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ment. In-field vision detection (a nonde-
structive measurement) for site-specific 
crop management has a higher resolu-
tion (“centimeter scale” accuracy) than 
satellite or aerial imagery, which typi-
cally have 3.28-foot to 32.8-foot (1-meter 
to 10-meter) scale accuracy. In-field 
vision systems may also allow descrip-
tions of weed species.

Discrete sampling has been the most 
common method to identify and map 
weeds but it is time consuming, and 
small grid sizes are not feasible for 
mapping large areas (Rew and Cousens 
2001). Furthermore, quadrant size and 
sampling intensity are totally arbitrary, 
and large areas of the field can remain 
unsampled.

Manual surveys of weed locations 
in fields were described by Webster 
and Cardina (1997), who mapped and 
assessed accuracy in simulated weed 
patches of 16.4, 164.1 and 1,641 square 
feet (5, 50 and 500 square meters) us-
ing a backpack fitted with a global 
positioning system (GPS) receiver and 
antennae. Errors associated with area 
measurements were lowest with the 
1,641-square-foot (500-square-meter) 
area (3% to 6%) and largest in the 16.4-
square-foot (5-square-meter) area (14% 

to 32%). The authors estimated that the 
25 weed patches with the largest areas 
would require 21 minutes of continuous 
data collection (probably not including 
post-processing time for management 
decisions). Navigation assessments 
upon returning to previously mapped 
locations indicated that 27% of the origi-
nal quadrants were found, and of those, 
73% were found within 3 feet (1 meter) 
of the original location.

Van Wychen et al. (2002) discussed 
a continuous mapping system using an 
all-terrain vehicle mounted with a dif-
ferential GPS receiver (DGPS), computer 
and human crop consultant. Maps were 
created by traversing the perimeter of 
patches, and transects across the field 
were driven every 30.2 feet (9.2 meters). 
The discrete method of developing a 
wild-oat seedling map entailed walking 
parallel transects in specified grid pat-
terns and counting wild-oat density in 
3.1-square-foot (0.29-square-meter) rec-
tangular grids and georeference locations 
with a GPS receiver and computer. The 
results found that continuously sampled 
weed-seedling maps with weeds identi-
fied as present or absent were cost effec-
tive if the accuracy in locating patches 
was greater than 70%.
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We describe a method for locating 
and identifying weeds, using cotton 
as the example crop. The system used 
a digital video camera for capturing 
images along the crop seedline while 
simultaneously capturing data from 
a global positioning system (GPS) 
receiver. Image time-stamps were 
synchronized with GPS time so that 
GPS coordinates could be overlaid 
onto selected images. The video sys-
tem continuously mapped nutsedge 
weeds and crop plants within the 
seedline, allowing weed locations to 
be described with centimeter-scale 
accuracy when using a real-time kine-
matic GPS (RTK-GPS). This system may 
be used to develop maps of weed and 
crop populations as part of precision 
crop-management decisions.

Knowing where recurrent weeds or 
insect infestations occur over mul-

tiple growing seasons can facilitate the 
selective application of herbicides, pesti-
cides and soil treatments. This informa-
tion can be economically beneficial to 
growers because it allows areas at high 
risk for weed infestation to be treated 
prior to weed emergence while areas be-
low an economic threshold can remain 
untreated. There is an ongoing need to 
reduce chemical applications, due to 
continued concern among regulators 
and economic constraints on growers. 
The methods described in this report are 
one step in that direction.

A large amount of research has been 
conducted on remote sensing with 
aerial and satellite imagery for yield 
and weed mapping in agriculture. GIS/
ArcView/ArcInfo systems continue to 
be widely used for decision-making in 
precision agriculture and crop manage-

Fig. 1. Toolbar-mounted weed-mapping and location system. A tractor-mounted toolbar 
with a camera enclosure and GPS antenna were used to acquire images and location data.
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The system had an overall accuracy of about 85%, similar  
to the weed-control accuracy of a typical hand-hoeing crew.

