2.0,
and the parameters used in figures 15 and 16 are assumed for comparison. At the 240
ern depth, the difference in cumulative seepage is 14.4 ern in 5 days and 20.4 ern in
25 days. These figures also show the asymptotic convergence of flux, but to a less extent.
As indicated by equation (137), the residual difference in cumulative seepage after a
sufficient drainage period is proportional to the difference in the logarithms of a, and
the variability in In a is a direct indication of variability in cumulative seepage.

Approximate drainage curves
At deep depths the condition of unit hydraulic gradient is often found to be a

reasonable assumption, and the drainage curve for the depth averaged water content
(storage divided by depth) can be described approximately by equation (27), when the
conductivity satisfies a simple exponential equation (25). Figure 19 demonstrates the
prediction of depth-averaged water content based on the scaled conductivity for the 120
em depth in the 1-m plots. In figure 19, the deterministic drainage curve (B) obtained
by substitution of a mean K, into equation (27) and the local stochastic average curve
(C) obtained from equation (111) are compared with the directly fit drainage curve
(A) of equation (164). Curve (A) is based on table 7, and curves (B) and (C) are based
on the scaled arithmetic mean conductivity and standard deviations of table 3. For the
curves (B) and (C), ~ equals blBoc, and the values are 34.3, 36.4, 45.9, and 32.3 for
plots 1 through 4, respectively. The best possible fit of equation (27) is represented by
that of curve (A). For all locations, the deterministic curve eventually gives values lower
than those measured, whereas the average curve, which is adjusted to account for local
variation of Ko ' yields higher values. Evidently, the correction to the average curve (C),
which depends on the local variance of Ko ' is over estimated. This can be a consequence
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of equating the entire standard error of estimate to the standard deviation of Ko. Never­
theless, after 25 days of drainage, curve (C) provides good predictions of the cumulative
seepage. The cumulative seepages at 30 days based on the (A) curves are 11.2,11.8,9.5,
and 11.5 ern for the four plots. Such verification of the prediction of local seepage given
byequation (27) is a necessary preliminary to estimation of the spatial average of cumula­
tiveseepage.

Figure 20 shows the spatial average and standard deviation of the depth-averaged
water content at 120 cm in the 1-m plots. That is, figure 20 represents the average over
plots of the deterministic drainage curves (B) of figure 19. This average was calculated
with equation (122), neglecting local variances of Ko ' while considering only the effect
of the spatial variance v~. Thus, the spatial average is obtained by subtracting the
average difference Afrom a reference value of average Bo • Standard deviation indicated
bydash curves is that for Agiven by (125), so that this does not include the variation of
8

0
, Indeed, the indicated standard deviation is that associated with spatial variation of

cumulative seepage, not with that of storage. The average parameters used in figure 20
are 1<0 = 5.08 cm/day, ~ = 37.2, and eo = .404, while the spatial standard deviation
of Ko is v0 = 1.66. Now since the average local standard deviation of Ko is 5.7 and is
greater than vo ' the major contribution to the total variance (126) required in equation
(122) is from the local variability of Ko ' which was neglected in figure 20. For the same
reason, the indicated standard deviation is mainly due to local variability of Ko • Thus
for this particular range of scale values, spatial variability observed at the 120 ern depth
can be viewed as actually a consequence of local measurement errors. Similar results

. "and conclusions hold for the average ewhich is simulated with the Ko associated with
the experimental field's scale factors for 120 ern, table 12. On the other hand, simula-

"tion of efor the 240 em depth in the experimental field shows mainly spatial variability.
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TABLE 12.

MEAN AND STANDARD DEVIATION OF Ko (CM/DAY) SIMULATED WITH THE
PRESSURE HEAD SCALE FACTORS FOR PLOTS OF THE EXPERIMENTAL FIELD.

Depth 60 em 120em 240 em

PLOT Ko a Ko a Ko a

1 2.9 3.9 5.6 4.6 2.7 2.2
2 5.6 4.4 3.9 1.7 6.3 2.8
3 2.5 1.3 1.9 1.2 45.6 40.8
4 6.3 6.1 2.0 1.5 798.4 591.0
5 4.8 5.7 3.1 1.8 2.3 1.3
6 3.5 2.1 9.9 6.1 2.6 2.0
7 2.6 1.6 4.8 4.0 24.4 19.4
8 4.2 2.2 3.6 2.1 515.8 191.0
9 2.4 1.7 6.0 3.2 3.6 2.0

10 11.3 5.8 5.6 2.7 14.8 9.7
11 10.5 11.4 7.4 8.6 74.1 45.2
12 20.3 9.4 6.9 5.1 86.7 39.1

Avg. 6.4 4.6 5.1 3.5 131.4 78.9
std. dev. 5.3 2.3 254.4

Km 11.1 15.6 15.6
(3 45.1 37.2 37.2

Simulation of experimental field flux

The spatial extension method associated with equation (160) was applied to the 12
plots of the experimental field, and drainage was simulated with the pressure head scale
factors for the 120 and 240 ern depths, by using equation (127) for unit hydraulic
gradient conditions. The matched conductivity measurements were obtained from the
scaled conductivity at 60 and 120 ern in the l-m plots. Cumulative seepage predicted
by this method represents the maximum possible drainage that could occur for a sat­
urated soil profile with spatial variability typical of the experimental field, when there
is no evaporation or transpiration. Actual seepage at deep depths could be estimated by
subtracting total water lost through evapotranspiration.

Table 12 contains the mean steady state conductivity and standard deviation for the
60, 120, and 240 ern depths in the experimental field. An estimate of Km and {3 restricted
to each depth is also provided, where {3 is an average obtained from the l-rn plots.
Standard deviation of Ko was estimated from that of the local distribution of In a, by
assuming a log-normal distribution. At the 120 cm depth, the mean and standard
deviation of K, from table 12 are 5.07 cm/day and 2.33 cm/day, respectively. The
graph of cumulative seepage at this depth in the experimental field is nearly identical
to that of figure 20, since the statistics are essentially the same. This result assumes that
{3 is constant over locations. Of course, variation of {3 could invalidate the result. How­
ever, a common {3 is implied by the principle of soil similarity.

Simulated average if for the 240 cm depth in the experimental field is shown in
figure 21, which is based on table 12. The corrected average B', which is based on equa­
tion (122), is substantially greater than the corresponding deterministic estimate based
on the average K, equal to 131 cm/day (dashed curve). Drainage curves for two other
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Fig. 22. a. Cumulative probability of the pooled
distribution for In (Ko/ c) at the 120 em depth in
the l-rn plots.

b. Pooled probability distribution of In (Ko/c),
equation (153) with Ko = 4.9 (0 = 5.4) and c =
0.85 (0 = 0.15). The classinterval length equals 0.4.
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extreme values of Ko ' 2.6 and 382 em I day, are also indicated in figure 21. At this
depth, the main component of variability is" spatial, with a standard deviation of Ko
equal to 254 cml day. The initial value of eo is that used in figure 20. But because
cumulative seepage and flux do not depend on initial depth-averaged water content,
this value is arbitrary. Simulated flux is simply the negative slope of the drainage curve
multiplied by depth.

Distributions ofwater content and flux

If the local variability of K, is described by a log-normal distribution, the statistics of
cumulative seepage and flux can be estimated with the pooled distribution of In (Kolc)
given by equation (153). Moreover, the distributions of random functions of K, and c
can be obtained.

Figure 22 is the pooled probability distribution of In (Kolc) for 120 ern in the I-m
plots, and is based on table 2. This distribution, which is the sum of four normal distri­
butions, describes both the local and spatial variability. The graph of cumulative prob­
ability for figure 22, which is nearly linear, indicates that the pooled distribution is
again approximately normal, with mean and standard deviation of In (Ko/c) equal
1.19 and 0.89, respectively. In figures 23 and 24 the average and standard deviation of
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depth-averaged water content and flux corresponding to figure 22 are shown for some
selected drainage times. The measured flux, which is indicated by a solid curve in
figure 24, is the mean of the best fit curves (A) of figure 19. A dashed curve indicates
the deterministic flux given by equation (132) with mean values of {3, Ko ' and c equal to
30.8,4.9 cm/day, and 0.85, respectively. In this case, the deterministic curve approxi­
mates the mean flux computed from the sample distribution, figure 22. The experi­
mental flux, however, is less than both estimates based on the unit hydraulic gradient
assumption. This would be the expected relationship, since the hydraulic gradient was
usually negative. Expected values of depth-averaged water content (assuming that 8

0

equals 0.404 without error) and measured values are compared in figure 23. In that figure,
the solid curve represents the deterministic estimate given by equation (27) with the
mean values of {3, Ko ' and c. Both the flux and eare computed with a common value of
{3, so that scaling holds. As seen in figure 23, the expected standard deviation envelopes

1\

both measured and deterministic values of 8. For the most part, measured standard
deviations also fall within that envelope. Consistent with the qualitative behavior pre-

1\

dieted by equation (127), the expected 8 is greater than the deterministic estimate,
since expected seepage is reduced by the variance of Ko . Moreover, the deterministic
cumulative seepage is greater than that actually measured after 10 days, which is con­
sistent with the greater estimate of deterministic flux.

Figures 25 and 26 show the cumulative probability of the difference c/1, equation
(139) multiplied by c, and the flux at some selected times. These distributions correspond
to figure 22. By 3 days of drainage the distribution of c/1 is essentially normal, reflecting
the normal distribution of In (Ko / c). Initially, the flux, being equal to Ko ' is log­
normally distributed; but after three days, the skewness is diminished; and the distribu­
tion's tail is cut off by the asymptotic property of equation (132). By 30 days the flux
distribution has nearly reduced to a single value, as a consequence of soil similarity.

In general, the pooled distribution of Ko for local and spatial variability is given by a
weighted sum of log-normal distributions associated with each location. The distribu­
tion for each location represents local (within sample) variation, while the weighted sum
of these (pooled) represents spatial (between samples) variation. This pooled distribu­
tion for a particular set of soil locations mayor may not again be log-normal, depending
on soil similarity of the set of locations. Indeed, a pooled distribution can be multi­
modal, and thus not be a simple log-normal distribution. In the case of the I-m plots,
the pooled distribution for 120 ern (figure 22) is again log-normal. Inspection of the
pooled scale factor distribution for 120 em in the plots of the experimental field (figure
9, Pan I) reveals the same result. The distributions for the 240 and 300 ern depths in the
field, however, appear to be multi-modal.

