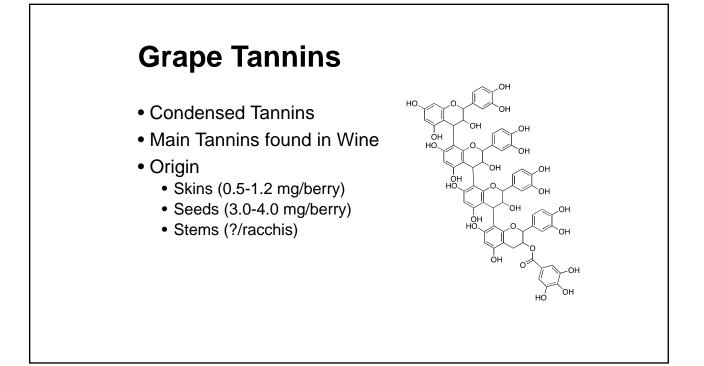
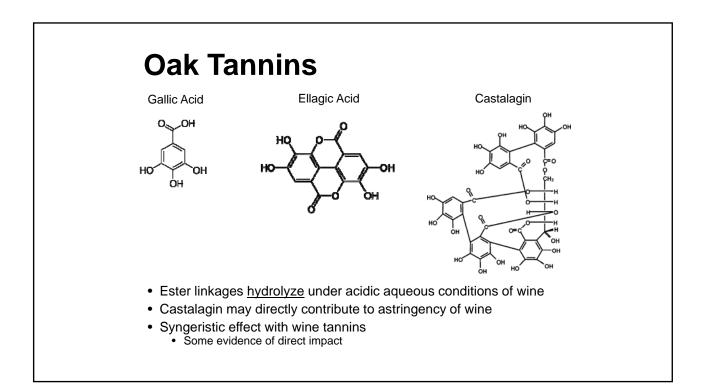
The Impact of Exogenous Tannin* & EXTENDED MACERATION in Red Wine Production

Jim Harbertson Washington State University Viticulture and Enology Program

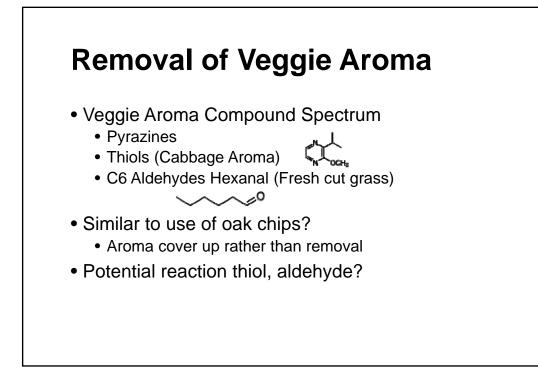

Red Winemaking Overview


- Fermentation Temperature
- Skin and seed contact time
 - Extraction Techniques
 - Extended Maceration
 - Prefermentation Juice Runoff
 - Cold Soak
 - Must or Grape Freezing
 - Thermovinification
 - Carbonic Maceration
 - Enzyme Additions

- Oak Aging
 - Oak Alternatives
 - Micro-oxidation
- Amelioration
 - Tannin Additions

Tannins

- Importance
 - Sensory Attributes
 - Astringent
 - Antioxidant
 - Formation of Polymeric Pigments
- Condensed and Hydrolysable Tannins
 - Grapes contain Condensed in Skin, Seed, Stem
 - Oak Barrels contain Hydrolysable and Condensed (primarily Hydrolysable)
- Oenotannins
 - Extract dried into powder
 - Grapes, Barrels, Exotic Trees, Oak Galls

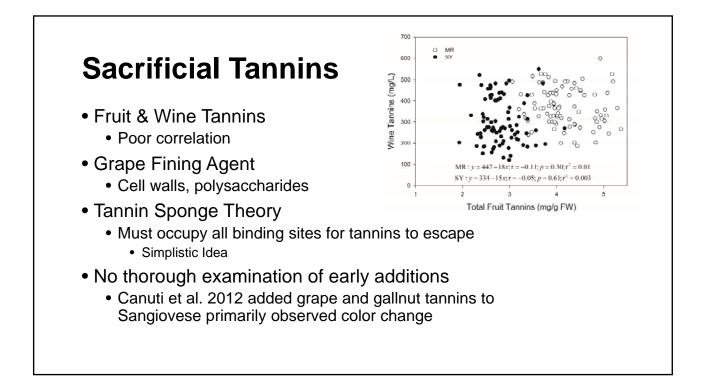


Oenological Tannins

- Removal of Protein Haze
- Sulfide Removal
- Removal of Veggie Aroma
- Deactivation of Laccase Enzyme
- Sacrificial Tannins
- Color Stabilization
- Astringency Modification

