Helpful To Humans

A brief report concerning the

search for a successful formula for a synthetic diet for chickens, and

some of the unforeseen benefits to

humans and animals disclosed by in-

vestigation of vitamins discovered

Nutritional research made possi-

which would promote growth and re-

gery. And it led to the process for making synthetic folic acid that gives relief to humans afflicted with cer-

Universities, experiment stations, and industrial laboratories have contributed to the scientific advances made in the general field of funda-

Project 677-D-2

of Project 677-D-2, a research pro-

gram conducted by the Division of

Organized in 1935, the project had the expressed purpose of seeking to

construct a diet of purified feedstuffs

that would supply completely, the

nutritional requirements of the

chicken for growth and reproduc-

Vitamin K

The same year that Project 677-D-2

was started, and within a few weeks

of each other, a scientist in Denmark

The progress made in nutritional research is reflected in the records

in the search for the diet.

tain types of anemia.

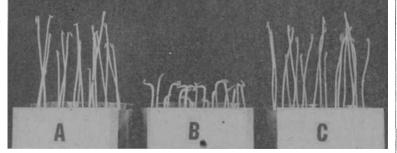
mental nutrition.

Poultry Husbandry.

tion

Poultry Nutrition Research Proves

Control Of Vapors In Storage Essential For Prolonging Life Of Avocados And Citrus Fruits


(Continued from page 1)

One of the factors which plays an jected to mold emanations. important role in avocado storage is the accumulation of an active emanation recently identified in this laboratory as ethylene gas.

The production of this gas is closely associated with the trend in respiration. By exposing several samples of avocados to temperatures vary-

These active vapors can be readily absorbed from the atmosphere by passing the air through a solution of bromine. As a demonstration of this, pea seedlings were used as indicators for air purity.

If a stream of air, free of active volatiles, is passed through a con-

The absorption of active vapors by bromine illustrated by pea plants. (A) The effect of air first passed through a container of moldy fruit, then through a bromine absorber to continue on over the peas. (B) The effect of air passed through a container of moldy fruit directly to the peas. (C) Normal growth resulted when air, free of active volatiles, passed through a container of pea seedlings.

at different dates.

No evolution of active emanation was observed prior to these dates, as evidenced from the use of pea seedlings, which are very sensitive to ethylene gas. The maximum suppression in growth of these seedlings coincided with the peak in carbon dioxide production.

Citrus

The behavior of citrus fruits in storage was found to be markedly different from that of avocados.

With lemons, no measurable quantities of active vapors were noticed as long as the fruit was sound. The occurrence of a slight amount of mold altered the picture decidedly. The effects of the common green mold are most pronounced. The gaseous products of this rot increase the rate of respiration and accelerate color development of sound green lemons.

Carbon Dioxide Production

Air was passed over four samples of fifty lemons each, at a constant rate, with the exception of the treated fruit, which was exposed to the vapors of the infected fruit. The moldy lemons were kept in containers separated by means of tubes packed with cotton from the jars filled with sound lemons.

At the storage temperature of 59°F, the maximum carbon dioxide evolution is commonly 100% higher than in fruit subjected to air free of these active vapors.

Shedding of stem ends-buttonsand rind deterioration known as pitting and spotting often take place along with the above mentioned symptoms.

Emanations of a single moldy lemon can produce these effects in 500 sound fruit. This action is not limited to fruit immediately after picking. At any time during a seven months storage period of lemons the mold emanations bring about greatly increased respiration, which is doubtlessly responsible for the low-

ing from 41°F to 77°F, it was found | tainer of peas grown by a standardthat the rise in respiration started ized procedure, the growth of the seedlings is normal as shown in (C)

of the accompanying illustration. When the air is first passed through a container with green mold, the result is a depression in growth

as shown in (B). Finally, (A) refers to the effect on peas of an air stream which passed through a container with a moldy lemon, then through a bromine absorber, and finally over the peas. Clearly the bromine took out the ac-

tive emanation. In subsequent experiments it was found that activated charcoal treated with bromine was highly effective in purifying the air stream. These tests can be cited as strong suggestion that the vapor under consideration is an unsaturated hydrocarbon, presumably ethylene.

J. B. Biale is Assistant Professor of Subtropical Horticulaure and Assistant Plant Physiologist in the Experiment Station, Los Angeles.

and scientists working in the Division of Poultry Husbandry in California, announced the discovery of an unknown vitamin. The new vitamin was named Vitamin K, and is known as the coagulation vitamin because of its ability to cause the clotting of blood.

Absence of Vitamin K in the diet of the chick leads to hemorrhages, but there is no problem in supplying an adequate amount of the vitamin in the normal poultry diet.