Initially for t = 0, flux given by the drainage equation for unit hydraulic gradient
is distributed as Ko ' and as time proceeds the skewed flux distribution is cut off by the
asymptotic behavior of that equation. Therefore in a similar soil, which is characterized
by a single value of {3, the distribution becomes narrow and skewness vanishes. This
result is observed in figure 26. Thus convergence of the flux distribution to a single
value is a distinguishing property for a set of similar soil locations. Apparently, only
sets of locations belonging to nonsimilar soil groups, that is, with variable {3, can exhibit
large flux variations after initial drainage has taken place. Of course, the concept of
scaling model functions for soil-water properties is at best an approximation, and com­
mon parameters such as {3 will have statistical variation, which can cause deviations from
an ideal behavior. Regarding this possibility, it is of interest to consider the investigations
of Warrick, Mullen, and Nielsen (1977b) on the prediction of flux, for which a log-
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normal distribution was found to hold at all times. In contrast, for the I-rn plots the
log-normal distribution vanishes within 3 days. Those authors also find that the mean
flux is greater than the deterministic value, whereas the opposite holds in figure 24.
This difference in results can be attributed to the introduction of the coefficient c;
Warrick et al. (1977) did not distinguish between water content and the depth-averaged
water content. The observed relation of mean flux and measured flux depends on the
prevailing pressure head gradient. Evidently, the gradient was positive in the Panoche
soil experiment, whereas it was mainly negative in the I-rn plots (except for plot 3).
Residual variation of flux after elapse of a sufficient drainage period is due to variation
in {3, since asymptotically the flux satisfies (133) and becomes distributed essentially as
- In {3, neglecting variation in c. Inspection of the cumulative probability for {3 and
In {3 given by Warrick et al. (1977; figure 1) indicates that {3 is approximately log­
normally distributed as well as In {3; and moreover, the {3 distribution is narrow, which
suggests that the middle 50 percent of the conductivity sample could be identified with
a common mean value of {3 by neglecting a small error. Indeed, the scaling operation
applied to the I-m plots determines a common representative {3-an average value.

Of course, the direct fit of the exponential conductivity model (table 1) indicates
that {3 is actually a random parameter; however, the coefficient of variation is relatively
small: C.v. = 0.19 compared with c.v. = 0.9 for the Panoche soil. Now, the coefficients
of variation of flux and {3 are approximately related asymptotically by

o/J = 0S/S, (165)

where variation in c has been disregarded. Observations for In] (Warrick, Mullen, and
Nielsen, 1977b; fig. 2) are consistent with equation (165) for 10 days of drainage, and
perhaps sooner, but statistics were not provided. Furthermore, cumulative probability
for In] at 10 days is just a translation in time of the distribution of In {3 (Warrick,
Mullen and Nielsen, 1977b; fig. 1) according to equation (133) with c equal 1.

In conclusion, perhaps a claim that flux is always log-normally distributed is not
justified, at least when based on variation of K, alone. To understand the origin of
variability in {3, it is important to note that {3 depends on the range of measured eand
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the sample size, and is subject to statistical error within the conductivity estimate at
each soil location (Fluhler, Ardakani, and Stolzy, 1976). Also, in the case of the 1-m
plots, an inadequate determination of the pressure head profile might have caused a
reduced estimate for the variance of f3. The asymptotic behavior of flux, however, still
remains a useful property for testing the validity of scaling when applied to a particular
soil.

Summary and Conclusions

(166)

Within the limitations of local measurement errors and an approximate evaluation
of the pressure head gradient, the scaling of conductivity was adequately achieved with
an exponential function of water content. Verification of scaling for the conductivity,
however, was not as certain as that for the pressure head. This occurred because estima­
tion of conductivity is confounded by calculational error, whereas pressure head, being
a directly measured property, does not include that difficulty. On the other hand,
theoretical methods for calculating conductivity from soil pore distributions, such as
the Millington-Quirk method, are consistent with the scale relations, since the principles
of soil similarity are implicitly included in their derivation. Those methods are particu­
larly useful because conductivity estimates are extended into the dry range of water
content. Moreover, by using the scaled soil-water characteristic curves and associated
scale factor distribution, the conductivity can be predicted at all locations within a field
from measurements taken at only a single location: a spatial extension of conductivity.
Application of the Millington-Quirk method with the model soil-water characteristic
equation (94) was found to be consistent with an exponential conductivity model. But
variation in the steady state infiltration value of water content eo' presents a special
difficulty to the spatial extension of conductivity, since error in conductivity depends
exponentially on the error in eo' Therefore an accurate determination of eo at each loca­
tion is required in order to estimate conductivity from its scale relation.

For the 1-m plots drainage experiment, the flux was scaled and scale factors estimated
indirectly by scaling the water content profiles. Those results suggested that flux satisfies
an altered scale relation, which differs from the original relation and is identical in form
to that of the conductivity. All indications are that the method is applicable to any
similar drainage experiment involving a region of similar soil. Using the scale factors for
flux, the conductivity can be calculated over the entire profile; and the calculation,
which is based on an integral of Darcy's law, requires measurements of pressure head
at only two extremes of the soil profile. Although the methods that were presented
utilized simplified equations, each involving only two parameters, those methods can be
generalized for more complex functional relations. For example, a more general drainage
equation given by p

de ~ k
c dt = J o exp{ L Ok (e-eo ) }

1<.=1
could be used in conjunction with the integral equation

J
Z

2 KJo p
exp{ L (Ok-Sk) (e-eo)k} dz = Zz - zl + h Z - hI (167)

o k=l
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(168)e dz + J',
z'

J =.L 1at
z

to simultaneously estimate and scale the conductivity, equation (96). Considerably more
mathematical detail is involved, but the concepts are not changed.

As an example application of the matching of scale distributions, flux can be estimated
for the experimental field at a depth for which conductivity is unknown. An unknown
flux] I at depth z I is related to the flux] at depth z and the measured water content
profile as follows:

where the depth below the surface is positive and z I greater than z. Of course, this
conservation equation must be applied to depths below the sink of crop roots. At each
location with scale factor a, ] could be obtained as

J = a.
2

K (8) (1 + !J.h/l:iz) (169)
m

where Km(B) is derived from measurements at depth z in the I-m plots, and the required
pressure head gradient is calculated by usual finite difference techniques using the scaled
soil-water characteristics of the experimental field. A best choice for depth z is such
that a is least variable over locations. The utility of this method is the reduction in
conductivity measurements and the avoidance of a need to estimate evapotranspiration.
Indeed, this method allows estimation of the flux using measurements only below the
soil surface.

Provided that the fundamental principle of scaling is satisfied, that is, pressure head
and conductivity scale factors are essentially equal, the stochastic behavior of water
movement through a spatially varying region of similar soil can be characterized com­
pletely by a distribution of scale factors. The scaling method could provide a particular
advantage if combined with computer simulation models of water movement in
combined soil and plant systems. This is so because predictions obtained from deter­
ministic simulation models must be treated as stochastic estimates of actual behavior
under field conditions. When scaling is applicable, the number of Monte Carlo com­
puter runs required to represent an average over entire crop seasons can be considerably
reduced, since the number of random parameters is reduced. Now, because the eventual
fate of fertilizer nitrate in the environment is inseparably linked to variations in water
movement, prediction of nitrate movement and best irrigation practice depend on the
effects of soil variability. The scaling method, which applies to regions consisting of
similar soil, provides a simplified method for dealing with the spatial variability of
soil.
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APPENDICES

APPENDIX A

Method to minimize sum of squares and estimate model parameters

155

A general method for nonlinear least squares fitting which is applicable

to scaling is derived belo\l. TIle function f represents any soil water property

or transformation of such a property.

The experimental measurements are x
r i'

Yr i for locations r 1, ••• , R

and values i = 1, ..., n •
r

Let

Yr = f (x; a r' b l' ••• , bm) (r = 1, ••• , R) (1)

be the assumed functional relation between two properties x and y. Assume x .rJ.

are measured without error and Y
r i

are experimental estimates of Y
r i

with

error £ri given by

(2)

Assuming a normal distribution of errors, the minimum function (Chi-square)

by the method of maximum likelihood is

R nr
£2./02.M L L

r=l i=l r a r a

or

R
n r

2 2
M L L [f (xr i;

a r' b) - Yr i] jeri
r=l i=l

(3)

(4)

The parameters aI' ... , a
R

and common parameters b - (b l, ••• , bm) are

estimated such that (4) is minimum.

In general f is not a linear function of its parameters and therefore the

following iteration method is employed to minimize (4). The function (1) is

linearized about ,some initial estimates a°J.., a
R
o , bO of the parameters:.... ,

f(x·, a b) = f(x,· a O bO)+ ~ (x; aO bO)(a - aO)
r' r' aa r' r r

m af
(x; ° b0) (b. - b~) (5)+ L - ar'j =1 ab j J J

Then
"0

+ A (a - aO) + B (b - bO) (6)Yr i Yr i ri r r ri
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for (r 1, ..., R), (i 1, ... , nr)

and A af
(x

r i
;

0
b

O
) ,ri aa

ar' Brijr

"0
where Yr i

for (j = 1, ••• , m) and b in column vector form. Now let

n .rl (7)

a a O and S = b _ bO
•r - r'

Then minimize the following approximate minimum function:

(8)

where gri = 1/a;i· The parameters aI' ... , a R, and S are determined by the

conditions

~ = 0 (r
aa

r
1, ••• , R) and ~ = 0 (j

aS
j

1, .•. , m) (9)

Conditions (9) give

n
r

i:1 Ari(Ar i a r + Br i S - nr i ) gri o (r 1, ••• , R) (10)

and

(j 1, ... , m) (11)

Define

(r 1, ••• , R)

(j 1, ... , m)

(r 1, ... , R)

(j k 1, .. !', m)

(12)1, ... , m)(j

n
r

A
2.C L grir i=l rl

n
r

Drj L Ari B
rij gri

i=l

n
r

Frjk L Brij B
rik gri

i=l

n
r

G L Ari nri grir i=l

n
r

H L Brij nr i grirj i=l

Then the following system of equations is solved:

C a + D
T ~ = Gr r r r

(r = 1, ••• , R) (13)



HILGARDIA • Vol. 47, No.4. September, 1979 157

R
L

r=l
D a

r r

R
+ L:

r=l
F S

r

R
L: H

r=l r
(mxm) (14)

Substitution of a from equation (13) into (14) yieldsr

R[ DDT] R [Hr- G~:rJL F - ~ S = L:r C
r=lr=l r

Equation (15) is an rnxm system of linear equations for S.

a r are found by back solving equations (13).

(15)

With S determined,

Special methods are required to determine an initial estimate of the

000
parameters aI' ••• , a

R
, b These depend on the particular function f. The

corrected parameters are given by

a
r

b

(r = l, ... , R)

(16)

Iterations using the corrected parameters (16) as new initial parameters are

continued according to the scheme until a desired accuracy is obtained. The

convergence of this iteration method depends on the function f and initial

parameter estimates.

Special method to obtain initial parallleter estimates

The soil water characteristic model function is

h(s) = a(eb(s-l)_l). (17)

Using second order Taylor series expansions, the model (17) has the following

approximate equations:

and

8(h) = ~ [h/a - h
2/2a2J + 1.