Protein Haze Removal

- Addition of tannin to remove proteins
 - Primarily used for protein stabilizing beer
 - Potential use for white wine production
 - Condensed tannins favored
 - Cross-linking mechanism linear relationship
 - Potential added bitterness or aroma
- Research Scale Immobilized Tannins
 - Reaction with metals and proteins



Removal of Sulfur Aroma

- Similar to Formation of GRP
 - PPO oxidized Caftaric Acid
 - GSH reacts with Quinone
- Oxidized Phenolic (Electrophile for Nucleophile (–SH))
- Requires Oxidized Phenolic
 - Role of Metals and Sulfur Dioxide
- No Evidence but seems possible

Laccase

- Tannins are well known enzyme inhibiters · Goldstein and Swain 1965
- Tannin Addition Friend or Foe?
- Impurity: monomeric phenolics (substrates for enzyme)
- Compete with Laccase for O₂?
 - Laccase affinity for oxygen is 0.16 -0.32 mg/L
 - Solubility of O₂ in water
 0°C 15 mg/L O₂
 10°C 11.4 mg/L O₂
 20°C 9.1 mg/L O₂
 30°C 7.7 mg/L O₂
- No evidence tannin addition actually works
- PPO?

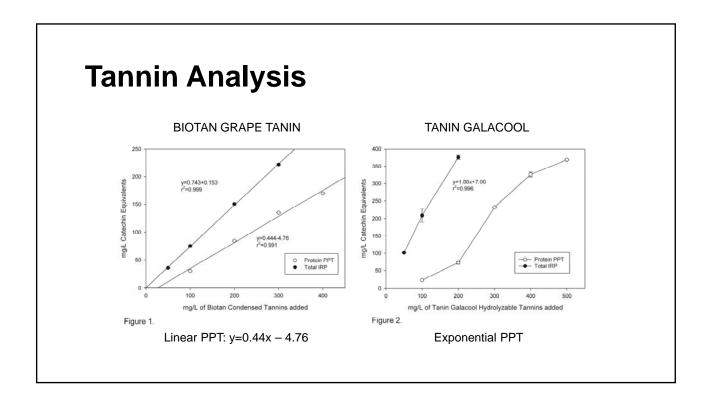
Polymeric Pigments

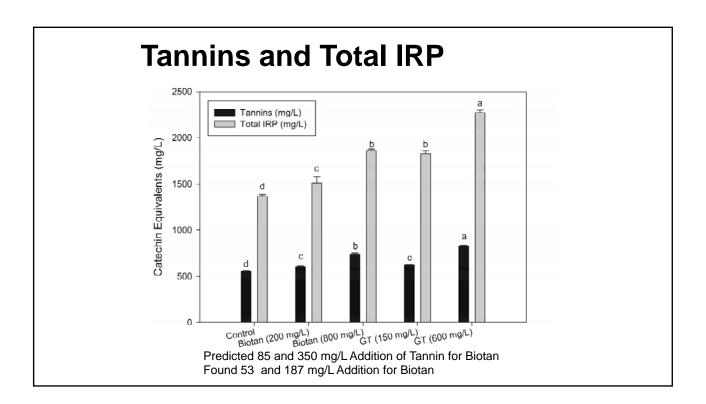
- Heterogeneous mixture
 - HSO₃⁻ resistance (partial)
 - pH color shift small
 - Possible reduction in astringency
- Anthocyanins react with multiple classes
 - Aldehydes
 - Keto-Acids (Pyruvate)
 - Tannins
- Some Data Supports Addition of Tannins
 - Primarily Excessive Additions
 - Small Additions provide temporary increase
 - Copigmentation or oxidation prevention?

