Trade Center air laden with very fine particles, DELTA scientists find

In the most thorough analysis yet of the dust and smoke blown through lower Manhattan after the collapse of the World Trade Center, UC Davis scientists identified unprecedented clouds of very fine particles, which can be riskier to human health than larger, coarse particles.

“The air from Ground Zero was laden with extremely high amounts of very small particles, probably associated with high temperatures in the underground debris pile,” says Thomas Cahill, UC Davis professor emeritus of physics and atmospheric sciences. “Normally, in New York City and in most of the world, situations like this just don’t exist.”

Cahill heads the UC Davis DELTA Group (Detection and Evaluation of Long-range Transport of Aerosols), a collaborative association of aerosol scientists at several universities and national laboratories, which monitors atmospheric conditions associated with global warming, weather, disasters and other events.

The DELTA Group collected air samples at the request of the U.S. Department of Energy from Oct. 2 through mid-December, with a rooftop air monitor about 1 mile north-northeast of Ground Zero.

The results for October were released in early February, and Cahill testified at an investigative hearing before the national ombuds-person for the U.S. Environmental Protection Agency on Feb. 23.

The samples were collected continuously in eight separate-size modes from coarse (12 micrometers diameter) to ultra-fine (0.09 micrometers diameter), and were analyzed for dozens of substances that are likely to be associated with burning office buildings.

Coarse particles are typically filtered by the nose or coughed out of the throat and upper lungs, but they can irritate the mucous membranes and aggravate pre-existing breathing problems such as asthma. Very fine particles, however, can travel deep into human lungs, and are typically removed from the lungs through the bloodstream and heart, increasing the possibility of more serious health impacts.

In the largest spike, the DELTA Group analysis found 58 micrograms per cubic meter of very fine particles in one 45-minute period — “an extremely high peak,” Cahill says. “Even on the worst air days in Beijing, downwind from coal-fired power plants, or in the Kuwaiti oil fires, we did not see these levels of very fine particulates.”

Carbon dioxide hampers nitrate incorporation by plants

Nitrate fertilizer is not nearly as efficient as ammonium fertilizer when atmospheric carbon dioxide levels are unusually high, according to a study by two UC Davis professors.

Rising levels of atmospheric carbon dioxide — associated with global warming — can interfere with a plant’s ability to incorporate nitrogen, Arnold Bloom and David Smart reported in the Feb. 5 Proceedings of the National Academy of Sciences. Carbon dioxide concentrations have increased by an estimated 30% during the past two centuries and are likely to double during the next century.

Farmers and gardeners commonly apply nitrogen-rich fertilizers to their crops in order to enhance yields. The UC Davis scientists studied...