(18)

(19)

Estimates of a
r

and b at each location can be obtained by standard

polynomial regression methods using either (18) or (19). An average common

b can be taken as initial common parameter. Also, initial estimates of a
r

and b can be obtained by using the above iteration method with the approximate

model function (19) and "any" initial estimates for the parameters. In fact,

equation (19) was found to provide as an acceptable model for soil water charac-

teristics, even though as an approximate series expansion it does not correspond,
to the model (17) with equal parameters. The convergence, of course, depends

on the range of h.
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Best scaling results were obtained by taking saturation s as the dependent

variable y and pressure head h as the independent variable x. The convergence

Variances were assumed equal:

of the iteration method is strong for the model (17). Equal a
r

are taken as

initial estimates and the values of ar and b need only be of proper order of

magnitude, provided they are within the domain of the model function (17).

0
2

= 0
2 • and the minimum sum of squares of

ri s'

deviation in saturation at each location were used to provide an estimate of

variance 0
2 at each location, in a way similar to standard regression techniques
s

Computer programs provided in the Appendices are in Fortran IV language

adapted for a Burroughs B6700/B7700 computer system. Plot subroutines are

those implemented by the University of California Computer Center. All

programs use data input from disk files.

GENERAL SCA1II:lG PROGRM1

$f,ESET FREE
4$SET SEP~lfaiTE

~SET L I Hr\t~RY
S UEm0 UTI NESCALE ( N, M, Nf, , X, Y, A, B , NCOEF , G, ITMAX, r.E ROR )
DIMENSION X(M),Y(M),G(M),NRCN),A(N),BCNCOEF)
DIMENSION AO(100),BO(5),DC100,S),ECI00)
DIMENSION SE(100),SEO(100),NCUM(lOl)
DIMENSION H(S),Z(S),R(S,5),AMAT(5,6),BVEC(S>

*****************************************************CHI sa. FIT OF Y=F(X;A(K),B) FOR K=l TO N GROUPS OF
DATA (X,Y). REQUIRES FUNCTION F(X;A,D) AND DERIVATIVES
GIVEN AS SUBPROGRAM DERIV. B(NCOEF) ARE COMMON COEFFS.
INl TIliLLY G IS THE STD. ERROR OF Y GIVEN FOR EACH
GROUP. NUMBER OF ITERATIONS IS ITMAX.
NR IS THE NUMBER OF DATA POINTS IN EACH GROUP

*****************************************************
ITMAX=ITMAXtl; BERORO=BEROR
DO 100 K=1,N, NCUM(K+l)=NCUH(K)+NR(K)
DO 100 I=NCUM(K)+l,NCUM(K+l); STDE=G(I)
0(1)=1.; IF(RTDE.EQ.O) GO TO 100
G(I)=1./G(I)**2

100 C(Ji~TINUE

WEIGHT Eour,LS 1 IF STD ERRORS ARE ZERO
1 IT=IT+1; CHI==O; SSQ=O

DO 2 I=l,NCOEF ;BVEC(I)=O; DO 2 J=l,NCOEF
2 AMAT(I"J):::O

DO 10 K=l,Nj C=O; E(I'\)=O; 5E(I'\)=0
DO 3 I::.l,NC()[F; [1(1'\,1)=0; tHI)=O' DO 3 J-l,NCOEF

3 R(I,J)=O
DO 5 I=NCUM(K)+l, NCUM(K+l)
CALL DEf,IV(X( I) ,A(K) ,B,F,W,Z>
F=YCI)-F; FF=F*Fj S[(K)=SE(K)+FF
CHI :c r:ur +G ( I ) *F F; GI"J.:= G C I ) *W
C=C+GW*W; E(K)~E(K)+GW*F

DO 4 II~l,NCUEF; H(II)=H(II)+Z<II)*F*G<I)
DCK,II)~D(K,II)+GW*Z(II)

[10 4 .J..J=== 1, NCOEF
4 R(II,JJ)=RCII,JJ)+Z(II)*Z(JJ>*G<I)
~ CONTINUE.

E(K)=E(K)/C; SSQ=sSatSECK)
DO 6 I=l,NCOEF; DC=D(K,I)/C
nVEC( I )=l<VEC( I )tOI( I )-reCK, I >*E(K) >
DO (J J::-:1 , NCOEF

6 ~MAT(I,J)=AMAT(I,J)t(R<I,J)-DC*D(K,J»

[10 7 l:=l,NCOEF

2:150 C
24(JO
2~OO

2600
2700

2900
3~jOO

~31 00
32(JO
3300
3400
3~,')O

3600
3700
3800
3700
1\000
4100
420()
43 r)O

4400
4~OO

L-

100
200
300
400
son
600
700
800
1000 C
1100 C
1200 C
1300 C
1400 C
1500 C
1600 C
1700 C
1800
1900
2000
2100
2200
2300
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4600
4700
4800 C
4900
5000
5100
5200
5300
5400
5500
5600
5700
5800
5900
6000
6100
6200
6300
6400
6500 C
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600 C
8700 C
8800 C
8900 C
9000 C
9100 C
9200 C
9300 C
9400
9500
9600
9700
9800
9900
10000
10100 C
10200
10300
10400
10500 C
10600
10700
10800
10YOO
11000 C
1: 100
11200
11300 C
11400
11500
11600
11700
1Inoo
11900
12000
12100
12200
12300
12·'00
12500

"

7 DCK,I)=D(K,I)/C
10 CONTINUE
** CORRECT COEFFS. AND STORE ITERATION RESULTS.

IF(IT.EO.l)GO TO 15; IF(CHI.GT.CHIO) GO TO 19
15 1TO=1T-l; ssao=SSQ; CHIO=CHI

DU 16 I==I,NCOEF
16 fJOCI)=f(I)

DO 17 K=l,N; SEO(K)=SE(K)
17 AOCK)=A(K)
18 IF(IT.EO.ITMAX)GO TO 25

IFCBEROR.LT.&ERORO)GO TO 25
CALL SOLVECAMAT,BVEC,Z,NCOEF)
DEROR=O; DO 19 J=l,NCOEF; BEROR=BEROR+ABSCZCJ)/BCJ»

19 B(J)=BCJ)+Z(J); DEROR=100*BEROR/NCOEF
DO 21 K=l,N; DA=O; DO 20 J ml,NCOEF

20 DA:DA+D(K,J>*Z(J) ; DA-E(K)-DA
21 A(K)=A(K)+DA

"'IF\Tl ;1:.""l1.1)PRINT/,' INITIAL CHI SQ.=' ,CHI,' TOTAL SSQ=' ,SSG
GO TO 1** PRINT RESULTS OF ITERATIONS.

25 ssn~SSQO; CHI=CHIO
no 21> J=l,NCOEF

26 B (.J ) =B0 (..J )

PRINT/,ITO,'ITfRATIONS: FINAL CHI SG.=',CHI,' TOTAL SSQ=',SSQ
Pr,INT/,' ,
PRINT/,'NUMBER OF GROUPS=',N
PRINT/,'NUMBER OF DATA POINTS=',NCUM(N+l)
PRINTI,' ,
PRINT/,'A COEFFICIENTS AND STD. ERROR FOR EACH GROUP'
NCOEF=NCOEF+l; NT=NCUM(N+l)-N*NCOEF
DO 30 K=l,N; A(K)=AO(K)
SE(K)~SaRT(SEOCK)/CNR4K)-NCOEF»

30 PRINT/,K,A(K),SE(K),'D.F.=',NR(K)-NCOEF
NCOEF=NCOEF-l; PRINT/,' ,
PRINT/,'COMMON COEFFS. B =',8
PRINT/,'POOLED STD. ERROR=',SORT(SSQINT),'D.F.=',NT
PRINT/,'ERROR TOLERANCE IN COEFFS. B =',BEROR
RETURN
END

SUBROUTINE SOLVE(A,Y,X,N)

THIS SUBROUTINE SOLVES THE MATRIX EQUATION A*X=Y FOR X WHERE
A IS A TWO I1IMENSIONAL MATRIX OF ORDER N AND X AND YARE
ONE DIMENSIONAL VECTORS OF ORDER N

THE ORIGINAL MATRIX A IS DESTROYED DURING THE SUBROUTINE

DIMENSION A(S,6),Y(N),XCN),LOC(S),CKCS)
NP=N+l
DO 1 I=l,N
ACI,NP)=Y(I)
CK(I)=O.O
DO 100 I::::l,N

IF'=I+l
FIND MAX ELEMENT IN I-TH COL
IiMAX=O.O
DO 2 t\=l,N
IF(AMAX-ABS(A(K,I»)3,2,2
IS NEW MAX IN ROW PREVIOUSLY USED A PIVOT

3 IF(CK(K» 4,4,2
4 l.OC(I)=K

'.Mfix=r.nSCACK,I»
2 CONTINUE

MAX CLEMENT IN I-TH COL IS A(L,I)
5 L==LOC(I)

CK(L)=1.
rrRFORM ELIMINATION, L IS PIVOT ROW, A(L,I), IS PIVOT ELEMENT
no 50 ..J=l,N
IF(L-J) 6,50,6

6 F=-A(J,I)/~<L,I)

[10 40 K=IP,NP
40 A(J,K~=A(J,K)+F*A(L,K)

50 COrJT rNUE
100 CONTINUE

DO 200 I=l,N
L=LOC<I)

200 X(I)=A(L,NP)/ACL,I)
RETURN
END
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APPENDIX B. Computer program for scaling pressure head.

2

~RESET FHEE
$5[T ALJTOBIND
ftBIND = FROM OBJECT/SUB/STAT, FORTRANLIBRARY
$~E T SlJPF,S
FILE 7(KIND=DISK, FILETYPE=7,TITLE=eAVGHTHETA e)
FILE 6(KIND=REMOTE, MAXRECSIZE=22)
FILE 4=ONEM~OEFF,UNIT=DISK,SAVE=30

DIMENSION S(176),H(176),ERR(22),NODE(S),A(S)
DIMENSION ALPHA<B), TH(S),SE(B)

DIMENSION XTITLE(6), YTITLE(6)
COMMON NCUMCI00)
DATA XTITLE(l)/·-HEAD·/,YTITLE(l)/-SAT.·/

C ** PROVIDE THE INITIAL PARAMETERS HERE; A(NPLOT) AND Z.
DATA A/8*-200.1
D'1T() Z/-1./

C ** A I S GI 'J f N AS THE Ie 0 F PHYSICAL MO DE L
DATA NPLOT,IA5K/8,OI
DATA ITMAX, BERnR/4,0/
IF(IASK.ED.l)RFADC4,/) NPLOT,D,Z,CACI),I=l,NPLOT)

C ** PHYf.)I CAL MODEL FUNC r I ON J)EFI NED HERE
SFN(X,B,Z)=l.fALOG(l.+X/D)/Z
HFNCX,B,Z)=D*(EXP(Z*(X-l.»-1.)
S.~r~LL=l

PRINT/,'LIST OF DATA SCALED'
no 2 I PLOT=1., tJPLOl
RE.1 [I ( 7 , I) NCO DE, N;:: EPTH, THSIi T, NOD E( I PLOT)
NCllM ( I PLOT+1 ) =NClJM ( IF-LOT)fNOII[ (IPLOT)
K 1~-~NCUM ( I PLOT) t 1; K2=NCUM ( I PLOT+1 )
READ(7,/) (SCI),I~Kl,K2)

