No. 6

Progress Reports of Agricultural Research, published by the University of California College of Agriculture, Agricultural Experiment Station May, 1947

Control of Peach Twig Borer Under **Continuing Study**

Vol. I

Stanley F. Bailey

In the past year or two many new chemicals have entered the field of insecticides but the majority of them are not useful in the control of the peach twig borer.

Laboratory experiments show that the larvae of the peach twig borer will be paralyzed by crawling across bark and leaves sprayed with DDT, and therefore, caterpillars do not need to feed on poison-sprayed leaves to be killed.

Some growers have used the wettable DDT spray powders—usually 50 per cent strength—at the rate of one pound of actual DDT per 100 gallons of water, as well as a five per cent dust, to control this insect on canning peaches and report excellent results.

In experiments in the orchard on almonds. DDT was compared with the basic lead arsenate spray, and found to be slightly superior in controlling the peach twig borer.

DDT Residue

Preliminary tests with canning peaches have shown that the amount of DDT residue on the fruit at picking time has been far below seven parts of DDT to one million parts of the fruit, which is the amount permissible on apples and pears.

Small scale tests in which the fruit was lye peeled, showed that all the DDT was removed by that process It is still unknown whether the DDT residue in the lye tank will accumulate sufficiently under average cannery conditions to contaminate the commercial pack without frequent changings.

(Continued on page 2)

Extra Irrigation Is Extra Expense In **Prune Production**

A. H. Hendrickson and F. J. Veihmeyer

There exists a general idea, that if maintaining moisture in an orchard readily available to the trees at all times is good, the addition of more water to keep the soil moisture relatively high is better.

Experiments with prune trees over a 13-year period do not support that idea.

third. All plots in each treatment received the same irrigation.

Test Treatments

Whenever the plots were irrigated, the soil was moistened to a depth of six feet, so the trees either did or did not have moisture to the depth occupied by most of the roots. Light irrigations, wetting the soil to a shallow depth were not used.

Treatment A was kept at a relatively high moisture content. Treatment B was allowed to exhaust the moisture to the permanent wilting percentage before replenishing one supply. Treatment C was irrigated during the early part of the season only, the average date of the final irrigation being July 20.

The irrigations were under the direction of the same man throughout the 13 years. The average application was very close to 7.5 acre inches.

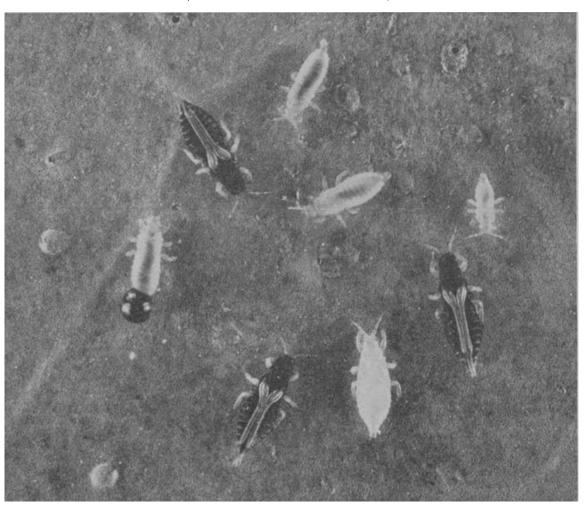
The soil moisture records for these treatments indicate that in general, the A treatments had readily avail-(Continued on page 2)

DDT Dust With Sulfur Is Treatment Recommended For Summer Control Of Greenhouse Thrips On Avocados

Walter Ebeling

During the past few years the greenhouse thrips, Heliothrips haemorrhoidalis, has become the most serious of the avocado pests, especially in the areas of greatest concentration of the avocado industry, in San Diego County.

The greenhouse thrips is 1/24 of an inch in length, dark brown to black, and very sluggish in its movements. The adults seldom, if ever fly.


dusts, made by the University of California College of Agriculture in cooperation with the San Diego County Agricultural Commissioner's Office, many growers used a DDT sulfur dust to control greenhouse thrips during the past season.

The dust consisted of 5 per cent sary. DDT and from 50 to 85 per cent sul-

As a result of successful prelim- stances that the second application inary trials with DDT sprays and is not necessary. The present year will be the "on year," however, in the alternate bearing cycle, and no chances should be taken with greenhouse thrips.

