Implications for 1978

Unless current trends change, a continued grape surplus is likely through 1978. A projection of California grape acreage and potential crush supply in 1978 is shown in table 2. The projection is based on assumptions set forth in the table concerning removals, yields and crush allocation. They also assume that 1975 estimated planting intentions are realized. The crush resulting from these assumptions is 2.78 million tons. It would be less if raisin and table variety allocations were reduced to some basic level of utilization for crush purposes. Preference for these varieties and their inclusion in various cooperatives suggests they will continue to be important parts of the total crush.

Balancing this potential supply against projected demand is difficult. The Wine Advisory Board is developing estimates of the fresh grape equivalent of the shipment (more technically, the disappearance) of grape crush products including wines, brandy, concentrate, high proof and other products. The calculations are based on changes in the inventory of various crush products and on total grape crush. Several inventory change figures are unavailable to the public at the present time.

The Wine Advisory Board, in testimony before the International Trade Commission in April 1975, estimated the fresh grape equivalent of crush product shipments to be about 1.96 million tons, a figure which has recently been increasing at the rate of about 50,000 tons per year.

Table 3 shows the results of estimating the fresh grape equivalent of wine and brandy shipments based on public shipment records. It will differ from Wine Advisory Board calculations by the amount of other crush product shipments and the error in estimating the non-grape components of wine shipments. Of principal interest in table 3 is the change in the fresh grape equivalent of wine and brandy shipments between 1974 and 1978 based on a projection of current growth rates. The change amounts to 160,000 tons, or 40,000 tons annually. The change in potential crush supply from the very high level in 1974 to normal level of 1978 is 501,000 tons, also shown in table 3.

The result of these assumptions projected forward to 1978 is a supply excess of 341,000 tons. As in the short-run projection, different answers can be obtained with different assumptions. However, normal fiddling with assumptions will not materially alter the prospects for a significant surplus.

Most critical to the projections are the wine and brandy market growth-rate assumptions. If market demand can be stimulated to growth rates achieved several years ago, then the surplus will tend to disappear. Prospects for stable wine prices, aggressive advertising, a resumption of consumer income increase and a continuation of wine age population growth all hold hope for expanded market demand.

What can be done

The wine and grape industry faces some important marketing problems over the next several years. It is obvious that grape growers will be at the nexus of these adjustments. If problems are to be more accurately defined and alternative courses of action identified, then growers must take the initiative.

Two courses of action are apparent. One is to maintain existing industry practices and allow the supply-demand imbalance to work itself out over time. The other is to undertake group action to influence the readjustment process in a manner more favorable to growers. Such action could be directed toward market expansion, establishment of industry wide quality standards, and legislative remedies. Currently no single group represents the views of California wine grape growers, although one was in the organizational stage in early 1975.

A comprehensive look at the 1975 crush situation is needed. Growers can assume leadership in forming a committee involving growers, vintners, raisin shippers and fresh market shippers to study this situation. An important contribution of the committee can be identification of what can and what cannot be done to ease the expected surplus of grapes relative to storage capacity. For example, what combinations of cultural techniques and storage decisions represent feasible alternatives to current practices. Additionally, the pooling of industry knowledge would help in dampening uninformed speculation about potential outcomes.

In the longer run, continued cooperation among growers is essential to assure a healthy growth for the entire wine and grape industry. The exact form of the cooperation is up to the growers. But it is clear that if they do not take the initiative in their own behalf, no one else will.

Kirby S. Holland is Economist, Cooperative Extension Service, and Giannini Foundation of Agricultural Economics, University of California at Berkeley.

RESEARCH BRIEFS

Short Reports on Current Research in Agricultural Sciences

AVOCADO STUMP CONTROL

As avocado orchards mature and trees are thinned, stumps of cut trees must be controlled to prevent resprouting. A field trial was initiated using eight chemical treatments replicated six times. Ammonium X gave 100%, control, and a 2.5% solution of sodium naphthalene-acetic acid gave 84% control.

—B. W. Lee, Cooperative Extension Farm Advisor (Ventura County)

CITRUS THrips CONTROL

A three-year study has shown that a yearly program of a prebloom spray, followed by a petalfall spray of several insecticides, can be used effectively for the controlled lepidopteran larvae and citrus thrips to prevent fruit scarring. There is also an indication from fruit index data that trees sprayed at petalfall with superior thrips control treatments such as Carzol, Biothion, Orthene, and Cyanogen produced more fruit than untreated trees or trees sprayed with less effective sprays of Guthion, parathion, amonite, phosphamidon, PhosVel, Thripox + sugar, or Rynoton + sugar. Carzol unique in that trees treated with this compound at prebloom or at petalfall are most likely to develop abnormally high populations of brown soft scale, apparently through an adverse effect on its principal parasite, Metaphycus Zateolus.


CITRUS THRIPS CONTROL

A three-year study has shown that a yearly program of a prebloom spray, followed by a petalfall spray of several insecticides, can be used effectively for the controlled lepidopteran larvae and citrus thrips to prevent fruit scarring. There is also an indication from fruit index data that trees sprayed at petalfall with superior thrips control treatments such as Carzol, Biothion, Orthene, and Cyanogen produced more fruit than untreated trees or trees sprayed with less effective sprays of Guthion, parathion, amonite, phosphamidon, PhosVel, Thripox + sugar, or Rynoton + sugar. Carzol unique in that trees treated with this compound at prebloom or at petalfall are most likely to develop abnormally high populations of brown soft scale, apparently through an adverse effect on its principal parasite, Metaphycus Zateolus.