RFADC7,/) (fRRCI),!=1,NODECIPLOT»
HEAD(7,/) OHI),I=Kl,K2)
READC],/) (ERR(!),I=1,NODECIPLOT»
IF(THCIPlOT).NE.O) THSAT=THCIPLOT)
Sl.nW~ 1 ; SHI GH:;.;O; HLOW= 1000. ; HH I GU=O
DO 1 I~Kl,K2; SCI)=SCI)/THSAT
HH=H ( I ); SS--=S <I )
IFCS~i.LT.SLOW)SLOW=S5;IF(SS.GT.SHIGH)SHIGH=SS

IF(HH.LT.HLUW)HLOW=HH;IF(HH.GT.HHIGH)HHIGH=HH
CONT I1HJE
IFCSLDW.LT.SMALL)SMALL=SLOW
ACIPLOT)=-1./CZ*A(IPLOT»
IFCIASK.GT.O) GO TO 2
NFo:=NODE ( IPLOT)
PRINT/,IPLOT,'LOCATION',NCODE,'DEPTH',NDEPTH,'SAT. THETA',THSAT
F'kH1TI, , SATUHAT ION LIMITS ' , SLOW, , TO' , SHIGH
PRINT/,'PRESSURE HEAD LIMITS ',HLOW,'TO',HHIGH,'NUMDER=',NR
F';, I Nl I, ,
CONTINUE
NTOTAL=NCUMCNPLOTfl)
PRINT/,'T01AL DATA POINTS SCALED =',NTOTAL
CLn~:;[ 7

PRINT/,'******************************'
PRINT/,'PHYSICAL MODEL SCALED'
PF: I NT I, , FOt, ~,O tL WATER CHARACTERISTICS'
F'F,I NTI,' PIlYSI CAL MODEL IS'
PRINT/,' 5-1=1/Z LOG(l+H/D)'
PRINT/,'******~***********************'

PF:I1JT/, '* * * * * * *'
PRINT/,'STANDARD ERROR IN SATURATION'
CALL SCALECNPLOT,NTOTAL,NODE,H,S,A,l,SE,ITMAX,BEROR)

PRINT/,' * * * * * *'
PRINT/,'COEFFS. FOR EQ. S-1-1/Z LOG(l+H/B)'
DO 5 IPLOT=l,NPLOT
A( IPLOT)=-l./(Z*A( IPLOT»; [t=A( IPLOT)
BM=BK+l./~; BAVG=BAVG+B
CONTINUE
PF: i iJT/, , Z=' , Z
P f< I NT1 , , [t = ' , CA CI ) , I == 1 , NF'L.. ()T )

C ** COMF'UTE Sr:ilLE FACTOF,S AND SCALE MEAN FUNCTION
R=-NPLOl
BM=I::/DM; BAVG~=BAVG/R; fAC:::I::tiVG/BM
PRINT/,'SCALE MEAN FUNCTION COEFFICIENTS'
PRINTI,'BM=',BH,'Z=',Z,'AVG. B~',BAVG

WRITE(4,/) NPLOT,BM,Z,CA(I),I=l,NPLOT)
PF<INT/,' , ;PHINT/,'1 ,., ,., 1 ,., ? 1 l'
PRINT/,'****** GIVE AN IASK VALUE FOR PLOTS: 0 , 1 , 2'
PRINT/,' INPUT -1 TO EXIT'

5~OO

5300
5400
~500

5600
5700
5800
5900
6000
6100
6200
6300
6400
6~OO

61-.00
6700
6GOO
6900
7000
7100
7200
7300
7400
7500

100
200
300
400
500
(lOO
700
800
900
1000
1100
1200
1300
1400
1500
11~OO

1700
1800
1900
2000
2100
2200
2300
2400
2:;00
2600
2700
2800
2900
2950
3000
3050
3100
:3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5(jOO
5100
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7600
7700
7800
7900
8000
8100
8200 12
8300
8400
8500
8600
8700
8800
8900
9000 14
9100
9200
9300
9400
9500
9600 15
9700
9800
9900
10000
10100
10200
10300
10400
10500
10600
107(JO
10800
10700 20
11000
11050
11100
11200
11300
11400
11~OO

11600 30
11700
11800
11900
12000 40
12100
12200
12300
1:!400 50
12500
1:.!600 C **12700 C **12LOO
12900
13000
13100
13200
13300

•

READ/, IASK
IF(IASK.LT.O)GO TO 50
IFCIASK.LT.1) GO TO 12
INT=10.*SMALL; SMIN=INT/I0.
INT=10-tNT; ISPACE=INT*10
CALL HASH;CALL ISETIT(100,ISPACE,10,INT,0,250.,SMIN,1.)
PRINT/,'SCALE FACTORS AND STD. ERRORS'
PRINT/,'STANDARD ERROR IN PRESSURE HEAD'
n0 15K= 1 , NF'LOT; NF~:::: NODE (t( )

IFCIASK.EO.3) BM=BAVG
ALF'I~A (K) :::DM/A(K)
Kl=NCUMCK)fl; K2=NCUMCK+1)
SSE=Oi DO 14 I=Kl,K2
H[J=··-Hf-tHS( I) ,A(K) ,Z)
SS[=SSE+(HD-H(I»**2
SfDE=SOkTCSSE/CNR-2»; SE(K)=STDE
SSO=SSQ+SSE*ALPHA(K)**2
IF(IASK.LT.l) GO TO 15
DO 15 I=K1,K2; HA=ALPHA(K>*H(I)
CALL DATAINC-*-,HA,S(I»
CONTINUE
F'RINT/,' ,
PHIUT/,'SCALES ALPHA=',(ALPHA(I),I=l,NPLOT)
PRINT /,' ,

PRINT/,'STD. ERRORS=',(SE(I),I=l,NPlOT)
WRITE(4,/) (SECI),I=l,NPlOT)
LOCK 4
PRINT/, '
PRINT/,'SUM 50. OF DEV. FOR SCALE MEAN FUNCTION',SSQ
PRINT/, 'STD. ERROR=',SQRT(SSQ/(NTOTAL-2»,'D.F.=',NTOTAl-2
IfCIASK.LT.l)GO TO 50
no 20 1=1,9; HD=25.*I
SAT=SF'tH -·HD, leM,Z)
CALL DATAINC-C·,HD,SAT)
pro NT / " '; P f< I NT /, ,
f'RINT/, 'HOLD FOR PLOT'; READ/,HOLD
F'f,INT/,' PLOT OF ~;CALED DATA'; PRINT/,'
CALL PRNTIT(2,2,XTITLE,5,YTITlE,4,6)
IFCIASK.LT.2)GO TO 50
Cr.;l.L Hr,[:a~; CAL.L 13fT I T C100, ISPACE, 10, INT, 0,250, SHIN, 1. )
DO 30 IPLOT=l,NPLOT; DO 30 I=NCUM(IPLOT)+l,NCUM(IPLOT+l)
CALL DATAINC-*-,HCI),S(I»
[10 40 If-'LOT~1 ,NPLOT
DO 40 1=1,9; HD=25.*I
SAT=SFN(-H[I,A(IPLOT),Z)
CALL DAT(,IN( - C - , HD,SAT)
PRINT/,'************************************************'
PRINT/,'PLOT OF DATA AT EACH LOCATION'iPRINT/,' ,
CALL PRNTIT(2,2,XTITLE,5,YTITLE,4,6)

STOP
END

DERIVATIVES OF PHYSICAL MODEL
SPECIAL TRANSFORMATION A=l/ZB.

SUBROUTINE DERIV(H,A,Z,S,DSDA,DSDZ)
AZHl=A*Z*H+l.' S=AlOG(AZH1)/Z
DSTiA=H/AZHI
DSDl=C-S+A*nSDA)/Z; 8=8+1.
RETURN
END

l
100 $~:ESET FREE
200 $SET SEPARATE
300 SSE.T lIfCf(AHY
400 C ** LEAST sa. FIT OF Y=F(X;ACK),B) FOR K=l TO N GROUPS OF
500 C ** D~TA CX,Y). REQUIRES FUNCTION F(X;A,B) AND DERIVATIVES
600 C ** GIVEN AS SUBROUTINE DERIV. B IS COMMON COEFF.
700 SUBROUTINE SCALECN,M,NR,U,Y,A,B,SE,ITMAX,BEROR)
BOO DIMENSION UCM),YCM),NRCN),A(N),SE(N)
900 DIMEtJSION AO(100),SEOCI00),Cl(100),C2(100)
1000 COMMON NCUM(100)
1100 ITMAX=ITMAX+l; BEROR=BERORO
1200 IT=!T+l;Sl=O;S2=0;SSQ=O
1300 DO 3 K=l,N
1400 SUMXF=O;SUMZF=O;SUMXX=O;SUMZZ=O;SUMXZ=O
1500 SE(K)~O; DO 2 !=NCUMCK)+l,NCUM(K+l)
1600 CALL DERIVCU(I),A(K),B,F,X,Z)
1700 F=YCI)-F~ SECK)~SECK)+F**2
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1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3~OO

3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000

•

SUMXF=SUMXF+XkF; ~JtJMZF=SUMZF+Z*F

SUMXX=SUMXX+X*X; SUMZZ=SUMZZ+Z*Z
2 SUMXZ=StJMXZ+X*Z

CICK)=SUMXZ/SUMXX; C2CK).SUMXF/SU"XX
El=Sl+SUMZZ-SUMXZ*Cl(l()
S2=S2+SUMZF-SUMXZ*C2(1()
SSU=SSQ+SE(I()

3 CONTINUE
IFCIT.EO.l) GO TO 4
IF(SSO.GT.SSaO) GO TO 6

4 ITO=IT-l; ssao=sso; BO=B
DO 5 K=l,N; SEOCK)=SE(K)

S AOCK)=A(K)
6 IFCIT.EO.ITMAX) GO TO 8

IFCDEROR.LT.DERORO) GO TO 8
IFCIT.EQ.l) PRINT/,'INITIAL SSQ=',SSQ
DB=S2/S1;lF(B.NE.O)BEROR=ABSC100*DB/8);B=BfDB
DO 7 K=I,N; DA=C2(K)-DB*Cl(K)

7 A(K)~A(K)+DA

GO TO 1

C ***************************************************
C ** PRINT RESULTS or ITERATIONS

a SSO=SSuo; D~BO

PRINT/,'FINAl SSQ=',ssa,' FOR ITERATIONS=',ITO
PRINT/,' A COEFFICIENTS AND STD. ERROR FOR EACH
DO 9 K=l,N; NT=NTfNR(K)-2
SE(K)=SORTCSEO(K)/(NR(K)-2»; A(K)=AO<K)

9 PRINT/,K,A(K),SE(K),'D.F.=',NR(K)-2
PRINT/,' COMMON COEFF. B=',B
PRINT/,' POOLED STD. ERRORa',SQRT(SSQ/NT)
PRINT/,' ERROR TOLERANCE IN B ~',BEROR

RETURN
END

GROUP'

APPEl~DIX C.
Computer program for scaling hydraulic conductivity.