Manh et al. (2001) indicated that 
weed identification continues to be 
difficult due to the complexity of am-
bient outside light and variability in 
plant morphology (form and struc-
ture). Their research described weed 
leaf segmentation (the identification of 
individual leaves) using deformable 
templates (a machine-vision technique 
where the leaf pattern or template is 
modified or deformed to match the 
unique shape of a specific leaf). The 
approach applied prior knowledge to 
the object searched and improved the 
weed segmentation stage. Although the 
study considered only one weed spe-
cies, partially occluded (hidden) leaves 
were identified correctly. Additional 
work by Tang et al. (2001) described 
a sensor-based, high-resolution, real-
time system for mapping in-field vari-
ability in weed load. Cameras were 
suspended (without shading) 10.5 feet 
(3.2 meters) above the soil surface, but 
results found that variability in out-
door lighting resulted in variations in 
camera performance.

Research at UC Davis developed a 
weed-control system for selective herbi-
cide applications using machine vision 
(Lee et al. 1999). The system was towed 
by a tractor traveling 0.75 miles per 
hour (mph; 1.2 kilometers per hour) and 
was able to process images within 0.344 
seconds. In field tests 24.2% of tomatoes 
were incorrectly categorized as weeds 
and sprayed, while 52.4% of weeds 
were not sprayed. Lamm et al. (2002) 
continued this work in cotton and de-
veloped a nonmorphological machine-
vision technique that could discriminate 
between partially occluded narrow-leaf 
and broadleaf plants. The system identi-
fied and sprayed 88.8% of the weeds 
during in-row seedline image capture 
and analysis; these results are compa-
rable to hand-hoeing, which eliminates 
only 65% to 85% of weeds.

The machine-vision systems de-
scribed in the previous studies may 
be prohibitively expensive if used for 
large-scale weed mapping or in con-
junction with robotic spraying. In a re-

cent study, Gliever and Slaughter (2001) 
developed a cost-effective method for 
successfully identifying and mapping 
weeds within crops. The software used 
an artificial neural network with a dem-
onstrated accuracy of 92% for weed 
recognition.

Research on discriminating between 
weeds and crops under ambient light 
conditions continues to be a challenge. 
Recent work at UC Davis resulted in 
a mapping system that can be used to 
identify weed densities at specific geo-
graphic locations. The system links GPS 
coordinates to images of the crop seed-
line for future management analysis 
and decision-making. This type of map-
ping system can be a feature in current 
software used in precision agriculture. 
Automated GPS mapping of images 
linked to latitude and longitude is a 
new method for inspecting remote areas 
for weed and insect problems during 
the early stage of crop growth.

The objective of this study was to 
acquire GPS coordinates simultane-
ously with digital images of weeds in 
early-season cotton and to develop an 
automated routine to identify and map 
weed and crop densities for crop man-
agement.

Weed mapping in a cotton field

The crop rotation schedule in the test 
field prevented multiyear data collec-
tion for this study. Multiyear images of 
the same fields would allow for verifi-
cation of returning or localized weed 
infestations. Although this was not pos-
sible, the system design and concept for 
future software use are still valid. Data 
from 2002 is used here to show proof of 
the concept.

The test site was on a commercial 
farm in the San Joaquin Valley, outside 
of Corcoran. Cotton was planted in 
April 2002. Images of early-season cot-
ton were acquired approximately 10 
days after planting. Yellow nutsedge 
(Cyperus esculentus L.) was the only 
weed species present in the test site. 
Two test plots (S3 and R14) were stud-
ied. The S3 test plot was 0.74 acre  

(0.3 hectare) with approximately 280-
foot (85-meter) row lengths and 18 rows 
on 3.3-foot (1-meter) spacings; the R14 
test plot was 0.35 acre (0.14 hectare) 
with 150-foot (45-meter) row lengths 
and 17 rows on 3.3-foot (1-meter) spac-
ings. Rows for both test plots were 
aligned on an ENE-WSW line. These 
plots were selected because these 
fields had a history of patchy weed 
populations with weed-free areas, as 
well as areas with a high percentage of 
weed cover.

