Best fermentation management practices

WF101: CURRENT ISSUES IN FERMENTATION MANAGEMENT
JULY 27TH, 2018
ANITA OBERHOLSTER
Know your grapes

- Brix – potential EtOH production
- YAN – nutritional needs
- TA – acid balance
- pH – antimicrobial control, taste
- Organic acid composition
 - For ex. malic acid contribution to predict pH change in the case of red wine production
Know your grapes

- Condition of the grapes
 - Raisons – Brix measurement will be inaccurate
 - Mold or rot – what is the risk?
 - Uneven ripeness
 - Unripe/over-ripe
Brix

• Why measure?
 • Indication of fruit ripeness
 • Potential ethanol production in wine
 • Yeast vary in their efficiency to convert sugar to alcohol – could differ up to 0.8 % v/v
 • Conversion factor of Brix to EtOH% 0.55-0.64
 • Determine optimal yeast to use for fermentation
 • Follow progress of fermentation
Brix adjustments

- Water back
- Grape concentrate
 - Use Pearson’s Square
 - Vol of water/concentrate = V(D-A)/(C-D)
 - V = vol juice
 - D = desired Brix
 - A = initial Brix
 - C = Brix of water/concentrate
- Saignee
- Remember changing in some cases more than Brix - TA, pH, YAN
 - Retest after any adjustments
Brix adjustments

- Error in calculation
 - Accuracy of Brix determination depends on homogeneity of grapes
 - Influenced by grape ripeness
 - Dehydrated and raisined berries
pH

- Why is knowing the pH important?
 - Microbial stability (pH < 3.7)
 - Effectiveness of SO$_2$
 - Molecular SO$_2$ is the form effective against microorganisms
pH

- Juice pH levels range from 2.8 to 4+
 - *Saccharomyces* optimal pH of 6, but grows well below and above this value
 - pH > 3.5 favors acetic acid bacteria and *Oenococcus* (LAB)
 - pH > 3.6 enables growth of larger diversity of LAB
pH

- Mouth-feel ("flabby") – wine style
- Color of red wine
- High pH ↑ oxidation risk

Fig. 6.19. Changes in the proportion of different forms of anthocyanins according to pH: $pK_a = 3.41$, $pK_h = 2.93$, $K_I = 0.61$ (Glories, 1984)
Titratable acidity (TA)

- Tartaric and malic acid are the main organic acids present in grapes
 - Citric acid is 3rd most prevalent
 - Rest formed during fermentation by yeast or bacteria
- Why is knowing the TA important?
 - Guide to acid taste of wine
 - Desired amounts depends on wine style
 - Wine balance
 - Adjust pH of juice/wine
 - How much to add to adjust pH?
 - Difficult to predict
Titratable acidity (TA)

- **Adjust potential wine pH**
 - Change in pH not directly related to acid addition
 - Depends on wine’s buffer capacity
 - Rule of thumb: 1 g/L of tartaric acid, decrease pH by 0.1
 - Efficiency of acidification can improve with CaSO₄ addition
 - **Add L(+) - tartaric acid**
 - DL-tartaric acid addition increase calcium tartrate instability
 - **De - acidify when pH < 2.9 + TA > 10 g/L**
 - Add 1.3 g/L of KHCO₃ – lower TA 1 g/L H₂T
- **Ion-exchange**
Titratable acidity

- **Measure malic acid (and lactic acid) conc**
 - High malic conc will impact pH if planning on MLF
 - ↓ 1 g/L malic acid, ↓ TA 0.56 g/L and ↑ pH
 - Also if high conc of malic and very low pH
 - MLF at pH<3 difficult
Nitrogen (NH₃, NH₄⁺ and amino acids)

- N₂ deficiency (< 100 mg/L)
 - Stuck fermentation
 - Utilization of sulfur containing amino acids – formation of H₂S

- Too much N₂
 - Modify aroma character
 - ↑Fusel alcohols, esters
 - Formation of ethyl carbamate

- N₂ needed
 - Depending on yeast needs and starting Brix
 - 21-27° Brix, need 200-350 YAN (mg N/L)
Yeast Assimilable Nitrogen (YAN) levels in juice