Studies of Vitamin K by research laboratories in other fields extended into investigation of its value in human medicine. There it proved of

For the tests seven standard 10

Vertical Cabinet Type Electric Sterilizer Tested For Lethal Effect On Bacteria In Milk Cans

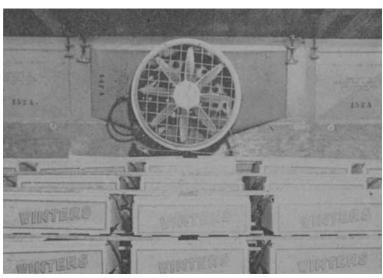
Tests were made on a vertical cabwere rinsed with cold water and

		C C	Jallon I	Milk Cans	: (150 lbs	s. metal)		
	Therr	nocouples					Therm	C
Time	Air	Air	Air	Air	Can*	Can*	Air	
Mins.	#1	#2	#3	#4	#5	#6	т	
0	79	80	80	80	86	82		
6	82	86	97	97	84	80	95	
15	106	115	135	135	99	90	118	

Proper Temperatures Important In The Storage, Precooling And The Shipping Of Stone Fruits

(Continued from page 1)

and at 32°. It is questionable if ap- bert indicate that good fruit free ricots should be held longer than three weeks.


Plums

Plums, of which we have numerous varieties, hold their dessert qualble the formula for a synthetic diet ity in storage rather well, most of them being quite acceptable for a production in chickens. It discovered month to six weeks. Tragedy has, in Vitamin K which has proved of value some instances, kept well and has in human medicine, especially surmaintained its quality for two

from mold infection may be held four to five weeks, but not without loss of flavor, considerable pitting of the skin, darkening of the color and drying of the stems. In general it is doubtful if cherries should be stored longer than two, or at the most, three weeks.

Precooling

Except at the beginning of the

Loading of apricots in a refrigerator car. Precooling fan in place at top of ice bunker opening. The fruit is precooled for 12 to 18 hours.

months. After four to six weeks, | shipping season when some ripening Santa Rosa sometimes failed to ripen. The flesh of the greener fruits was often woodlike in texture, and bitter. Browning also developed around the pit.

Cherries

Except during precooling and while in transit, cherries are usually not held under refrigeration. Limited storage trials with Tartarian, Black Republican, Bing and Lam-

great value in certain cases of surgery.

Riboflavin

In the course of work on Project 677-D-2 studies were made of the vitamin factor, riboflavin. Investigations proved that a deficiency of this vitamin in the diet of chickens caused the production of eggs with low hatchability.

Dead embryos had characteristics defects, such as dwarf size, degeneration of the kidneys, deformed down, and evidences of edema and anemia.

In 1937 California poultrymen reported an epidemic-like prevalence of eggs with low hatchability. They were advised to increase the riboflavin content of the diet they gave their chickens. They did so and the egg hatchability jumped to normal.

Pyridoxine

Pyridoxine is another vitamin factor to be discovered in the progress of Project 677-D-2.

A scientist working on the project conducted parallel investigations with rats. He made certain findings which he applied to the experiments in progress with the poultry diet. ations in his rat studies ed. Thus pyridoxine was and the first descrip- 65° to 34° in seven minutes, or about the neurological maniits deficiency. ficient pyridoxine in the lick is indicated by such weakness, nervousness ons.

of plums and apricots in transit is more beneficial than detrimental, precooling of stone fruits in California is general.

In the absence of definite precooling standards, the term "precooled" has sometimes been applied to fruit where only the top heat is removed and where at the time of shipping the temperature in the center of the packages was between 50° and 60° F. When fruit in the center of packages is cooled to 40° it can be transported for ten days in well iced cars with maximum temperatures of between 40° and 48°.

Fruit cooled to 32° to 34° will carry under a lower temperature during the first few days in transit and, in a well constructed car in good repair and kept well iced, may even arrive at destination slightly colder than if precooled only to 40°. Since, however, the temperature of refrigerator cars at the time of loading is not generally below 45° to 50°, and the ice in the car frequently does not maintain an average air temperature lower than between 40° to 50° , the advantages gained by precooling fruit to 32° to 34° are not always so great as anticipated. Cooling to these temperatures is most effective when the car itself is precooled to a temperature approximating that of the fruit loaded.

Hydrocooling

Hydrocooling is infinitely more rapid than cooling in air and this is now employed commercially with a number of vegetables.

In experimental tests conducted by Federal investigators in the state of Washington, the temperature of individual cherries was reduced from 145 times as fast as packed fruit held in still air at 32° No cracking or other injury was noted from water cooling for seven minutes.