Astringency

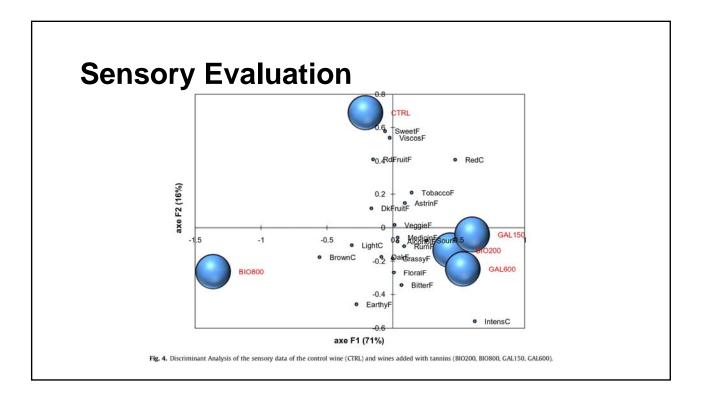
- Impact depends on target wine
 - Original amount of tannins
 - 100 mg/L added to 100 mg/L: 2-Fold Increase
 - 100 mg/L added to 1000 mg/L: 10% increase
- Additions of 200 mg/L 400 mg/L
 - No improvement
 - Parker et al. 2007 (200 mg/L)
 - Bautista-Ortin et al. 2007 (400 mg/L)
- Change in Aroma Observed not Astringency
 - Parker et al. 2007
 - Diaz-Plaza et al. 2002

Purity: OIV CODEX


- Water extracts that are dried
 Powder must be 98% water soluble
- International Oenological Codex
 - COEI-1-TANINS : 2009
- Not the most stringent set of rules
- Estimation of Total Phenolics in powder must be greater than 65% (gallic acid)
- Condensed tannins use (DMACH) 10 mg/g
- Ellagitannins use nitrous acid 20 mg/g (2%)
- Limits on yellow A_{420nm} and red color A_{520nm}
- Specific Definitions: Grape = 50 mg/g Catechin (5%)


Purity: Literature

- Discrepancies in labeling and content
- Lack of relationship between total phenolics and tannins
 - Obreque-Slier et al. 2009
- 12-48% of Total IRP is PPT (CE)
 - Harbertson et al. 2012
 - Keulder 2005 thesis
- Better purity than OIV requirements

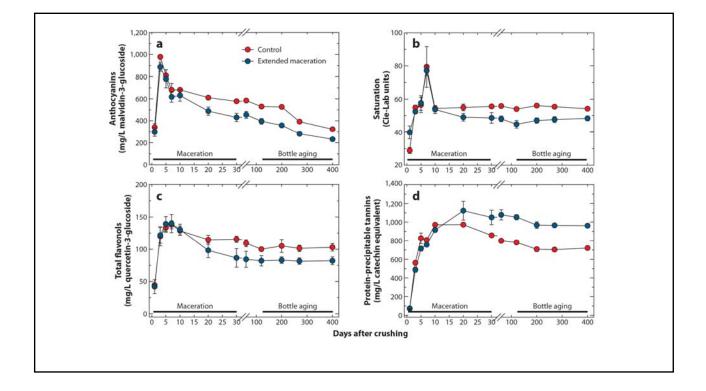

Experimental

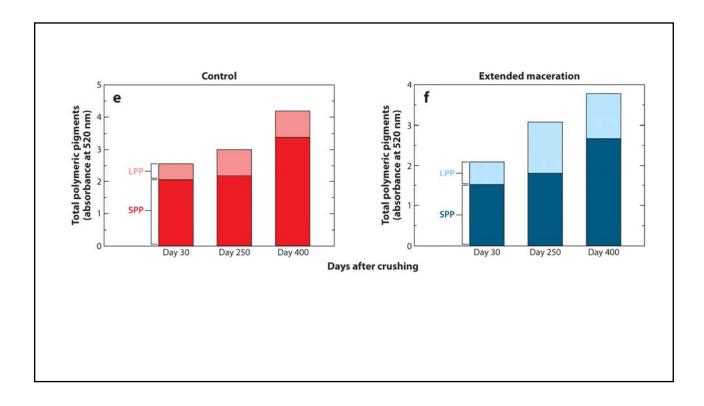
- Cabernet Sauvignon Wine from Columbia Valley WA
- Biotan by Laffort (Tanin VR Grape)
 - Grape Tannin: Information Confusing listed in units of non-flavonoid (coumaric acid)
 - Total phenolics > 65%
- Tanin Galacool by Laffort
 - Chestnut gall tannin
 - Hydrolysable tannins
 - Total phenolics > 80%
 - Used for deactivation of Laccase
- US: 150 mg/L Tannic Acid Addition is legal