With good control this year, it is possible that next year-the "off year"-no treatment may be neces-

DDT may also be applied as a

Larvae, prepupa, and adults of the greenhouse thrips on a carissa leaf. Note also egg mounds, some with exit hole made by emerging egg parasites. (Photograph is greatly enlarged)

Experimental irrigation plots of stages, and the adult—may be found coiti. From one-half to one pound of two pounds of wettable sulfur may be eight French prune trees were repli- together on an avocado leaf or fruit, dust was applied per tree by means of cated three times for two of the test | frequently tending to congregate in | a small wheelbarrow-type duster treatments and four times for the small colonies. With the aid of a pulled by one man and pushed and hand magnifying lens, small, corky pimple-like protuberances may be seen on the leaf or fruit, indicating where the tiny, kidney-shaped eggs have been inserted beneath the cuticle.

Injury Caused by Greenhouse Thrips

The injury consists of whitish discoloration of the infested areas of the leaves and fruit, followed by a brownish appearance and leathery consistency of the epidermis. In case of the fruits, this may be accompanied by cracking. Premature dropping of infested leaves and fruit may also ocur. The fruit is degraded or culled, depending on the severity of the injury.

Control

Within recent years, good control has been obtained by spraying with light medium oil and pyrethrum extract, but often spraying is not a practicable method of treatment in avocado orchards, besides being quite

Often all stages of this insect- | fur, the latter for the control of avo- | spray, using one-half pound of actual the two larval stages, the pupal cado brown mite, Paratetrancychus DDT to 100 gallons of spray, to which operated by another.

> Good results were obtained by use of this rapid and relatively inexpensive method of treatment.

Recommendations

The thrips begin to attack the fruits when the latter are about the size of a hen's egg. If the trees are dusted before the fruit has a chance to become infested, injury to the fruit may be entirely avoided. After the fruit becomes infested, it is difficult, by means of dusting, to kill the thrips which occur on the lower surfaces of the fruits.

It is recommended that in the control of greenhouse thrips attacking avocados, a 5 per cent DDT dust, containing sulfur, should be applied between June 15 and July 30, followed in five to seven weeks by a second application.

From an inspection of the orchard

added for brown mite control.

Effect of DDT on Other Pests

Not enough experience has yet been obtained to predict the long term effects of the DDT on the other pests of avocado, which might increase in numbers because of the effects of the treatments on parasites and predators.

The long-tailed mealy bug populations, however, were decreased by DDT applications made last year.

DDT Residue

Analyses of 23 samples of fruit, taken from commercially treated orchards and experimentally treated plots, showed in all cases that the residue of DDT was considerably less than the provisional tolerance of 7 parts per million allowed by the Federal Food and Drug Administration for certain crops.

Walter Ebeling is Lecturer in Entomology and Associate Entomologist in sive filling of the seed plate cells. it may be concluded in some in- the Experiment Station, Los Angeles.

New Method For Disposal of Liquid **Waste By Wineries**

Pilot scale field tests during the past vintage season proved it is possible to eliminate the odor nuisance and the mosquito menace from land disposal of winery liquid wastes, or

Methods of stillage disposal commonly in use can no longer be considered satisfactory in those areas where recent population growth has put wineries close to or in residential developments. The odors arising from the disposal ponds or lagoons, as a result of the decomposition of the organic material in the stillage, give cause for justifiable complaint.

The wine industry, through its agency, the Wine Institute, The Coast Laboratories, Inc., and the University of California cooperated during the past vintage season in carrying out successful field tests in developing a new method of land disposal of winery liquid wastes.

Intermittent Irrigation System of Disposal

The chief difference between the new method and some of the older systems, is the manner in which the liquid is applied to the land. The size, shape and area of the disposal basins or settling tanks have important places in the success of the

As the name implies, the liquid is added intermittently to the land set aside for the purpose, rather than continuously. This is accomplished by dividing the area of land into shallow basins—similar to irrigation checks-of a size capable of holding the daily stillage output to a depth

(Continued on page 3)

Precision Planter For Row Crop Seeds Proved Successful

Roy Bainer

Precision planting of small seed row crops is now possible by the use of a metered planter which drops the seed at a pre-selected, uniform spacing in the furrow.

The development of the precision planter followed the introduction of processed sugar beet seed in 1942. The widespread adoption of the processed seed created a demand from growers for improved planting equipment.

Planters then in use failed to give the uniform distribution desired when processed seed, containing a high percentage of single-germ units. was planted at six to 12 seed units per foot-from three to six pounds per acre.