- Need to measure YAN of each fermentation
- Can vary greatly across fermentation lots even if from same vineyard
- YAN vary by season, varietal, rootstock and region
Adjusting N levels

- DAP (di-ammonium phosphate) most popular
 - Easy and cheap
 - Approximately 5 mg/L DAP for 1 N mg/L added
 - Adjustment needed before inoculation for cell growth
 - Any additional addition must be made before the half way point (< 8% alc)
Laccase activity

• Why measure?
 • If Botrytis in the vineyard – knowing the number and potential risk
 • Better adaptation during the winemaking process
So what is needed for a healthy fermentation?

- Yeast goal is survival
- Enable max cell growth
 - Meet nutritional needs
 - Minimize inhibitors
 - Minimize shocks like temp
- Sustain permissive conditions ~ minimize stress
 - Enhance ability to resist premature metabolic arrest
Yeast nutrition

- Growth is dependent upon available nutrients
- Insufficient nutrients causes:
 - Limit cell numbers (biomass)
 - Impact fermentation speed
 - Result in premature arrest of fermentation
 - Decrease ethanol tolerance due to increase in stress sensitivity
- Macronutrients are building blocks for new cell material
- Micronutrients catalyzes biochemical reactions
Yeast Nutrition

• Macronutrients are building blocks for new cell material
 • Carbon/energy sources - glucose, fructose, sucrose (never limiting)
 • Nitrogen Sources - amino acids, ammonia, nucleotide bases, peptides (often limiting)
 • Phosphate Sources - inorganic phosphate, organic phosphate compounds (occasionally limiting)
 • Sulfur Sources - inorganic sulfate, organic sulfur compounds (rarely limiting)
Yeast nutrition

- Micronutrients catalyzes biochemical reactions
 - Minerals and trace elements - Mg, Ca, Mn, K, Zn, Fe, Cu
 - Vitamins - biotin is the only required vitamin, but others are stimulatory
 - Sufficiency is site and varietal/rootstock dependent
Yeast nutritional phases

- Lag
- Log
- Stationary
- Death
- Dormant

Cell # vs. Time

Brix
Yeast Nitrogen Requirements

- Strain used
- Level of starting sugar/final ethanol
 - At ≤ 21 Brix need starting YAN ~ 200
 - At > 25 Brix need starting YAN ~ 300
- Accompanying deficiencies
 - Presence of other microorganisms
- N needs increase with ↑ alcohol
 - Decreased amino acid transport
 - Decreased ammonia uptake
- Stress can increase amino acid demand
Inoculation practices

- Active Dry Yeast
 - Rehydration is important
 - Can lose cytoplasmic components during rehydration
 - Will decrease viability if held too long prior to use
 - Water versus juice depends upon preparation: follow manufacturer instructions
 - Temperature equilibration is critical
 - Osmotic equilibration is critical for high Brix juices
 - Success of implantation depends upon conditions
Inoculation practices

• Starter culture – fermenting juice
 • May exacerbate nutritional deficiencies if juice is deficient
 • If too far along (too high in ethanol) return to high osmotic concentration poses a biological shock
 • Need to assess viability (stressors present)
 • Need to assess nature of organisms growing

• Starter success
 • Length of lag time before biomass production and fermentation initiation (↓2 Brix)
Use of sulfur dioxide

- It is an antioxidant
- Protects musts and wines from browning
- Binds oxygen and acetaldehyde
- Antiseptic activity
- Prevent microbiological spoilage in wines
 - Acetic acid and lactic acid bacteria, molds, wild yeast
Use of sulfur dioxide

• **When to add SO2**
 • Crushing – amount depends on condition of grapes, temp and pH (50-80 mg/L)
 • Immediately after alcoholic fermentation
 • Amount based on wine style and variety
 • Usually aim for 30 mg/L free

• **Other antimicrobials**
 • Lysozyme
 • Heat treatments
Inhibitory levels of sulfur dioxide