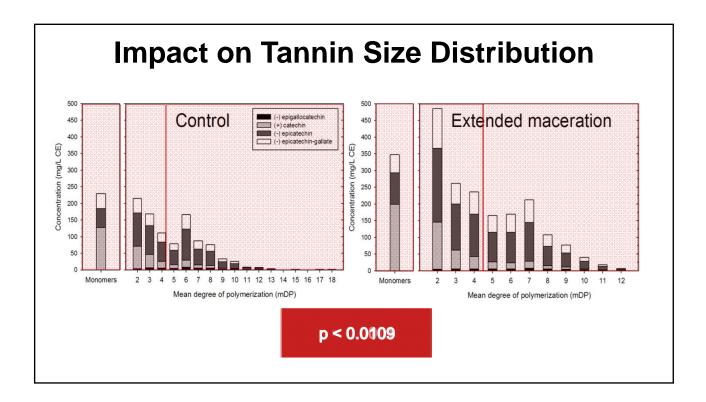
hocyanins and Polymeric Pigments							
Treatment	Anthocyanins (mg/L)	SPP (A _{520nm})	LPP (A _{520nm})				
Control	330±3.5	1.75±0.06	1.99±0.04 ab				
+ Biotan 200 mg/L	319±2.5	1.71±0.03	1.93±0.02 c				
+ Biotan 800 mg/L	321±4.5	1.77±0.06	2.15±0.06 ab				
+ GT 150 mg/L	322±3.5	1.71±0.02	2.03±0.08 abc				
+ GT 600 mg/L	324±9.0	1.66±0.05	2.21±0.02 a				

Conclusions

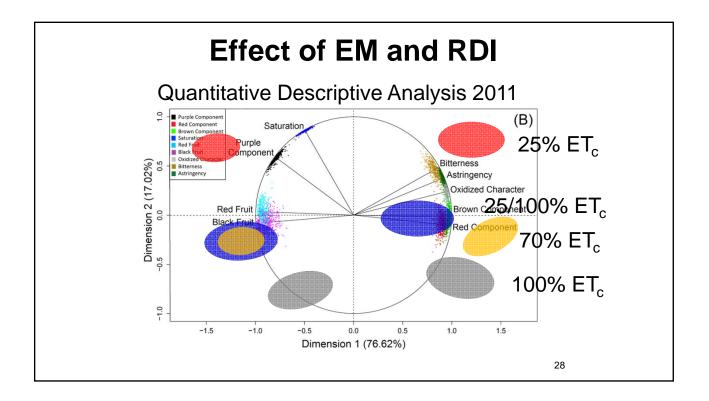
- Significant Tannin, LPP and Total IRP impacts
- Sensory Evaluation
 - Tannin Addition Wines Characterized
 - Primarily Negative Attributes
 - Brown Color, Bitter Flavor and Earthy Aroma
 - BIOTAN 800 mg/L most Earthy
 - Bitterness Change consistent with greater Total IRP
 - Lower concentration additions had no detrimental impacts but small improvement in phenolics


Comments

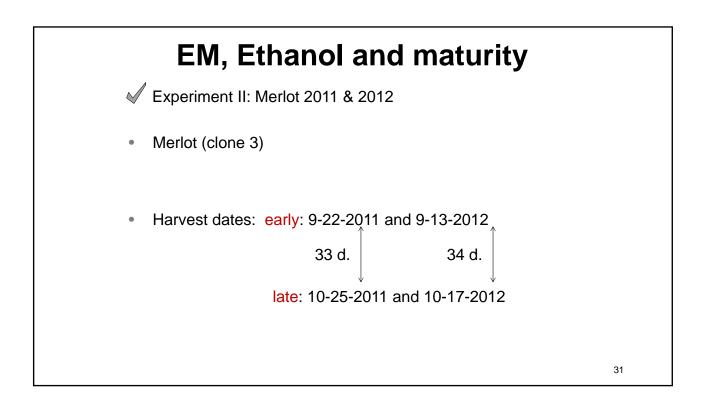

- Purity Needs to Improve
- Standard should be the same
 - Epicatechin or Catechin Eq. for Condensed Tannins
 - Gallic Acid for Hydrolysable Tannins
 - Use of Tannic Acid is confusing
 Mixture of different compounds
- Legal amount allowable needs to change
- Many use tannins as flavorant
 - They come with "friends"
 - Threshold for odorants ng/L, μg/L