SRESET FREE"
$SET AUTOBIND
$BIND = FROM OBJECT/SUB/STAT, FORTRANLIBRARY
$SET SUf-'RS
FILE
FILE
FILE

100
200
300
400
500
600
700
800
900
1000
1100
.1200
1300
1400
1500
1600
1700
1900
2000
:!100
2200
23(JO
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3~50

3600
3700
3800

C **
c **
c **

C **

7(KIND=DISK, FILETYPE=7,TITLE=·CONDK·)
6(KIND=REMOTE, MAXRECSIZE=22)
4=ONEMKCOCFF,UNIT=DISK,SAVE=30

DIMENSION S(440),CC440),Y(440),NODE(20),A(20)
DIMENSION ALPHA(20),TH(20),SEC20)

DIMENSION XTITLE(6), YTITLE(6)
COMMON NCUM(100)
DATA XTITLE(l)/·LOG K·/,YTITLE(l)/-SAT.-/

SPECIAL CASE: LINEAR REGRESSION MODEL
SOLUTION IS EXACT - REGUIRES ONLY ONE ITERATION.
A IS GIVEN AS KO OF CONDUCTIVITY MODEL.

DATA NPLOT, IASK/20,0/
DATA ITMAX, DEROR/l,O/

PHYSICAL 110[J[L FUNCT ION DEFINED HERE
SFN(X,A,B)=l.fALOGCX/A)/B
CFN(X,A,D)~A*EXP(B*(X-l»

SM(1LL=1
PRINT/,'LIST OF DATA SCALED'
DO 2 IPLOT-=l,NPl.OT
READC7,/) NCODE,NDEPTH,THSAT,NODE(IPLOT)
NCUHCIPLOT+l)=NCUMCIPLOT)+NODE(IPLOT)
Kl==NClIMCJPl.OT>fl; K2=NCUMCIPLOT+l)
READ(7,/) (SCI),I=Kl,K2)
READ(7,/) (CCI),I=Kl,K2)
IF(THC!F'LOT).NE.O) THSAT==TH(IPLOT)
SLOW==l ; ~aUGH==O ;CLOW==100. ; CHIGH=O
DO 1 I=Kl,K2; SCI)=SCI)/THSAT
CC c: C ( I ) ; 5 S:;;S ( I )
IF (Sf>. LT •SL(lW)SLOW==SS; IF (59 .GT. SHIGH)SHIGH=SS
IFCCC.LT.CLOW)CLOW=CC;IF(CC.GT.CHIGH)CHIGH=CC
Y(I)=ALOO(CCl»
CONTINUE
IF(SLOW.LT.SMALL)SMALL=SLOW
IF(IASK.GT.O) GO TO 2



3900
4000
4100
4200
4300
4400
4~OO

4600
4700
4300
4900
5000
5100
~200

::i215
5225
~300

5400
~500

5600
5625
5650
~700

5800
5900
6000
6100
6200
6300
6500
6600
6700
(')800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8aOO
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900
10000
10100
10200
10300
10400
10500
10600
10700
10800
10700
11000
11100
11200
11300
11400
11~OO
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Nr"·-=NO[lE(IPLOT)
F'RINT/.'LOCATION',IPI.OT,' DEPTH',NDEPTH,'SAT. THETA',THSAT
PkINT/,'SATURATION LIMITS ',SLOW,'TO',SHIGH
PRINT/,' CONDUCTIVITY LIMITS',ClOW,'TO',CHIGH,'NUMBER-',NR
PRINT/,'

2 CONTINUE
NTOTAL=NCUM(NPLOT+l)
PRINT/,'TOTAL DATA POINTS SCALED =',NTOTAL
CLOSE 7
PRINT/,'******************************'
PRINT/,' MODEL CONDUCTIVITY SCALED'
PRINT/,' PHYSICAL MODEL IS'
PRINT/,' K=KO EXP(D(S-1»'
PRINT/,'************************~*****'

C ** REGRESSION VARIABLE IS Y=LOG K.
C ** SPECIAL TRANSFORMATION FOR LOG VARIABLES.

PRINT/, '* * * * * * *'PRINT/,' STANDARD ERROR IN LOG K'
CALL SCALECNPLOT,NTOTAL,NODE,S,Y,A,B,SE,ITMAX,BEROR)
PRINT/,' * * * * * *'
DO 200 K=l,NPLOT

200 A(K)=EXPCA(K»
PRINT/,' COEFFS. FOR Ea. LOG K-S(S-l)fLOG A'
PRINT/,'B=',a
PRINT/.'A-',(A(I),I-1,NPLOT)

C ** COMPUTE SCALE FACTORS AND SCALE MEAN FUNCTION
DO 5 IPLOT=l,NPlOT
AM~AMtSQRTCACIPLOT»; AVGA=AVGA+ACIPLOT)

5 CONTINUE
R=NPLOT;AM:(AM/R>**2;AVGA=AVGA/R
PRINT/,'SCALE MEAN FUNCTION COEFFICIENTS'
PRINT/,' AM=',AM,'B=',B,'AVG. A=',AVGA
WRITE(4,/) NPLOT,AM,B,(ACI),I=l,NPLOT)
PRINT/,' ';PRINT/,'1 1 1 1 1 1 1 l'
PRINT/,'****** GIVE AN IASK VALUE FOR PLOTSS 0 , 1 , 2'
PRINT/,' INPUT -1 TO EXIT'
READ/, IASK
IFCIASK.LT.O)GO TO 50
IF(IASK.LT.l) GO TO 12
INT=10.*SMALL; SMIN=INT/10.
INT=10-INT; ISPACE;INT*10
CALL HA5H;CALL ISETITCBO,ISPACE,8,INT,-2,2,SMIN,1.)

12 PRINT/,'SCALE FACTORS AND STD. ERRORS'
PRINT/,'STANDARD ERRUR IN SATURATION'
DO 15 K=l,NPLOT; NR~NODE(K)

IFCIASK.EQ.3) AM=AVGA
ALPHA(K)~SaRT(A(K)/AM)

Kl=NCUM(K>tl; K2=NCUMCKf1)
S5E=0; DO 14 I=Kl,K2
SAT=SFNCC(I),ACK),B)

14 SSE=SSEf<SAT-SCI»**2
STDE=SDRTCSSE/CNR-2»; SECK)=STDE
SSO:::SSCH·SSE
IFCIASK.LT.1) GO TO 15
DO 15 I~Kl,K~~ COND=C(I)/(ALPHACK)**2)
COND=ALOGI0(COND>
CALL DATAIN(·*·,COND,S<I»

15 CONTINUE
PRINT/,' ,
PRINT/,'SCALES ALPHA=',(ALPHA(I),I~l,NPLOT)

PRINT/,' ,
PRINT/,'STD. ERRORS=',(SECI),I=l,NPLOT)
WRITE(4,/) (SE(I),I=I,NPLOT)
LOCK 4

PRINT/,'
PRINT/,'POOLED STANDARD ERROR IN SATURATION'
PRINT/, 'STD. ERROR=',SORT(SSQ/(NTOTAL-2»,'D.F.=',NTOTAL-2
IF<IASK.LT.l)GO TO 50
DO 20 1=1,11; SAT=1.-0.0S*(I-1)
COND:CFNCSAT,AM,B); COND=ALOGI0(COND)

20 CALL DATAINC·C·,COND,SAT)
PRINT/,' '; PRINT/,' ,
PRINT/,'HOLD FOR PLOT'; READ/,HOLD
PRINT/,' PLOT OF SCALED DATA'; PRINT/,'
CALL PRNTITC2,2,XTITLE,5,YTITLE,4,6)
IFCIASK.LT.2)GO TO 50
CALL HASH;CALL ISETITCSO,ISPACE,8,INT,-2,2,SMIN,1.)
DO 30 IPLOT=1,NPLOT; DO 30 I=NCUMCIPlOT)+1,NCUH(IPLOT+1)

30 CALL DATAINC-*·,ALOG10CCCI»,SCI»
DO 40 IPLOT=l,NPLOT

163
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11600
11700
11800
11900
12000
12100
12200
12300
12400
12450
12500
12600
12700
12800
12900
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DO 40 I=1,11;SAT=1.-0.0S*(I-1)
COND=CFN(SAT,ACIPLOT),B); COND=ALOGI0(COND)

40 CALL DATAINC·C·,COND,SAT)
PRINT/,'************************************************'
PRINT/,'PLOT OF DATA AT EACH LOCATION"PRINT/,' ,
CALL PRNTIT(2,2,XTITLE,5,YTITLE,4,6)

50 STOP
END

C ** DERIVATIVES OF PHYSICAL MODEL
C ** TRANSFORMATION Y=LOG K.

SUBROUTINE DERIV(S,A,B,Y,DYDA,DYDB)
DYDB=S-1.
DYDA=l.i Y=B*DYDBfA
RETURN
END

APPENDIX D.
Computer program for scaling drainage.

100 $PESET FF<EE
200 $SET AUTOBIND
300 $BIND = FROM OBJECT/SUB/SCALE, FORTRANLIBRARY
400 $~ET SUPf\S
500 rILE 1::=Ot~EMCONCOEF, UN I T==DIS~~, SAVE==30
600 FILE 2 <1\IND=[JISK, FI LETYPE=7, TI TLE=I THETAREGCOEFF I )
700 FILE 3(KIND=DI~1K,FIL£TYF'E=7,TITLE=·TIM£SI)

800 FILE 4CKIND=DlSK,FILETYPE=7,TITLE=IAVGWTCONT 1
)

900 FILE 6 (KIN[t:::F:EMOTE, HAXRECSIZE=22)
1000 FILE 7(KIND=DISK,FILETYPE=7,TITLE=·DEPTHAVGTH 1

)

1100 DIMENSION THETA(22),U(22),T(22),DEPTH(S),Z(32)
1200 DIMENSION SE(32),RCOEF(4,8),CC32),THO(32),A(32),ALPHA(32)
1300 DIMENSION X(32,19), Y(32,19)
1400 DIMENSION XTITLE(6),YTITLE(6)
1500 C ** PROVIDE INITIAL PARAMETERS HERE - A IS KO OF MODEL
1600 DATA A,B/32*4.,401
16~0 C ** OPTION TO REArt INITIAL VALUES OF PARAMETERS.
1675 READIN=IYES1