The GPS antenna was located along 
the optical axis of the digital camera 
mounted on a tractor-drawn toolbar 
(Model DCR-TRV900, 3 CCD, Sony). 
The camera was set inside a sheet-metal 
enclosure that prevented sunlight from 
entering the image acquisition area, and 
diffuse artificial lighting was provided 
(Lamm et al. 2002). The camera viewed 
a 6-inch-by-4-inch region along the 
seedline and was equipped with remov-
able digital videotape (miniDV format, 
60-minute capacity). Continuous digital 
video of the seedline was collected in 
the camera’s progressive scan mode to 
allow the full vertical resolution to be 
utilized while collecting images from a 
moving vehicle. Field location (latitude 
and longitude) and ground speed of the 
vehicle were monitored using a CASE 
AFS Universal Receiver (Model SB2400 
with fast update option, DGPS U.S. 
Coast Guard beacon signal and NMEA-
0183 data output strings) interfaced 
with a portable computer (Inspiron 
3800/Celeron 500, Dell Computer) for 
GPS data storage. Data was captured 
from the GPS receiver at 10 Hz via an 
RS-232 serial line.

Video and coordinate data were 
simultaneously collected while travel-
ing along the seedline of the crop at an 
average speed of 1.57 mph. GPS time 
was synchronized with the digital vid-
eotape time-code by filming GPS time 
on the receiver display at the beginning 
of each row. The NMEA-0183 GPS data 
string was post-processed; latitude and 
longitude were transformed to x, y and 
z metric coordinates using the coordi-
nate conversion equations presented by 
Dana (1999) for distance traveled. The 
coordinate data was processed for each 
approximately 1.64 feet (0.5 meters) of 
forward travel and the corresponding 
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time-stamps (from the NMEA-0183 
data string) annotated for that travel 
distance. This data was used to overlay 
coordinates on each video frame repre-
senting 1.64 feet (0.5 meters) of forward 
travel. By counting through the frames 
based on GPS time downloaded from 
the GPS receiver, the video frame for 
each GPS coordinate could be identified.

Digital video was transferred from 
tape and stored in AVI digital video 
format on the computer hard disk using 
Adobe Premiere (v. 6, Adobe Systems) 
software and an IEEE-1394 communica-
tion line. A Visual C++ (v. 6.0, Microsoft) 
program was used to extract the video 
frame corresponding to each GPS coor-
dinate and to label each image with its 
GPS coordinate. A total of 4,962 video 
frames (3,366 for S3 and 1,596 for R14) 
were extracted from the two test plots. 
An additional C++ program was used 
to automatically inspect each image for 
the presence of cotton and nutsedge 
plants using Gliever and Slaughter’s 
(2001) method, in which the image is 

subdivided into 128 grid cells, each 
corresponding to a 0.2-square-inch 
(1.2-square-centimeter) region of the 
seedline.

The percentage weed cover or cot-
ton density at each GPS coordinate was 
defined as the percentage of grid cells 
containing nutsedge or cotton leaves, re-
spectively, in the corresponding image. 
Cells that contained both cotton and 
nutsedge leaves were classified as cot-
ton. Fifty video frames were randomly 
selected for manual validation of the ac-
curacy of the image processing method. 
A percentage weed-cover or cotton-
density contour map was produced for 
each plot using the contour procedure 
in commercial software (SAS/GRAPH, 
SAS Institute, 1999).

Weed map verification

The mean percentage of nutsedge 
cover, or number of grid cells in which 
nutsedge leaves occurred was 5.8% and 
8.0% in the S3 and R14 plots, respectively, 
with standard deviations of 5.5% and 

6.0% (fig. 2). These maps show the vari-
ability in percentage weed cover across 
the plots with patches of high weed 
densities observed toward the centers 
of both. The 4,962 images analyzed to 
produce these maps represent a total 
land area of 800 square feet (74.4 square 
meters) distributed over 1.64-foot (0.5 
meter) intervals along the seedlines in 
1.1 acre (0.44 hectare) of a commercial 
cotton farm.

Seventy-four percent of the 221 nut-
sedge leaves present in the 50 valida-
tion images were correctly identified. 
The primary causes of misclassification 
of nutsedge leaves (as cotton) were 
occlusion and the decision to classify 
grid cells containing both nutsedge and 
cotton as cotton (fig. 3). The original 
purpose of the weed-map algorithm 
developed by Gliever and Slaughter 
(2001) was to create a precision spray 
map. In this application, grid cells con-
taining both cotton and weed leaves 
were mapped as cotton in order to 
avoid spraying the cotton plants. The 

Fig. 2. Percentage weed-cover contour map of plots (A) S3 and (B) 
R14, developed by the automated location and identification pro-
cess. Source: Downey et al. 2003.