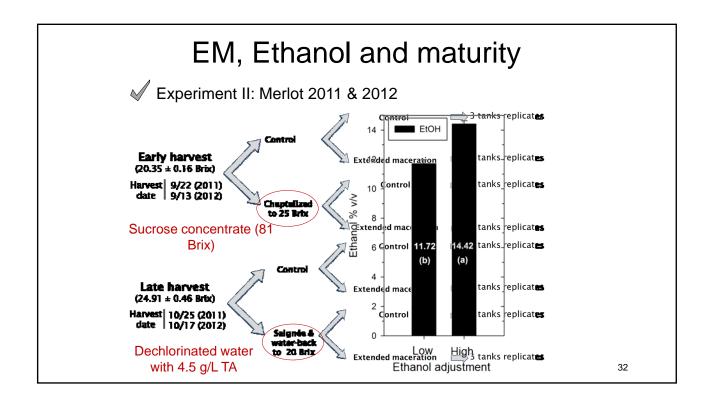

- New studies utilizing QTOF to evaluate all of the compounds that are actually present in tannin additions via GC and LC
- Nutritional Facts and Ingredient Listing on wines will be necessary soon
- Consumers will begin asking why things were added to their drink.
- What will wineries want to say?
 - All natural ingredients?
 - Magic?

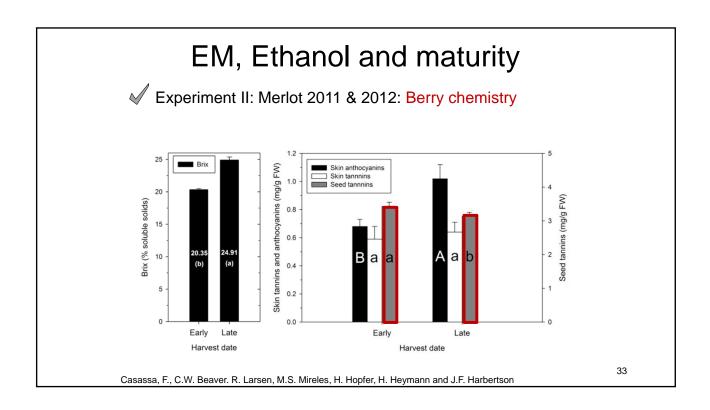
Extended Maceration

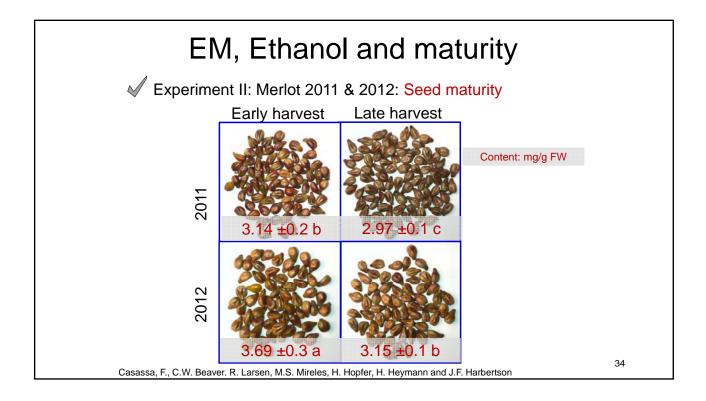

- Longer period of skin/seed contact (10-30 days)
 - We have ongoing experiment at 240 days
- Increases seed tannin content in wine
 - Increases in both bitterness and astringency
 - Change in amount and size of tannins
- Increases polymeric pigment
 - Loss of anthocyanins
 - Primarily due to increase in tannins
 - · Wines tend to be less saturated, more brick red
- Risk of Oxidation
 - Use heavy inert gases (CO₂, Ar₂)


