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MAKING SMART FERMENTATION DECISIONS II:  
TOOLS FOR PREDICTION AND PREVENTION OF 
PROBLEM FERMENTATIONS
David E. Block

Department of Viticulture and Enology, UC Davis
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Predicting and Preventing Problem Fermentations
Juice composition (especially sugar and nitrogen)

Fermentation temperature

Mixing in red and white fermentations

Yeast strain differences
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Wine Fermentation Kinetics

JUICE COMPOSITION
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Model for the role of nitrogen in wine 
fermentation kinetics
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Mechanistic Kinetic Model Based on N 
Utilization

Viable Biomass (Xv) :
dX

dt
X k Xv

v d v 







maxN

K NN

k k Ed d /

dN

dt

X

Y
v

X N

 


/

dX

dt
X k Xv

v d v 







maxN

K NN

k k Ed d /

Nitrogen (N) : dN

dt

X

Y
v

X N

 


/

Cramer et al., Biotech. Bioeng, 2002



7/29/2019

4

Model (continued)
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Cramer et al., Biotech. Bioeng, 2002
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Model Prediction of Normal Kinetics
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Increasing sugar increases risk of stuck 
fermentations
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The Effect of Increased Initial N on Biomass
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Reduced nitrogen increases risk of stuck 
fermentations
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Can fermentations be saved with nitrogen additions?
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The form of nitrogen makes a difference
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Lessons learned on nutrient status (sugar and 
nitrogen)
High sugar will make other factors more critical

You need enough nitrogen to give you a reasonable fermentation speed

You can supplement nitrogen during the fermentation—until it isn’t taken up 
by cells

Complex forms of nitrogen may work better later in the fermentation
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FERMENTATION TEMPERATURE

7/29/201915

The effect of temperature on fermentation kinetics

16

Coleman et al., Applied and Environmental Microbiology, 2007
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Low nitrogen limits the 
temperature range of a 
successful fermentation

Coleman et al., Applied and Environmental Microbiology, 2007

Inactivation is highly temperature dependent 

Temperature (° C)
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Lessons Learned on Fermentation Temperature
Fermentations go from sluggish to normal to stuck as fermentation 
temperature is increased

Temperature is even more important with low initial nitrogen

Everything speeds up with higher temperature, but especially cell 
inactivation

MIXING IN RED AND WHITE FERMENTORS

7/29/201920
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The cap in a red fermentor can get really hot!
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Developing a mathematical model for red wine 
fermentations based on fundamental knowledge

Yeast growth 
model
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Developing a mathematical model for red wine 
fermentations based on fundamental knowledge

Solve using COMSOL/Finite Elements Method

Predictions of Temperature Gradients in Red 
Wine Fermentors (using COMSOL)

1400 L 6400 L
Miller, Oberholster, and Block.  Biotechnology and Bioengineering, 2019.
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How do we know the predictions are valid?

Miller, Oberholster, and Block.  Biotechnology and Bioengineering, 2019.

How do we know the predictions are valid?

Pre-
Pump

1 hr 2 hr 6 hr 12 hr

Model Prediction-Temperature
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How do we know the predictions are valid?

Pre-
Pump

1 hr 2 hr 6 hr 12 hr

Experimental-Temperature
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Schmid et al.  Australian Journal of Grape and Wine Research, 2009.

Application of the model to understand the effects 
of tank size and aspect ratio

Miller, Oberholster, and Block.  AJEV, 2019.
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The predicted effects of surface area to volume 
ratio

Larger Fermentor

Cap Temperature 
at 72 hr

RS at 240 hr

Active Biomass 
at 240 hr
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Application to white wine in concrete eggs

Miller, Oberholster, and Block.  AJGWR, 2019.

Temperature control and mixing are better in a standard jacketed stainless 
steel tank.

Application to white wine in concrete eggs
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Inoculation and mixing in white wine fermentors

Depends on dissolution/suspension of yeast and characteristics of 
juice

Vlassides and Block, AJEV, 2000

• Get less lag from more effective inoculum with mixing

• Probably accentuated by cold temperatures

• Want fully mixed fermentation BEFORE filling barrels 
for completion of fermentation
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Lessons learned for mixing
KNOW YOUR CAP TEMPERATURE!

Your cap could get hot enough to cause a stuck fermentation

Punch downs and pumpovers will cool cap, your jacket will not

The larger and wider your tank gets, the greater this effect

Concrete tanks will get hot without external cooling

Make sure your dry yeast is well hydrated and mixed into the tank prior 
to barreling down (for barrel fermented whites)

YEAST STRAIN DIFFERENCES

7/29/201936
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Stuck

Yeast Strains Exhibit Diverse Fermentation 
Kinetics

37
Henderson et al., App. Environ. Micro., 2013

R2 = 0.97
Q2 = 0.94

R2 = 0.91
Q2 = 0.83

Lipid Composition Predicts Yeast Biomass 
and Ethanol Production (using 22 strains)

38
Henderson et al., App. Environ. Micro., 2013
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Correlation of Specific Lipids with Cell 
Growth and Final Ethanol Concentration

39Henderson et al., App. Environ. Micro., 2013Henderson et al., Applied and Environmental Microbiology , 2012.

Lipid composition changes with temperature

40Henderson et al., AEM, 2013.
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BINGO analysis of transcriptomic data identifies 
classes of genes most associated with nutrient 
utilization efficiency

42

Creating a Genome-Scale Model to Understand Strain Differences

Taxonomy
Template 
Model

Reactions Metabolites Genes

Saccharomyces 
cerevisiae

Yeast 7.6 3963 2691 1139

Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of 
Technology. https://github.com/SysBioChalmers/yeast‐GEM

Modification of Yeast 8.3.3 to fit enological conditions

• No O2 uptake
• Allow unrestricted uptake of sterols

• Nitrogen limited
• Make the model dynamic

Jeffrey D Orth, Ines Thiele & Bernhard Ø Palsson, Nature Biotechnology (2010)

Mathematical representation of a metabolism 

Yeast 8.3.3 
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43

Making the genome-scale model dynamic to predict fermentation kinetics

Media

Flux 
boundaries

Fluxes = 

Set fructose,  
glucose, and 

nitrogen lower
and upper

bounds

Set by-product 
lower bounds

COBRA Toolbox, (Hierendt et al., 2013) using Gurobi
optimizer (http://www.gurobi.com, 2016)

This model allows us to predict what goes on 
inside the yeast cell

7/29/201944
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Lessons Learned on Yeast Strains
Commercial yeast strains can have very different ethanol tolerance and 
nutrient utilization efficiency

These traits are a strong function of specific cell membrane lipids

Omics and metabolic modeling will help explain these traits so they can be 
controlled—not there yet.
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