Uniform Seed Size Required

Early in the planter development program, uniform close grading of processed seed was found necessary to avoid the possibility of having more than one seed at a time in the seed wells or cells of the seed plate.

Seed processed by segmentationthe shearing of the seed ball into its parts—gave the best results when graded to within a range of 2/64-inch

Seed processed by decortication or burr reduction—rubbed into parts between the mill-like wheels of a machine-may vary as much as 3/64inch in size without causing exces-

(Continued on page 3)

Control of Peach Twig Borer Subject of Continuing Research By University Entomologists

(Continued from page 1)

Use of DDT is Experimental

The use of DDT on fruit trees has resulted in a rapid build-up of red spiders in many cases. This hazard should be considered a serious one.

DDT has certain advantages over basic lead arsenate when used against the peach twig borer but there is not sufficient data at present to recommend that DDT be entirely substituted for the basic lead arsenate.

If DDT is used in the control of the peach twig borer this season, it should be regarded as experimental.

Standard Recommendations

The standard recommendations which have proven to be the best over a period of years are given here:

Jacket spray. This spray should be applied immediately after the petals fall and is particularly desirable on apricots, plums, nectarines and peaches.

Basic lead of arsenate...3 to 4 lbs. Spreader or sticker.. $\frac{1}{3}$ lb, or 1 qt. Water..... ...100 gallons

If the basic lead arsenate is used with Bordeaux mixture or wettable sulfur, no spreader is necessary.

May spray. The time of application, from May 5th to 25th, varies

isfactory results. Each variety must be sprayed as it ripens.

All of these fruits should be treated as soon as any small "stem worms" are observed on the first fruits to

Two Special Cases

Pre-bloom spray. In the Southern San Joaquin Valley, the twig borer caterpillars emerge from dormancy earlier than in other localities and best success has been had by applying the basic lead arsenate spray to the trees before bloom instead of the jacket stage. A sticker or "deposit builder" is very desirable to use at this time.

Dormant treatment. During the period 1940-42 experiments were made with a large number of spray formulae in the winter in an attempt to control the worms during hibernation. DDT and many other new materials were unavailable at that time and of the materials tested, the best formula was found to be:

Dinitro-o-cresvlate

......1½ to 2 quarts (1:200 or 1:300) or Dinitro powder... Medium oil emulsion....2 to 3 gals. (About 80 vis. and 80 U.R.)100 gals.

Peach Twig Borer

The peach twig borer is an annual pest on peaches, nectarines, plums, apricots, and almonds and, like many pests, causes irregular but severe

It derives its common name "twig borer" from its habit of burrowing into the terminal shoots of green twigs of its host plants in the spring and early summer.

Permanent injury is not serious except on young trees which are sometimes badly deformed if no control measures are followed. Later in the season the worms attack the ripening fruit causing considerable loss, especially in the Northern San Joaquin and Sacramento valleys.

Hibernation of the minute larvae occurs on the trees in a cell beneath the surface of the bark, particularly in the crotches of the two-year-old wood, where they remain dormant from October to the following March.

Feeding activity starts about the time the buds begin to swell and a gradual migration takes place to the growing points during March. Emergence begins a week or two earlier in the central and southern portions of the San Joaquin Valley.

After maturing, the caterpillars, which are chocolate-colored and about one-fourth inch in length, migrate downward to the rough bark of the tree trunk and to the litter beneath the tree. In these places the worms pupate and transform to the adult stage.

The small, grey, inconspicuous moths rest on the undersides of the large limbs and lay their eggs on the young leaves and fruit.

The four principal broods or larval feeding periods are normally: (1) March, (2) May 5-25, (3) July 1-20, and (4) an irregular over-lapping brood extending from about August 15 to September 15.

With each successive brood there is a greater increase in number and more over-lapping of the different stages in the life cycle of the insect. These conditions make control increasing difficult.

from year to year. It is best correlated with the first wilted growing shoots especially on young trees. There may be as much as a month variation in successive years in the dormant sprays are necessary, but appearance of the first larval brood should not be used on peaches and which causes the wilt injury and no nectarines. average date for applying this first spray can be established beforehand.

Powdered spreaders should be used and so-called "deposit builders" or oils should be avoided in this spray.

Where mixed varieties of peaches occur, all trees must be sprayed. The jacket spray and the following May for effective on large trees. spray are necessary in peach growing districts where the twin borer is always a potential threat.