	Rayleigh distribution		Rice distribution		Weibull (3P) / Johnson SB	
Treatment	Distribution parameters	Summary statistics	Distribution parameters	Summary statistics	Distribution parameters	Summary statistic
Control	s=3.9063; GOF=0.1351	Mode=3.90; Mean=4.89; Variance=6.54; Std.Dev.=2.55; Skewness=0.63; Kurtosis=0.24	n=0.0022; s=3.9063; GOF=0.1351	Mean=4.89; Variance=6.54; Std.Dev.=2.55	a=0.8373; b=3.0022; g=2.0; GOF=0.1354	Mode=2.00; Mean=5.29; Variance=16.57; Std.Dev.=3.95; Skewness=2.62; Kurtosis=10.89
EMª	s=3.6977; GOF=0.1404	Mode=3.69; Mean=4.63; Variance=5.86; Std.Dev.=2.42; Skewness=0.63; Kurtosis=0.24	n=1.1459; s=3.6131; GOF=0.1408	Mean=4.64; Variance=5.87; Std.Dev.=2.42	g=0.68264; d=0.7324; l=10.35; x=1.1803; GOF=0.1409	NA ^b

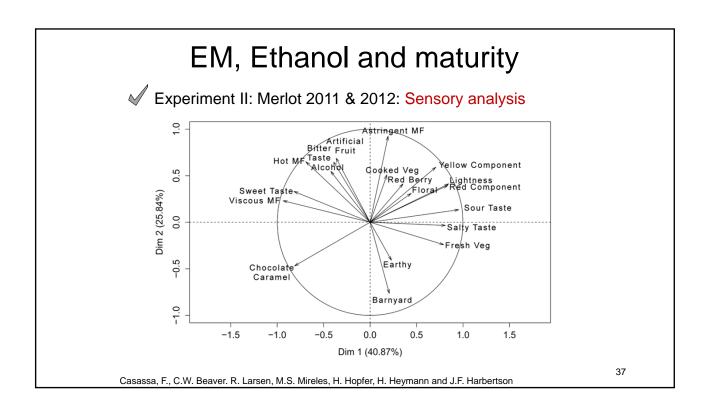

How does ripening impact seed tannin extraction?

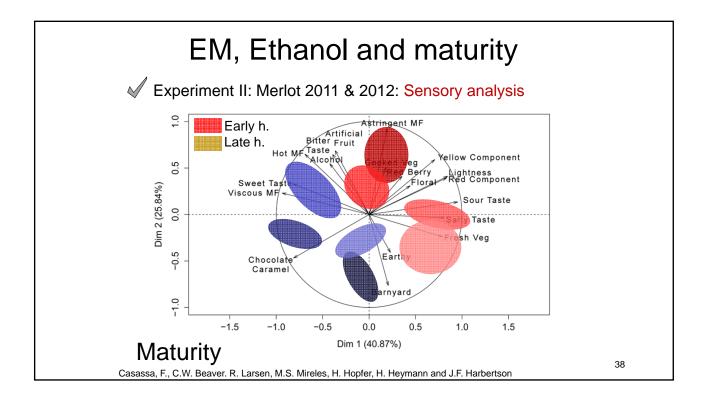

- Seed Tannins
 - Harsh Astringency Owing to EC Gallate
 - Longer Ripening Mellows Astringency
- Browning of Seed Coincides with Less Tannins and Catechins Australian Journal of Grape and Wine Research 11, 43–58, 2005

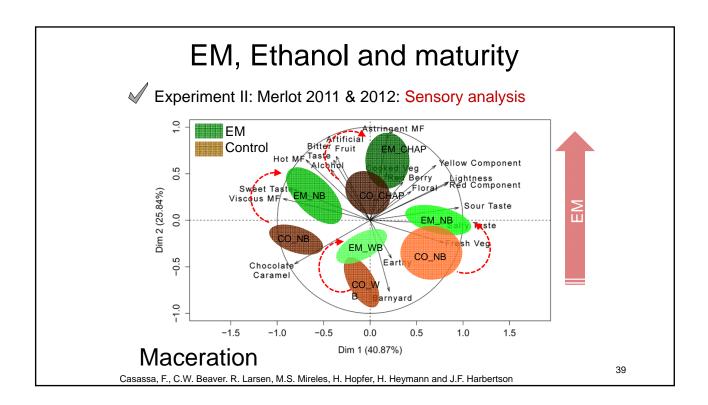

Figure 2. A colour chart indicating changes in grape seed coat colour during seed development and maturation.