Fig. 3. (A) A cotton plant partially occluded by a nutsedge 
leaf; (B) weed map of (A) where grid cells containing nut-
sedge leaves are marked with an “X.” Note: A thin piece 
of crop residue was mistakenly mapped as a weed due to 
an error in the color classifier. Source: Lamm 2000.
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secondary cause of misclassifying nut-
sedge as soil was the low resolution 
of sampling points (12 points per 0.2-
square-inch [1.2-square-centimeter] grid 
cell) in the image, which caused small, 
thin leaves to be missed. These results 
are slightly lower than the weed rec-
ognition rate observed by Gliever and 
Slaughter (2001) or Lamm et al. (2002).

Ninety-two percent of the cotton 
leaves present in the 50 validation im-
ages were correctly identified. The 
primary cause for misclassifying cotton 
leaves as weeds or soil was brown tis-
sue damage on the leaf. Brown spots 
on a leaf were classified as soil, and 
depending upon the quantity and size 
of the spots, the resulting visual pattern 
was frequently classified as a weed. 
These results are comparable to those 
observed by Gliever and Slaughter 
(2001) and better than those observed 
by Lamm et al. (2002). The overall ac-
curacy of the system was about 85%, 
which was comparable to that observed 
by Lamm et al. (2002) and similar to the 
65% to 85% accuracy of a typical hand-
hoeing crew (Vargas et al. 1996).

When implemented on a computer 
with a 1.7 GHz processor (Intel Pentium 
4), the weed-map algorithm developed 
by Gliever and Slaughter (2001) could 
map the weeds in a 320 x 240 pixel im-
age at a rate of 10 frames per second. 
While the post-processing of the GPS 
data and the conversion of the digital 
video to a format accessible to the image 
processor required manual interven-
tion, the creation of the weed maps 
themselves was completely automated. 
This represents a dramatic labor sav-
ings when compared to traditional 
methods of weed mapping. In addition, 
the manual tasks are primarily associ-
ated with the initial setup and are not 
dependent upon the number of images 
analyzed. An automated system of this 

type can provide a significantly more 
detailed description of the percentage 
weed cover in a field. In this study, the 
images were sampled every 1.64 feet 
(0.5 meters) of seedline due to the ac-
curacy of the DGPS system. However, 
the system is capable of analyzing every 
frame and making a continuous map of 
the entire field.

While this paper focused on weed 
mapping, the system could easily pro-
duce a map of crop density at the same 
time. The weed and crop maps could be 
utilized as layers in a GIS database and 
incorporated in a comprehensive assess-
ment of crop yield, and to develop site-
specific input application maps.

Mapping as accurate as hoeing 

An automatic weed-mapping loca-
tion and identification system was 
developed and tested in a commercial 
cotton field. The system used a video 
camera, image-processing system and 
DGPS data-logger to map nutsedge 
in cotton. The system had an overall 
accuracy of about 85%, similar to the 
weed-control accuracy of a typical 
hand-hoeing crew. 

The system demonstrates the tech-
nical feasibility of automated weed-
mapping. With a processing rate of 10 
images per second, the potential for 
labor savings compared with conven-
tional weed-mapping methods is signif-
icant. The technique could be combined 
with farming operations — including 
planting, cultivating or chemical ap-
plications (such as fertilization or insec-
ticide sprays) — further reducing labor, 
fuel and equipment (such as tractor) 
costs. An automated, low-cost, weed 
mapping system would allow growers 
to track weeds throughout the season 
to provide feedback on the efficacy of 
weed management programs and in 
GPS yield map analysis. The authors 
acknowledge that the current economic 
cost of computer vision equipment 
and practical feasibility of using video 
cameras in ground-based agricultural 
field operations continues to be a chal-
lenge for future implementation. Also, 
future research is needed to expand the 
scope of weed identification algorithms, 

for example to distinguish differences 
between broadleaf weeds and broadleaf 
crops, in addition to a wider range of 
weed species.
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A weed scientist manually counts weeds 
inside a frame. Weed mapping using ma-
chine vision and a global positioning sys-
tem is much faster and just as accurate.