J. R. Tavernetti

inet sterilizer heated by five strip gallon milk cans-6 sterilized, 1 conheaters and using no moisture extrol-were used. Milk was allowed to cept that on the equipment after stand in the cans at room temperawashing. ture for 4 hours after which they

The cabinet has outside dimensions of 50" depth, 38" width and placed in the sterilizer and heated. 66" height, is insulated with three

25

The cans were then removed and inches of mineral wool all around bacteria counts made and compared TABLE I

Temperatures at Various Points in Sterilizer When Loaded with Six 10 ometer \mathbf{T}

creased storage life of lemons sub-Fertilized Leaumes Aid Following Crop **Of Non-legumes**

ered vitality and very much de-

(Continued from page 1) studies will be required in each area. Non-legumes

216-5 The increases of non-legumes such as grasses, cereal hay, and threshed 617-s grain following the fertilized legumes 391-8 have varied from 38% to 107%. In $|_{693}$ addition, many of the fertilized plots continue to give increased growth of 584-1 legumes, as for example, bur clover mixed with the grasses on range lands.

Though a good start has been obtained much remains to be done to cated find the most efficient combination of legumes and of fertilizer practice to secure the maximum benefits for the various areas of the state.

John P. Conrad is Professor of Agronomy and Agronomist in the Experiment Station, Davis.

6	82	86	97	97	84	80	95		ins observati
15	106	115	135	135	99	90	118		were confirm
$\tilde{25}$	129	142	167	167	122	108	145		first isolated
35	154	169	194	192	153	129	172		tion made of
45	178	192	217	217	180	156	192		festations of
50	187	201	226	225	190	167	200	Heat Off	Lack of suf
55	192	205	223	221	199	178	200		diet of the ch
65	189	198	205	199	201	185	180		
75	180	189	192	189	198	187	165		symptoms as
95	171	180	181	176	189	181		Cans removed	and convulsi
*The	rmocoup	ole solde	red in ju	inction o	f botto	m and s	ide on	outside of can.	Par
				TABI	EII				Pantotheni
	Resul	ts of Te	sts for I	Lethal Ef	fect on	Bacteri	a in S	terilizer	to determine
Can	Number			dition of				a Colony Count	this vitamin
	sterilized	ĥ	-					.215	thetic diet.
	sterilized								It was four
	sterilize								a deficiency.
391-	sterilized	d							the diet of t
693—	sterilized	d							
336—sterilized old dented sl. etched no rust									the embryos
584	not ster	ilized							ency of this
and	has a n	not store	ano snor	a of 30 (with th	o contr	-1		prevent a ce
	and has a net storage space of 30 with the control. cubic feet. Temperatures of the air and the								—an inflam
						-		he air and the	the chicks a
	The heaters which have a total cans were taken at various points in							-	production b
connected load of 2500 watts are lo-					the cabinet by thermocouples and				-
cated	l under	a false	bottom	and the	an ordi	inary the	ermom	eter with which	master of al
heat is circulated through a flue the cabinet was equi						ipped.	Tests of cl		
located on the back wall. It is equip-					In tables 1 and 2 are shown the				min factor t
ped with a thermostat which cuts					results of the tests.				growth and
•			tempera		1 Courto	OI VIIC	000000		in chickens a
			-	loes not					
1			the the					Associate Agricul-	Investigati
1		i uiitii	une une	mostat			in the	Experiment Sta-	10-11
is res	80.			1	tion, D	avis.			(Conti

ntothenic Acid

ic acid was investigated e the possible place of in the sought-for syn-

nd that the presence, or of pantothenic acid in the parent hen affected in her eggs. A sufficis vitamin is needed to rtain type of dermatitis mation of the skin-in and is necessary for reby the adults.

Choline

holine proved this vitato be necessary for good normal bone formation and turkeys.

Biotin

ons of biotin established inued on page 4)

Dry Ice

Since trials in using dry ice to retard mold growth on fruit in transit and since its retarding effects upon coloring and softening have been established, interest has been taken in using it as a supplement to refrigeration.

In a test shipment of Bing and Tartarian cherries conducted in 1941, five pairs of test cars, one of each pair containing dry ice, were shipped to the New York market. The fruit from each was sold in the auction and size for size the price paid for the fruit in the dry ice cars ranged from 10c to 49c per box more than the fruit from the untreated cars.

Possibly the commercial use of dry ice in conjunction with good precooling, may make possible the shipment of a better quality product.

F. W. Allen is Professor of Pomol-ogy and Pomologist in the Experiment Station, Davis.