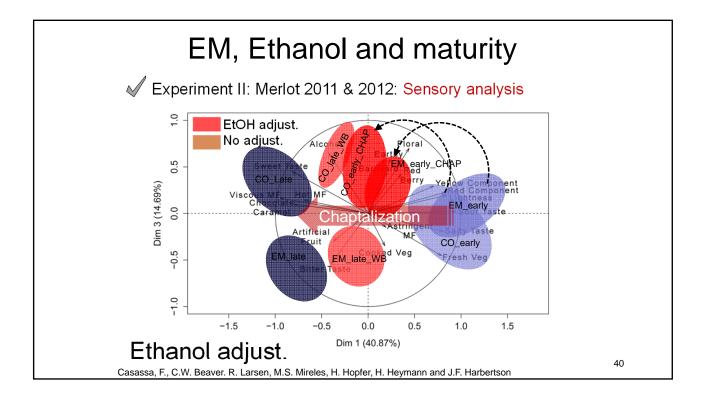


<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

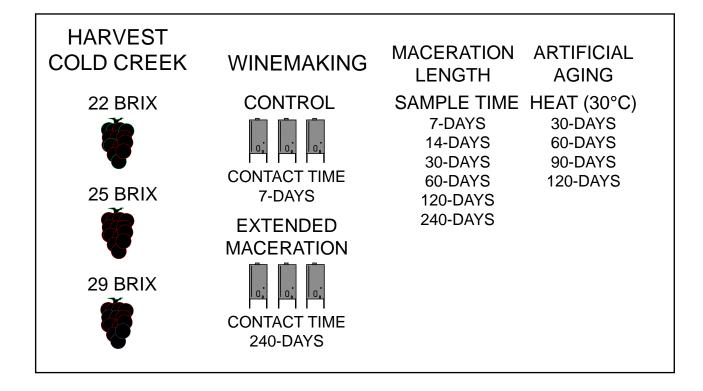


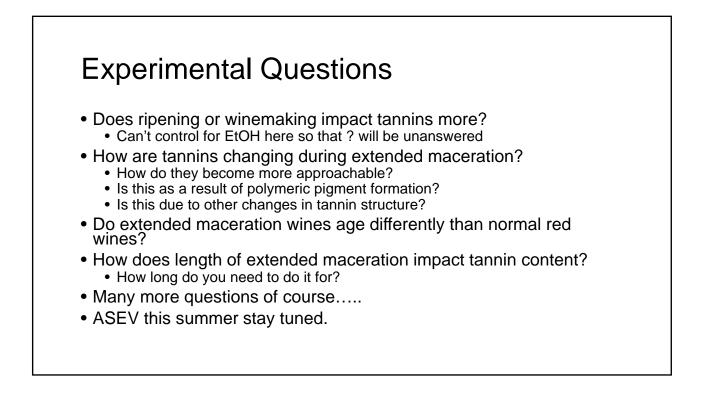

	ANOVA FACTOR	TREATMENT	ANTHOCYANINS (mg/L)	TANNINS (mg/L)
	Season (S)	2011	386	390
		2012	365	539
		p-value	0.881	<0.0001
	Maturity (M)	Early	259 b	473
		Late	492 a	456
		p-value	<0.0001	0.855
	Maceration (W)	Control	416 a	373
		EM	335 b	558
		p-value	<0.0001	<0.0001
	EtOH Adjust (EtOH)	Low 11.7%	370	438
		High 14.4%	381	491
		p-value	0.176	0.141
	W x M		0.649	0.258
	WxS		0.021	0.298
	W x EtOH		0.874	0.899
	W x M x S		<0.0001	<0.0001
	W x M x S x EtOH		0.005	0.065


EM, Ethanol and maturity


Experiment II: Merlot 2011 & 2012: Sensory analysis

- DA approach
- Trained panel (n = 11)
- Principal component analysis with confidence ellipses constructed using Hotelling's test for p < 0.05





<list-item><list-item><list-item><list-item><list-item><list-item>

Open questions

- Most winemakers describe increase in astringency and then just after it reaches its peak a steady decline
- Almost an ephemeral moment?
- Or a moment of practicality?

Acknowledgments

- Thanks! Anita Oberholster
- Funding: Wine Research Advisory Committee, the Washington Wine Commission, the Washington Grape and Wine Research Program
- Former Students: Federico Casassa, Caroline Merrell
- Colleagues: Mark Downey, Hildegarde Heymann, Helene Hopfer, Rachel Kilmister
- Industry: Ste. Michelle Wine Estates