1700 Dr.. TA XTITLE/WTIHE I, I ([lAYS) I ,4*- -/,YTITLE/·THETA- ,5*- -I
1300 TariTA [IFPTH/15,30,4~,60,75,90,105,1201

1825 C ** OPTION TO DO SCALE REGRESSION WITH A FIXED COMMON B.
1850 FIXD~·NO·

1900 C ** IlHiICrtTE NUMDEH OF ITERATIONS AS ITMAX.
2000 I1MAX=5; N==20
2 100 NF'LOT::4 ; Nfl EF'TH::8 ; NT 1ME=19 ; NLESS=0
2700 C ** DRAINAGE EQUATION DErINED HERE
2300 rur (T, 1HO,A, B) :;:;THO-ALOG <1. +A*B*T) IB
2400 FLXF(1,A,B)=A/C1.tA*B*T)
2500 C ** MODEL CONDUCTIVITY fUNCTION DEFINED HERE
2600 CONFCTHETA,THO,CONO,D)=CONO*EXP<B*<THETA-THO»
:> 7 0 0 C - .- - - - - - - - -- - - - - - -~ - _.- - - - - - _.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
2800 C ** INDIRECT SCALING OF CONDUCTIVITY FROM WATER CONTENT PROFILE.
2900 C ** ASSUMES REGRESSION OF DEPTH AVG. THETA ON THETA WITH REGRESSION
3000 C *~ COLTF ICIENTS C FOR EACH LOCATION ('1ND UNIT HYDRAULIC GRADIENT.
3100 C ---------------------------------------------------------------
3200 F'RINT/,'************************************************'
3300 PRINT/,' INDIRECT SCALING OF CONDUCTIVITY'
3400 F-' f~ It I TI,' CON [I UCTI 'J I TY M0 [I ELI S '
3500 PRINT/,' K = KO EXPCB(THETA - THO»'
3600 PRINT/,' DRAINAGE EQUATION IS'
3700 PhINT/,' TIIETf.,:::ITHO - LOGC1+B KO TIC Z)/B'
3t:00 fhIN1/,' DEPTH {tVGCTHETA···THO) = C*CTHETA-THO)'
3900 PRINT/,'*'*********************************************'
4000 f' f< I Nr / " ,
4025 IF(READIN.EQ.IYESI) READC3,/) ITMAX,FIXB,B,A
4100 READ(3,/) T; CLOSE 3; TO=T(1)
4200 DO 1 I=l,NTIME
4300 T(1)=T(1)-TO
4400 READ(2,/) «RCOEF(I,J),J=1,NDEPTH),Ic1,NPLOT)~CLOSE 2
4410 CALL IU,SH;CALL 15[TIT(100,40,10,4,0,50,.25,.45)
~~co DO J IPLOT=l,NPLOT; DO 3 IDEP=l,NDEPTH
4600 RlAD(4,5) THETA; READ(4,S) U
4700 5 FORMATC 11(lX,F4.3) )
4800 IFCIDEP.LE.NLESS) GO TO 3
4900 NLOC=NLOC+l;C(NLOC)=RCOEF(IPLOT,IDEP)
5000 Z(NLOC)=DEPTHCIDEP); THU<NLOC)=THETAC1)
5100 DO 2 I=l,NTIME; XCNLOC,I)~T(I)
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51~O

5~OO 2
~300 :5
5400
~500

~600

5700
5800 C **5900
6000 4
6100 C ;t:*
6200 C **6300
6400
6500
6550
6600
6700
6800 C **6YOO
7000
7100
7200
7300
7500 25
7600
7700
7800
7850
7900
8000
8100 30
8200
8300
0400 35
8500
0600 40
8700
8800
8900
9000 6
9100
9200
9300
9400
9500
9600
9700
9800
9900 C **9950 C **10000
10010
10020 7
10200
10300
10305 C **10310
lOJ15
10320
10325
10330
10335
10340
10350
lo~60

10400
10300
10600
10700
10750
10800
It)iJ.C:U

:10830
10840
10850
10900
11000
11100
11200

CALL DATAIN(·*·,T(I),THETA(I»
Y(NLOC,I)=THO(NLOC)-THETA(I)
CONTINUE
PRINT/,' NUMBER OF LOCATIONS SCALED=',NLOC
PRINT/,' NUMDER OF SAMPLE TIMES=',NTIME
PRINT/,' NUMBER OF DATA POINTS SCALED=',NLOC*NTIME
F'l~ iur/,' [JR{tINAGE PER10D IS', T(NTIME) " DAYS'

TRANSFORM INITIAL PARAMETERS FOR REDUCED TIME.
DO 4 K=l,NLOC
ACK)=A(K)/(Z(K>*C(K»

REGRESSION VAf,IABLE USED IN SCALE IS Y="Q~O-TI-IETA

Y~LOG(l + A B T)/D
PRINT/,' * * * * * * * * * *'
PRINT/,' SCALE RESULTS'
PRINT/,' STANDARD ERROR IN WATER CONTENT'
IF(FIXB.EO.·YES·)PRINT/,' B IS FIXED AT INITIAL VALUE'
CALL SCALE(NLOC,NTIME,X,Y,A,B,SE,ITMAX,FIXB)
PRINT/,' * * * * * * * * * *'

CORRECT REG. COEFFS. C FOR TIME DEPENDENCE.
PRINT/,' ,
PRINT/,' STATISTICS FOR REGRESSION DEPTH AVG THETA VS TIME'
PRINT/,' CORRECTED REG. COEFFS. C AT EACH LOCATION'
Pf.:IN1/,' ,
PRINT 25
FORMAT(4X,'C COEF',2X,'NEW C',2X,'ERROR',2X,'STD E',lX,'R COEF')
DO 40 IPLOT=1,NPLOT~ DO 40 IDEP=l,NDEPTH
READ(7,5) THETA; READ(7,5) U
IF(IDEP.LE.NLESS) GO TO 40; H=H+l
IF(A(M).EO.O) GO TO 40
DTHO=THETA(l); DO 30 I=l,NTIME
THETA(I)=DTHO-THETA(I)
U( I )==-lHF(T( I) ,O,ACH)-.B)
CALL CREGS(U,THETA,NTIME,CC,SC,STDE,R)
PRINT 35, M,CCM),CC,SC,STDE,R
FORMAT(lX,I2,3(3X,F4.2),3X,F4.3,3X,F4.2)
C(M)=CC
CONTINUE
PRINT/,' ,
DO 6 K=l,NLOC~ AVGTHO=AVGTHO+THO(K);A(K)=C(K)*Z(K)*A(K)
AM=AM+SQRT(A(K»; AVGA=AVGAfA(K)
COtJTINUE
AM=(nMINLOC>**2;AVGA=AVGA/NLOC;AVOTHO=AVGTHO/NLOC
PRINT/,' SCALE MEAN CONDUCTIVITY COEFFICIENTS:'
PRINT/,' D=',B,'SCALE MEAN KO=',AM
PRINT/,' AVG. KO =',AVGA,' AVG. THO =',AVGTHO
FRINT/,' ,
PRINT/,' KO FOR EACH LOCATION:'
PRINT/, (A(K),K=l,NLOC)
PRINT/,' ,

CUMF'UTE SCf.LE FACTOr~S ALPHA FOR CONDUCT IVITY.
COMPUTE CORRECTED STEADY STATE KO FOR COMMON THO.

DO 7 l\==l,NLOC; ALPHA(K)=SORT(A(K)/AM)
A(K);A(K)*EXPCB*(AVGTHO-THO(K»)
AMNLW=AMNfW+SQRT(A(K»
PRINT/,' SCALE FACTORS ALPHA:'
PRINT/, (ALPHACK),K=l,NLOC); PRINT/,' ,

CORRECT SCALES FOR AN AVERAGE STEADY STATE THETA OVER LOCATIONS
AMNEW=(AMNEW/NLOC)**2
PRINT/,' CORRECTED CONDUCTIVITY SCALES FOR COMMON THO'
rt,INT/,' ,
f'F, I NT /,' NEW SCALE MEAN KO=', AMNEW,' AVG THOel', AVGTHO
f'r~ INT/,' ,
PRINT/,' NEW KO AND SCALES FOR EACH LOCATION'
DO 70 K=l,NLOC;OHMEGA=SORTCA(K)/AMNEW)

70 PRINT 80, K,n(K),THO(K),OHMEGA
80 rORMAT(~X,I3,2X,F6.2,2X,F4.3,2X,F7.4)

F'f~ltJT/,' HOLD FOR PLOT: IASK=O OR 1'; READ/, IASK
IFCIASK.EO.O) GO TO 100

C ** STORE SCALED COEFFS.
WRITE'l,/) NLOC,B,AMNEW,(A(K),K=1,NLOC)
WRITEC1,/) (THO(K),Kul,NLOC)
WRITE(l,/) (SE(K),K=l,NLOC); LOCK
..··t,lN I /,' .
PRINT/,'GRAPH or WATER CONTENT VS EXPERIMENTAL TIME'
PkINT/,' ,
CALL PRNTIT(2,2,XTITLE,12,YTITLE~6,6)

CALL H(iSH;CALL ISETIT(100,40,10,4,O,SO, .25, .45)
ZM=DEPTH(NDEPTH); DO 8 K=l,NLOC; SZ=Z(K)/ZM
FAC=ALPHA(K)**2/(C(K>*SZ)

C ** MACRO. DEPTH SCALE 5Z W.R.T. LAST DEPTH.
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9

8

10

2

4

7

6

3

s

C ** REDUCE TIME AND PLOT THETA VS REDUCED TIME.
DO 8 1=1 dJTIME
TIME::.FAC*X(K,I);TH=AVGTHO-Y(K,I)
CALL DATAIN(·*·,TIME,TH)
CONTINUE
CONO=AM/ZM; DO 9 1=1,12' TIME=2.*<I-l)
IF(I.GT.8) TIME=10.*(I-7)
TH=THF(TIME,AVGTHO,CONO,B)
CALL DATAIN(·C·,TIME,TH)
PRINT/,' HOLD FOR PLOT'; READ/, BLANK
pr~INT/,' ,
PRINT/,' GRAPH OF WATER CONTENT <THETA) US REDUCED TIME'
PRINTI,' ,
CALL PRNTIT(2,2,XTITLE,12,YTITLE,6,6)
PFdNT/,' ,
PRINT/,' REDUCED TIME c CALPHA**2/C SZ) * T'
PRINT/,' DEPTH SCALE SZ=Z/ZM FOR ZM=',ZM,'CH'
PHINT/,' ,
PRINT/,' MEAN CONDUCTIVITY AND FLUX AT REDUCED TIMES'
PF,INTI,' ,
F'r,INT 10
FORHAT<lX,'THETA',7X,'COND',3X,'TIME DAYS',SX,'FlUX')
TH=O; THSTEP=AVGTHO/N; D·=B/ZM
DO 20 I::=:l,N
TH=THtTHSTEP; TIME=2.*I
COND::=:CONF<TH,AVGTHO,AM,B);FLUX=FlXF(TIME,AM,D)
PRINT 1S, TH,COND,TIME,FlUX

15 FORMAT(2X,F4.3,2X,E9.3,' I ',5X,F4.1,lX,E9.3)
20 CONTINUE
100 STOP; END

C ** DERIV~TIVES OF DRAINAGE EOUATION.
SlJDF",OUTINE DERIV(X,A,B, Y,DYDA, DY[IIO
IF(A.LT.O>A=O
F~l.+A*B*X; Y=ALOGCF)/8
DYDA=X/Ff DYDB=(A*DYDA-Y)/B

RETURN
END

$RESET FREE
$SET SEj't./,ATE
$SET LIBf\AF-:Y
C ** LEAST so. FIT OF Y=FCX;A(K),B) FOR K=l TO N GROUPS OF
C ** DATA CX, Y). F:EOUIF",EB FUNCTION F (X; A, [() AND rlERIVATIVES
C ** GIVEN AS SUBROUTINE DERIV. B IS COMMON COEFF.