Use the basic lead arsenate at the same strength as in the first or jacket

Mid-summer treatment. In the following treatments substitutes for the basic lead arsenate spray must be used to avoid poisonous residue. The 70-30 dust-70 per cent sulfur and 30 per cent lead arsenate—is widely used on peaches. On mature trees, 50 pounds per acre is necessary to get adequate protection.

On plums, spraying with rotenone powder-three to five pounds depending on the strength of the rotenone—or about six pounds of fixed nicotine—fused—powder of about a five per cent strength per 100 gallons of water may be used with very sat-

This formula on prunes, plums, and almonds may be used especially where aphis eggs, scale, and brown almond mite infestations occur and

after January 15th and up to the early green-bud stage.

Problems Still Unsolved

There is no satisfactory control known for the adult moths. Burlap and other types of banding for the larvae and pupae are not practical

Natural control by means of parasites is unpredictable, although in some seasons the parasites eliminate over 90 per cent of the caterpillars, chiefly during the winter.

Cultural methods, such as immediate burning of prunings, and destruction of fallen fruit in severe outbreaks have been tried but under normal conditions, it is questionable whether they aid in reducing local infestations.

Stanley F. Bailey is Associate Professor of Entomology and Associate Entomologist in the Experiment Station

A detailed report giving more complete information concerning the parasites, the seasonal cycle, and experimental data on chemical control will be published as an Experiment Station Bulletin when completed. An announcement of its publication will be made at that time.

Control Of Insect Pests By Means Of Disease Agents

Edward A. Steinhaus

Biological warfare against certain insect pests by means of disease agents is a relatively unexplored method of insect control.

That insects may suffer from disease just as do human beings has long been known, and today it is hoped that agriculture may profit by this fact.

In the past, most of the attempts to use microorganisms to control insect outbreaks have met with little success due largely to a lack of information concerning the way in which disease-producing organisms infect insects and cause epidemics among them. Some attempts to use this means of control have been very successful. An example of the latter is the use of the so-called "milky diseases" to aid in the control of the Japanese beetle in northeastern United States.

Investigations Undertaken

In an effort to investigate the fundamental factors involved in the diseases which afflict insects, to develop methods by which such diseases may be used in the control of insects, and to make these methods available to California agriculture, the College of Agriculture and the Experiment Station at the University of California have undertaken several projects to investigate the possibilities offered. For this purpose a laboratory of insect pathology has been established on the Berkeley campus as part of the Division of Biological Control.

A great deal of fundamental biological work will have to precede the actual field use of microbial methods of control, but there is justification for hope that once such relatively inexpensive methods are perfected they will serve to benefit the farmers of the state immensely.

Several types of microorganisms are being investigated as to their potential control capabilities. These include bacteria, fungi, viruses, and protoza. Epidemics caused by these microorganisms occur frequently among insects in nature. Such diseases are very destructive to insects but are harmless to man, animals and plants. These epidemics are frequently of paramount importance in saving the crops from destructive insects. Natural outbreaks of disease often occur rather late in the season after the insects have already wrought considerable damage. One objective of the studies underway is to devise means by which the diseases may be prompted to bring about their beneficial effects earlier in the season.

Epidemics Studied

One of the most spectacular of these natural epidemics in California is the so-called "wilt" disease which destroys the caterpillars of the alfalfa butterfly.

The affected caterpillars become sluggish in movement, lose their appetites and soon die, frequently trees than in treatment A. To obtain the best results apply hanging from their food plant as dark, limp, fragil larvae. When handled or picked up their skin almost invariably breaks open, liberating a characteristic fluid consisting of the liquefied body contents of the insect.

This disease is caused by a submicroscopic virus which spreads rapidly among the insects when the optimun conditions for its development prevail. Current investigations are concerned with the nature of these factors and with means of propagating the virus in large quantities for field distribution.

Similar virus diseases occur in the yellow-striped armyworm and in the larvae of the California oak moth, both of which are also being studied by the University.

The possibility of combatting the insects named in the preceding paragraph by means of certain protozoan diseases is also being investigated. The protozoa concerned are of the group known as microsporidia, and it is hoped that the proper distribution of the spores of these organisms may, under the right conditions. enable infection of the insects to take place on such a large scale that 'tion.

Unnecessary Irrigation Added **Expense In Prune Production** Shown By 13-year Investigation

(Continued from page 1)

able moisture at all times, and for | area, particularly during the past considerable periods, the amount was five or six years. relatively high in the available range.

