PHENOLIC COMPOSITION AND IN-VITRO ANTIOXIDANT

ACTIVITY OF PRUNES AND PRUNE JUICE

BY

JENNIFER LYN DONOVAN

B.S. in Food Science (University of Massachussetts at Amherst) 1994

THESIS

Submitted in partial satisfaction for the requirements for the degree of

MASTER OF SCIENCE

in

Food Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved: POM

Committee in Charge

1997

95

1. ABSTRACT

Phenolic compounds are important components in many foods and phenolic compositional data can be used to determine the authenticity of fruit juices. Also, many phenolics are powerful antioxidants and their consumption has been associated with the reduced incidence of coronary heart disease (CHD). In this study, a large, representative sample of Californian pitted prunes, extra large prunes with pits and prune juice from Prunus domestica variety La Petite Prune d'Agen was analyzed for phenolics during one production year. Phenolics were extracted, separated and identified using reverse phase Hydroxycinnamic acids, especially HPLC with UV-visible spectral detection. neochlorogenic acid, were the predominant phenolics in all samples. Flavonols, including rutin, were also found. The samples did not contain detectable amounts of anthocyanins or flavan-3-ols. The mean concentration of phenolic compounds was 1840 ± 389 mg/kg prune in pitted prunes, 1397 ± 191 mg/kg edible fruit (i.e. not including pit) in the extra large prunes with pits, and 441 ± 48 mg/L in prune juice (p < 0.05). The prune extracts, as well as many of the pure phenolic compounds contained in prunes, had the ability to inhibit the Cu⁺² catalyzed oxidation of human low-density lipoprotein (LDL). The extent of inhibition of LDL oxidation was indicated by the hexanal concentration as measured by static headspace gas chromatography (SHGC). The prune extract inhibited LDL oxidation by 24% at 5 μ M gallic acid equivalents (GAE),82 % at 10 µM GAE and 98% at 20 µM GAE. Prune juice extract inhibited LDL oxidation by 3 % at 5 µM GAE, 62 % at 10 µM GAE and 97% at 20 µM GAE. This data indicates that prunes and prune juice could be a source of dietary antioxidants.

96

1. ABSTRACT

Phenolic compounds are important components in many foods and phenolic compositional data can be used to determine the authenticity of fruit juices. Also, many phenolics are powerful antioxidants and their consumption has been associated with the reduced incidence of coronary heart disease (CHD). In this study, a large, representative sample of Californian pitted prunes, extra large prunes with pits and prune juice from Prunus domestica variety La Petite Prune d'Agen was analyzed for phenolics during one production year. Phenolics were extracted, separated and identified using reverse phase HPLC with UV-visible spectral detection. Hydroxycinnamic acids, especially neochlorogenic acid, were the predominant phenolics in all samples. Flavonols, including rutin, were also found. The samples did not contain detectable amounts of anthocyanins or flavan-3-ols. The mean concentration of phenolic compounds was 1840 ± 389 mg/kg prune in pitted prunes, $1397 \pm 191 \text{ mg/kg}$ edible fruit (i.e. not including pit) in the extra large prunes with pits, and 441 ± 48 mg/L in prune juice (p<0.05). The prune extracts, as well as many of the pure phenolic compounds contained in prunes, had the ability to inhibit the Cu⁺² catalyzed oxidation of human low-density lipoprotein (LDL). The extent of inhibition of LDL oxidation was indicated by the hexanal concentration as measured by static headspace gas chromatography (SHGC). The prune extract inhibited LDL oxidation by 24% at 5 µM gallic acid equivalents (GAE),82 % at 10 µM GAE and 98% at 20 µM GAE. Prune juice extract inhibited LDL oxidation by 3 % at 5 µM GAE, 62 % at 10 µM GAE and 97% at 20 µM GAE. This data indicates that prunes and prune juice could be a source of dietary antioxidants.

97

.

. . .

.

٩,

TABLE OF CONTENTS

2. INTRODUCTION / OBJECTIVES
3. LITERATURE REVIEW
3.1 Marketing and processing of prunes and prune juice
3.2 Phenolic composition of prunes and prune juice
3.3 Phenolic composition of other varieties of <i>Prunus domestica</i> plums10
3.4 Low-density lipoprotein oxidation and coronary heart disease
3.5 Measurement of antioxidant activity in low density lipoproteins
4. MATERIALS AND METHODS 19
4.1 Sampling of prune products
4.2 Extraction of phenolics from prunes
4.3 Extraction of phenolics from prune juice
4.4 High performance liquid chromatography (HPLC) analysis
[*] 4.5 Isolation and Oxidation of low-density lipoprotein (LDL)
5. RESULTS AND DISCUSSION
5.1 Phenolic composition of pitted prunes
5.11 Comparison with other dietary sources of phenolics
5.2 Phenolic composition of extra large prunes with pits
5.2 Phenolic composition of extra large primes with nits 5

.

.

-

.

LIST OF TABLES

Table 3.21	Compounds previously found in prunes and prune juices
Table 3.31	Compounds previously found in <i>Prunus Domestica</i> plums 11
Table 4.21	Phenolics extracted over five sequential extractions of prunes
Table 4.22	Reproducability of extraction and separation of prunes
Table 4.23	Recovery of compounds from prunes
Table 4.31	Phenolics extracted over five extractions of prune juice
Table 4.32	Reproducibility of extraction and separation of prune juice
Table 4.33	Recovery of compounds from prune juice
Table 4.41	HPLC conditions used for analysis of phenolics
Table 5.11	Phenolic composition of pitted prunes46
Table 5.21	Phenolic composition of extra-large prunes with pits
Table 5.31	Phenolic composition of prune juice
Table 5.41	Phenolic compounds in fresh unprocessed prunes
Table 5.42	Phenolic compounds in prune products
Table 5.51	Antioxidant activity for low density lipoproteins (LDL)
Table 5.61	Hydroxymethylfurfural (HMF) content of prune products
Table 5.62	Sorbic acid content of prune products

LIST OF FIGURES

Figure 4.22	Phenolics extracted over five sequential extractions of prune
Figure 4.21	Absorbance at 280 and 316nm over five extractions of prune
Figure 4.31	Phenolics extracted over five sequential extractions of prune juice30
Figure 4.21	Absorbance at 280 and 316nm over five extractions of prune juice 31

Q,

LIST OF APPENDICES

Appendix A	Typical HPLC chromatogram for prunes
Appendix B	Typical HPLC chromatogram for prune juice
	Data for individual samples of pitted prunes
	Data for individual samples of extra large prunes with pits
	Data for individual samples of prune juice
	Data for individual samples of fresh unprocessed prunes
- 11	Absorbance spectra of compounds identified in prune prducts
	Typical GC chromatograms for LDL oxidation
whhener II	