SUBROUTINE SCALECN,M,S,Y,A,B,SE,ITMAX,FIXB)
DIMENSION SCN,M),YCN,M),A(N),SE(N)
DIMENSION AO(50),SEO(SO),Cl(SO),C2(SO)

ITMAX:-::ITMAX+l
IT=IT+1;S1=0;S2=0;S50=0
DO 3 K=l,N
SUMXF=O;SUMZF=O;SUMXX=O;SUMZZ=O;SUMXZ=O
SE(K)=O; DO 2 I=I,M
CALL DERIV(S(K,I),A(K),B,F,X,Z)
F=YCK,I)-F; SE(K)~SE(K)+F**2

SUMXF=SUMXF+X*F; SUMZF=SUMZF+Z*F
SUHXX=SUMXX+X*X; SUMZZ=SUMZZ+Z*Z
SUMXZ=SUMXZ+X*Z
Cl(K)=SUHXZ/SUMXX; C2(K)=SUMXF/SUMXX
51 =51 +SUHZZ-SlJHXZ*Cl(I()
S2=S2+SUMlF-SUMXZ*C2CK)
SSQ=3Su+SE(K)
CONTINUE
IF(IT.EO.l) GO TO 4
IF(SSO.GT.SSOO) GO TO 6
ITO=IT-l; SSOO=SSQ; BO=B
DO S K=l,N; SEO(K)=S(CK)
AO(K)=ACK)
IF(IT.EO.ITMAX) GO TO 8
IF(IT.EQ.l) PRINT/,'INITIAL SSQ=',ssa
DB=S2/S1;IF(B.NE.O)BEROR=100*DB/B
IF(FIXB.EO.-YES·) DD=O
B=IftIlB
DO 7 K=l,N; DA=C2CK)-DS*C1(K)
ACK)=ACK)tDA
GO TO 1

.***********~**************************************
** PRINT RESULTS OF ITERATIONS
8 SSQ=SSQO; B=BO

PRINT/,'FINAL SSQ=',SSQ,' FOR ITERATIONS=',ITO
PRINT/,' A COEFFICIENTS AND STD. ERROR FOR EACH GROUP'

11300
11400
11500
11600
11700
11800
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11900
12000
12010
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124()O
12500
12600
12700
12800
12900
13000
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11200
13~~\)O

13400
13500
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13800
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14100
14200
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1100
1200
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18nO
1900
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4100
4200
4300 9
4400
4500
4600
4700
4800
5000 C **
5100
5200
5300
5400
~500

5600
~700

5800
5900
6000
6100
6200

•

DO 9 K=l,N; NT=NTtM-2
SE(K)~5aRT(SEO(K)/(M-2»; A(K)~AO(K)

PRINT/,K,A(K),SE(K),'D.F.=',M-2
PRINT/,' COMMON COEFF. B=',B
PRINT/,' POOLED STD. ERROR=',SGRT(SSQ/NT)
PRINT/,' ERROR TOLERANCE IN B =',BEROR
r"ETur,N
END

SOLVES LINEAR REGRESSION Y~BX.

SUBROUTINE CREGSeX,Y,N,B,SB,SE,R)
DIMENSION X(N), Y(N)
SUMXY=O;SUMXX=O;SUMYY=O
DO 1 I=l,N; SUMXY=SUMXY+X(I)*Y(I)
SUMXX=SUMXXtX(I>**2
SUMYY=SUMYY+Y(I)**2
B:-::SUMXY/SUMXX
S5DEVR=SUMYY-D*SUMXY
SE=SORT(SSDEVR/(N-l»; SB=SE/SQRT(SUMXX)
R=SUMXY/SGRT(SUMXX*SUMYY)
RETURN
END

APPENDIX E.
Computer program for Millington-Quirk hydraulic conductivity.

L
100 SSET AUTOBIND
200 'BIND = FROM OBJECT/POLYFIT
300 ~SET SUPRS
400 "RESET Fr,EE
500 C-----------------------------------------------------------------
600 C PROGRAM CALCULATES MILLINGTON-QUIRK CONDUCTIVITY AND MATCHING
700 C FACTOR FOR EXPERIMENTAL DATA GIVEN AS MODEL CONDUCTIVITY
800 C FUNCTION. SUCTION HEADS CORRESPONDING TO PORE CLASSES ARE
900 C DETERMINED FROM SOIL-WATER CHARACTERISTIC MODEL.
1000 C MODEL SOIL-WATER CHARACTERISTIC IS
1100 C H=ACEXPCRHOCTHETA-THSAT» -1).
1200 C MODEL CONDUCTIVITY FUNCTION IS
1300 C K=KO EXP(BETA(THETA-THO».
1400 C PARAMETERS OF MODELS ARE REQUIRED AS INPUT DATA.
1500 C--------------------------------------------------·---------------
1600 FILE 1(KIND=DISK,FILETYPE=7,TITLE=·MOCONO·)
1700 DIMENSION THETACSO),H(50),WK<50),RSQ(SO)
1800 DIMENSION U(SO),V(SO),B(10),BETA(10)
1900 C-----------------~·-------------------------------------------------
2000 C ** INPUT DATA REQUIRED:
2100 C NUMBER OF PORE CLASSES-N. SATURATED THETA-THSAT.
2200 C UPPER LIMIT TO THETA FOR CLASS WITH LARGEST PORE RADIUS-THFULL
2300 C (PORE RA[IIUS IS ZERO FOR THETA BELOW THLOW)
2400 c------------~--------------------------------·----------------------
2~OO DATA N,THSAT,THFULL,THLOW/20,.42,.42,.11
2600 C---------~---------------------------------------------------------
270() C STf.ATJV STATE INFILTRATION THETA-THO.
~800 C LOWER LIMIT THETA TO t~ ['ATA-THKMIN.
2900 C LOWER THETA LIMIT FOR OUTPUT OF COMPUTED K -THOUT.
3000 c------------·---------------------------------------------------------
3100 ClATA THO.THKMIN,THOUT/.42,.30, ..201
3200 C ** CONDUCTIVITY AND SUCTION HEAD MODEL PARAMETERS GIVEN HERE.
3300 C ** B IS THE BETA COEFF. OF K MODEL.
3400 DATA CONO,B(1),A,RHO,/12.72,13 ..0,114.0,-4.931
3~OO RHO:::RHO/THSAT; Ie ( 1 ) =B( 1 ) /THO
3600 C----------------------------------------------------------------
3700 C SET DEGREE OF POLYNOMIAL FIT TO M-O CALC. LOG K.
37~O C NB NUMBER OF K MODEL COEFFS. B REQUIRED ON INPUT FOR MATCHING.
3800 C NO PRE-DETERMINED MODEL COEFFS FROM DATA USED IN FIT OF POLY.
3900 C NR COEFFS. INCLUDED BY REGRESSION. POLY. DEGREE P=NGfNR.
4000 C---------------------------------·_------------------------------
4100 DATA NB,NQ,NR/l,O,31
4200 C ** CONVERSION CONSTANT -C FROM PERMEABILITY TO UNITS OF CONDUCTIVITY
4300 C ** (CM/DAY). MILLINGTON-QUIRK POWER -P.
4400 C=- 1 • 88E04*60. *24. ; P=4. /3. I

4S00 C ** OPTION TO COMPUTE CONDUCTIVITY AS FUNCTION OF SATURATION:
4600 C ** SET IASK=l.
4700 IASK=l; THSATO=THSAT
~300 IFCIASK.NE.l) GO TO 1; THFULL=THFUll/THSAT;THLOW=THlOW/THSAT
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4900 THO=THO/THSAT;THKMIN=THKMIN/THSATiTHOUT=THOUT/THSAT
5000 B(1)=BC1)*THSAT; RHO=RHO*THSAT; C=C*THSAT**P; THSAT=1.0
SlOO C ** COMr'UTE THE SGUARE f<ADIUS OF EACH PORE CLASS.
~200 1. nELTH=TH~)(~T /N; NFULL=N
5300 DO 2 I=l,N; TH=CN-I)*DELTHfDELTH; THMID=TH-DELTH/2.
5400 IF<THMID.GT.THFULL)GO TO 20
5500 IFCTHMln.LT.THLOW>GO TO 30; M=Mtl
~600 THETA(M)=TH; HD~HFNCTHMrD,THSAT,A,RHO)

5700 RSO<M)=1./HD**2; HCM)=HFN(TH,THSAT,A,RHO)
5800 GO TO 2
5900 20 NFULL=NFULL~l

6000 2 CONTINUE
6100 30 N~NFULLi CaC/N**p
6200 C ** CALCULATE MILLINGTON-QUIRK CONDUCTIVITY FOR NFULl PORE
6300 C ** CLASSES BELOW FULL VALUE OF THETA.
6400 C SUM T ERMIN ATES FO R M CL ASSES WITH T H EI R ABOV E THLOW.

650u DO 4 I=l,M; SUM=O; DO 3 J=I,M
6600 3 SUM=SUM+(2*Jtl-2*I>*RSQ(J)
6700 WK<I)=C*CTHETACI>**P)*SUM
6800 4 CONTINUE
6900 C ** CALCULATE BEST FIT MATCHING FACTOR AT THETA OF POkE CLASSES.
7000 Nf'=O; SUMY=O; SUMYY:::O
7100 DO 5 1:.1,M; TH=THETACI)
7200 IFCTH.GT.THO.OR.TH.LT.THKMIN) GO TO 5
7300 NP=NPtl~ CON=CFN(TH,THO,CONO,B,NB)
7400 Y=ALOGCCON/WKCI»
7500 SUMY=SUMY+Y; SUMYY=SUMYY+Y*Y
7600 5 CONTINUE
7700 F=SUMY/NP~ VAR=SUMYY-NP*F**2
7800 IF(NP.GT.l) VAR=VAR/CNP-l); STD=SQRT(VAR)
BOOO PRINT/,'************************************************'
8100 PRINT/,' MILLINGTON-QUIRK CONDUCTIVITY'