The trees under treatment A are The B treatments were reduced to somewhat larger than those in B, as about the permanent wilting per- measured by the cross-section areas,

-							
	2	3	4	5	- 6	7	8
Treatment	Av. no. of irrigations per year	Total Amt. Water in Acre Inches	Av. Amt. Per acre Per year	Av. Amt. per Irrigation, Acre Inches	Dried Fruit	Total Cost of Irrigation	Total Income
Α	4.5	445	34.2	7.5	46.9	\$818.80	\$7504
В	3.1	315	24.2	7.9	46.6	579.60	7456
С	2.2	220	16.9	7.6	41.0	404.80	6560

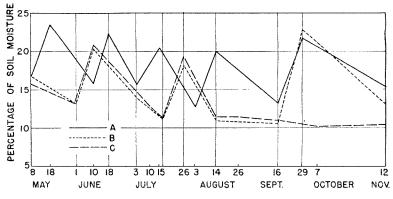
Column 2 gives the average number of irrigations necessary to maintain the soil moisture. Columns 3, 4, and 5 give the total amounts of water applied, the average yearly amounts, and the average amount for each irrigation in acre inches per acre. Column 6 gives the average cumulative yields of the dried fruit. The total cost of preparing the land for irrigating, water, and the application of water are given in column 7. The last column gives the gross returns per acre for the 13-year period.

centage several times each year, | but the tops of the trees do not show ranging in length from a few days so much difference in size. to several weeks during the harvest

The ${\bf C}$ treatment, while kept moist in the early part of the season, was reduced to the permanent wilting percentage and remained there for several months in the latter part of the season.

Thus, by way of contrast, the B treatment reached the permanent wilting percentage several times for short periods each year. The C treatment reached this moisture content and remained there for a long pe-

Growth of Trees


The growth of trees as indicated by the average cross-section areas of the trunks was recorded. For two years the differential irrigation

The average cumulative yields, in tons per acre of fresh fruit, indicated that treatments A and B yielded approximately equal crops. All treatments produced substantially equal yields for six years after differential irrigation treatments be-

In 1939 the yield from treatment C fell below those of A and B, and it has remained there since that time.

The quality of the dried product, as measured by specific gravities, and drying ratios, was essentially equal for all three treatments.

In sizes, treatment C, in addition to producing less fruit than the other two, produced a slightly smaller protreatment had comparatively little portion of large sizes and a larger

Soil-moisture contents of the top three feet in the orchard during a typical season.

effect on the growth of the trees. [proportion of small prunes than Thereafter the trees in the A treat- either A or B. ment were the largest, with those in B and C in that order.

curves indicated that the A treat- ment, showing that the extra water ment slowly increased its size over the B, while both A and B increased similar way treatment B returned over C somewhat more rapidly. The \$896 more than C, while additional short periods the trees in treatment expense for irrigating was only B were without readily available \$174.80. moisture probably resulted in smaller

The tendency for alternate bearslow increase in the cross-section

the insect population will be substantially reduced.

Experiments Under Way

Experiments are under way to find microbial agents which will infect insect pests other than those mentioned such as certain species of citrus scale insects.

Although the potentialities of the microbial method of control are great, much fundamental research followed by extensive field trials, will be necessary before a true picture of its practical possibilities can be had. The successful use of such methods depends on the development of procedures for the proper handling and distribution of the disease producing organisms under conditions which will promote their effectiveness against the insect pests susceptible

Edward A. Steinhaus is Assistant Professor of Bacteriology and Assistant Insect Pathologist in the Experiment Sta-

Treatment A returned \$48 more per acre than treatment B but it cost The slopes of the recorded growth \$239.20 more to irrigate this treatand labor were not profitable. In a

Conclusions

The only advantage gained by the trees in treatment A was a slight ining was indicated by the rapid or crease in size of tree as measured by the cross-section areas. Ordinarily the larger trees would be expected to produce the larger crops. This was not true during the 13-year period.

The sizes of fruit in the A treatment were not materially increased. This treatment produced about six per cent more large fruit and about the same percentage less small fruit than the **B** treatment. The difference in sizes is not enough to compen-

CALIFORNIA AGRICULTURE

Established December 1946

Progress Reports of Agricultural Research, published monthly by the University of Cali-fornia College of Agriculture, Agricultural Experiment Station.

HAROLD ELLIS......Director,
Agricultural Information
.....Editor

California Agriculture, progress reports of agricultural research, will be sent free to any resident of the State in response to a request sent to the University of California College of Agriculture, 331 Hilgard Hall, Berkeley 4, California.

Any part or all of this material may be used with or without credit