8200 PRIt~T/,'************************************************'
8300 PRINT/,' ,
8400 PRINT/,' MATCHING FACTOR F= K ACT./K CALC.'
8500 PRINT/,' MEAN lOG F=',F,' STD. DEV. LOG F=',STD
8600 F=EXP(F); FGEO=F
8700 PRINT/,' GCOMETRIC MEAN F=',F
8750 C ** ASSUME A LOG-NORMAL DISTRIBUTION OF MATCHING FACTORS.
8800 E~EXP(VAR/2.); F=F*E; STD=F*SORT(E**2-1.)
8900 PRINT/,' EST. MEAN F=',F,' EST. STD. DEV. F=',STD
9000 PRINT/,' NUMBER O~ POINTS MATCHED =',NP,' D.F.=',NP-l
9100 PRINT/,' ,
9200 PRINT/,' CONDUCTIVITY FOR NUMBER OF PORE CLASSES =',N
9300 IFCIASK.Ea.i)PRINT/,' COMPUTED AS FUNCTION OF SATURATION'
9400 PRINT/,' ,
9500 PRINT 6
9600 6 ror,MATClX,'WATER CONT',3X,'SAT.',2X,'HEAD' CM' ,2X,'CONIIUCTIVITY')
9700 DO 7 I=I,M; WKCI)=FGEO*WKCI); SAT=THETA(!)/THSAT
9800 IFCTHETA(I).LT.THOUT) GO TO 10
9900 IF(IASK.EG.l)THETA(I)=THETACI)*THSATO
10000 7 PRINT S, THETACI),SAT,HCI),WK(I)
10100 a FORHAT(lX,6X,F4.3,2X,F5.3,3X,F6.0,4X,EI0.4)
10200 10 H=I-l
10300 PRINT/,' '; PRINT/,' THETA LIMITS:'
10400 PRINT/,' THSAT=',THSATO,' THFULL=',THFULL,' THO::',THO
10500 PRINT/,' THKMIN=',THKMIN,' THLOW=',THLOW,' THOUT=',THOUT
10600 PRINT/,' MODEL PARA~ETERS:'
10700 PRINT/,' HEAD ','A=',A,'RHO=',RHO
10BOO PRINT/,' CONDUCTIVITY ','KO=',CONO,'BETA=',B(l)
10900 Wf':ITE(1,/) H,THSATO, (THETA(I),I=l,M)
11000 WRITE(l,/) (H(I),I=l,M)
11100 WRITE(l,/) (WKCI),I=l,M); LOCK 1
11200 IFCNR.EQ.O) GO TO 100
11300 C ** FIT POLYNOMIAL TO LOG K CALCULATED BY M-Q METHOD.
11400 ALOGKO~AlOGCCONO)~ DO 35 1=1,M
11500 IFCIA~~K.En.l) THE'TACI)=:THET(,.(I)/THSATO
11600 U( I )=THETA( I )·-THO~ V( I )=ALOGCWKC I) )-ALOGKO
11700 IF(NG.El1.0) GO TO 35; TH=l.
11800 DO 35 J~l,Na~ TH=TH*UCI); VCI)=V(!)-B(J)*TH
11900 J~ CONTINUE
1 1 9 ~j 0 F'RI NT/,' '; P RI NT/ " ,
12000 PRINT/,' REGRESSION FOR MILLINGTON-QUIRK K'
12100 PRr~T/,' LOG K=LOG KO +B(1)CTHETA-THO)+ ••• tBCP)(THETA-THO)**P'
12200 PRINT/,' DEGREe P=',NQ+NR
12300 PRINT/,' ,
12400 PRINT/,' PRE-DETERMINED COEFFICIENTS:'
1~500 PRINT/,' KO=',CONO ;IF(NQ.EQ.O) GO TO 50
12~50 DO 45 ..1=l,Na
12600 4~ PRINT 40, J, D(J)
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FORMAT(2X,'B(',I2,')-',E12.6)
F'R INTI, ~ ,
N(~:::NQ+ 1
PRINT/,' COEFFS. INCLUDED BY REGRESSION FOR M-O K'
DO 60 J=1,NR
PRINT/,'************************************************'
CALL PREGS(U,V,M,BETA,NO,J)
PRINT/,'*M**********************************************'
Na~Nn-l; DO 80 J=l,NR; K=NQ+J
B(K) ::::BETA (.J)

PRINT ll5
FORMAT(lX,7X,'THETA',7X,'M-Q K',2X,'REG. CALC. K')
NR~Na+NR; DO 70 1=1,M
COND~CFNCTHETA(I),THO,CONO,B,NR)

PRINT 7~, THETACI),WK(!),COND
FORMAT(lX,7X,F5.3,2C2X,El0.4»
STOP; END

MODEL FUNCTIONS DEFINED BELOW
FIJNCTION HFNCTHETA,THSAT,A,RHO)
HFN=A*(EXP(RHO*(THETA-THSAT»-1.)
IF(HFN.LT.1.) HFN=1.
RETURN
END
FUNCTION CFNCTHETA,THO,CONO,B,N)
DIMENSION B(N)
TH=THETA-THO; THETAJ=1.' 5=0.
DO 1 J=1,N; THETAJ=TH*THETA~

S=S+B(J)*THETA~; CFN=CONO*EXP(S)
RETURN
END

70

6S

40

80

60

50

75
100

C **

12700
12(100
12";00
13000
131.00
13200
13300
13400
13500
13510
13600
13700
1,5800
13900
14000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
1~400

15500

•
L
100 $RESET FREE
200 $SET SEPAFU-ilE
300 $S£T LI Br'~IRY
400 SUBROUTINE PREGS(X,Y,N,B,NQ,NP)
~OO DIMENSION XCN),YCN),BCNP)
600 DIMENSION Z(50,10),C(10,10), D(10)
700 C ** POLYNOMIAL REGRESSION: Y=CDC1>fD(2)X+ ••• +SCNP)X**CNP-l» X**NQ
900 DO 1 I=l,N; XMULT=XCI>**NQ; DO 1 J=1,NP; Z(I,J)=XMULT
1000 1 XMULT=XMULT*X(I)
1100 C ** COMPUTE CROSS PRODUCT MATRIX.
1200 DO 2 I=l,N; DO 2 J=1,NP; D(J)=D(H)+Z(I,J>*Y(I)
1300 DO 2 K=l,NP; C(J,K)cC(J,K)+Z(I,J>*Z(I,K)
1400 2 CONTINUE
l~OO C ** SOLVE FOR REGRESSION COEFFS. B.
1600 CALL RSOLVE(C, D, rh NP \
1900 DO 5 !=l,N; YR=O; SUMY=SUMY+Y(I>
2000 SUMYY=SUMYY+YCI>**2; DO 4 J=1,NP
2100 4 YR=YRiB(J)*ZeI,J); SSE=SSE+CYR-YCI»**2
2200 5 CONTINUE
2300 SST=SUMYV-SUMV**2/N; SSR;SST-SSE
2400 SE=SQRT(SSE/(N-NP»; R=SORT(SSR/SST)
2500 WRITE(6,6)
2600 6 FORMAT(lX,'REGRESSION COEFFICIENTS:',/)
2700 DO 7 J=l,NP
2800 7 WRITE(6,8) NQtJ-l, S(J)
2900 8 FORM(..T( IX, 'B(', 12,' )=' ,E12.6)
3000 PRINT/,' ,
3100 PRINT/,' STD. ERROR OF ESTIMATE =',SE,'D.F.=',N-NP
3200 PRINT/,' MULT. CORRELATION COEFFICIENT R=',R
3~OO RETURN
3400 END
4800 SUBROUTINE RSOLVE(A,Y,X,N)
4900 C SOLVES THE MATRIX EOUATION A*X-Y FOR X
~ooo C A IS AN N BY N MATRIX.
5100 C ORIGINAL MATRIX A IS DESTROYED.
5200 DIMENSION AC10,11),Y(N),X(N),LOC(10),CK(10)
~300 NP~N+l

5400 DO 1 !=l,Ni A(I,NP)=Y(I)
5500 CKCI)=O.O
5550 DO 100 I=l,N
~600 IP=I+l
5700 C FIND MAX ELEMENT IN I-TH COL
~800 AMAX~O.O; DO 2 K=I,N; IF(AMAX-ABS(A(K,I»)3,2,2
5900 C IS NEW MAX IN ROW PREVIOUSLY USED AS PIVOT
6000 3 IFCCK(K»4,4,2
6100 4 LOCCI)=K; AMAX=ABS(A(K,I»
6200 2 CONTINUE
6300 C MAX ELEMENT IN I-TH COL IS A(l,I)
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6500 ~

6600 C
6700
6800 6
6900
7000 40
7100 ~O

7200 100
7300
7400 200
7500
7600

•

L=LDC(I); CK(L)=l.
P~RFORM ELIMINATION, l IS PIVOT ROW, A(l,I) IS PIVOT ELEMENT
DO 50 J=l,N; IF(L-J)6,50,6
F=-A(J,I)/A(L,I)
DO 40 K=IP,NP
A(J,K)=A(J,K)fF*A(L,K)
CONTINUE
CONTINUE
DO 200 I D1,N; L=lOC(I)
X(I)=A(l,NP)/A(L,I)
RETURN
END

APPENDL"{ F

Correction methods for scaling with an approximate saturation variable.

The effect of using an approximate saturation variable s equal to e/eo

for estimation of scale factors will be considered. Here the field measured

saturated water content eo (initial value) is less than the actual saturation

value <t>.

Conductivity:

A corrected scale mean conductivity function in terms of the actual

saturation s' equal to e/<t> for each location is

b ' (s'-so)
K' (s') == K' e (1)

m

where

K,1/2 l L K,1/2 (2)m R 0

K' K exp[b(so<t>/eo-l)] (3)
0 0

and

b" == (1. L <t>/eo)b = b/so
(4)

R

for the sums taken over R locations. Ko and b are the original parameters of

the model. New scales w' satisfy

K' =a w,2 K'
o m

for each location with average equal 1. Let b
o

(5)

b<t>/e
o

for each location and

(6)

where the sum is over R locations. Then 0b represents the error in replacing

b by a new common parameter b', where the original conductivity in terms of
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approximate saturation s is

171

K(s) K
o

(7)

Thus (7) can be viewed as an approximation to

K' (s') K'
o

(8)

which is scaled relative to s'. The difference in (7) and (8) satisfies

In K'(s') - In K(s) = (b' - bo)(s' - so)

and the error over locations made by replacing (7) by (8) is

R 1/2

[-!- ~ (In K' - In Kr)2J = ab Is' - sol.
R-l r=l· r

Next consider the situation for which the scale factors are not altered.

Suppose that

(9)

(10)

for all locations, i.e., the ratio is constant. Then K~ equals K
o

for all

locations, and the scales w' are identical to those obtained relative to the

approximate saturation variable.

Pressure head:

Suppose that the pressure head is scaled in terms of the function

h(s) = a(eb(s-l) -1) (11)

where s is an approximate saturation. Define

dh(s)
C(s) = ~. (12)

The quantity (12) can be scaled if the pressure head (11) can, that is,

ah(s) = hm(s) implies aC(s) = em(s).

An approximate scaling of pressure head relative to actual saturation s' is

obtained as follows:

C(s)
bo(s'-l)

e (13)

where bo = b¢/8o for each location. Let
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b' ! L b £. L ep/e
R 0 R 0

where the sum is over R locations. Now define

e b(ep/eo-l)
a' 0

= a ep e

Then

(14)

(15)

C'(s') = a' b' eb'(s'-l) (16)

is an approximation to (13). The error made in replacing b by b' equals the

square root of the variance of b
o

over locations. Integration of (16) yields

the corrected pressure head:

h' (s') = a' (eb' (s'-l)_l) (17)

where a' depends on location and b' is common to all locations. Rescaling

error equals Ih'(s') - h(s) I. Since the new scale factors depend only on (15),

they are identical to the original scales if eo/ep is constant over locations.
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