<table>
<thead>
<tr>
<th>Microbe</th>
<th>Molecular SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomyces</td>
<td>0.825</td>
</tr>
<tr>
<td>Acetobacter</td>
<td>0.05-0.6</td>
</tr>
<tr>
<td>Lactic Acid Bacteria</td>
<td>0.01-0.2</td>
</tr>
<tr>
<td>Brettanomyces</td>
<td>0.1-0.6</td>
</tr>
<tr>
<td>Non-Saccharomyces yeast</td>
<td>0.1-0.6</td>
</tr>
</tbody>
</table>
Temperature control

• Important to control fermentation rate
 • Viability of yeast
 • For red wine heat accumulates in the cap
 • Temp gradients of up to 12°C have been observed
 • Yeast growth from 12 to 42 °C (53 to 107 °F)
 • Temp tolerance reduced at high EtOH
 • Yeast strains vary in their ability to adapt to temp shifts
 • Non-Saccharomyces yeast and bacteria
 • LAB grow at temp 18 to 48 °C (64 to 118 °F)
 but varies by strain
Temperature control

- High temp > 30 °C can stress yeast resulting in more off-flavors such as H$_2$S
- Flavor stripping can occur at high temp
 - Cooked fruit character
- Temp control by jacketed tanks or submerged cooling/heating units
Temperature control

- Optimum temp for white and red wine fermentation is different
 - Whites $\leq 15 \, ^\circ C$ (59 °F)
 - Preserve aroma and flavor compounds
 - Reds 20-30°C (68-86°F)
 - For extraction of color, phenolics and tannins
 - In Cab we found opt temp to be 28-30 °C
 - At 35 °C or 95 °F signif decreases in color

Lerno et al., 2015 AJEV 66:4
Cap management

- Mixing of the cap for red wine fermentations
 - Remove accumulated heat from cap
 - Prevent yeast inhibition in the cap
 - Remove extraction saturation close to the cap
 - Studies show the 1 vol twice a day are adequate to remove concentration and temp gradients
 - Complex pump over regimes with different frequencies and volumes have limited impact on extraction

Sacchi et al. 2005 AJEV 56:3; Lerno et al., 2018 AJEV 69:3; Lerno et al. 2017 AJEV 68:4
Oxygen management

- Amount of oxygen depends on fruit condition
- White vs red grape processing
- Crushing and pressing - two processes with potentially significant O₂ exposure
 - As soon as berries are damaged, numerous oxidase enzymes including polyphenoloxidase (PPO) activates starting oxidative chain reactions which form quinones that can lead to browning
Oxygen management

- Protective inert gas blankets and SO$_2$ have shown to preserve thiols and glutathione (GSH), a natural grape antioxidant
 - GSH 51% in juice and 40% in skins
- Hyper-oxygenation – 50 mg/L just before cold settling
 - Protects against future browning
 - Lack of scientific study
 - Sensory of Chardonnay indicated ↑banana and ↓herbaceous and floral
- O$_2$ exposure during red grape processing is less of concern for healthy fruit

Day et al., 2015 AJGWR 21:693
Oxygen management

- **White or red wine fermentation**
 - Oxygen good for yeast viability
 - Lipid production needed for cell growth
 - \(O_2 \) addition at end of exponential growth phase – most effective stimulation of fermentation
 - 5-10 mg/L \(O_2 \) is sufficient (macro-oxygenation)
 - When combined with DAP addition, faster fermentation completion to lower RS
 - In non-Saccharomyces– a range of aeration regimes, applied continuously for various durations starting at inoculation
 - Do not know how laboratory studies translate to large scale
 - Translation to native fermentations?
Oxygen management

- Both yeast and bacteria grow better under aerobic environment
- Anaerobic conditions best to control acetic acid bacteria
Oxygen management

- Excess O_2 removed by CO_2 during fermentation
- Too little O_2 can result in reductiveness
- Too much O_2 can result in oxidation
 - Loss of varietal character for aromatic whites
Oxygen management

- Optimal use of O_2 can impact wine style greatly
 - Enhance fruit characters, limit reductive characters
 - Develop mouthfeel profiles
 - O_2 during fermentation can have the same impact as MOX following fermentation to remove reductive aromas
- The optimal amount of oxygen during red winemaking without leading to excessive addition and concomitant spoilage still has to be determined
Concluding remarks

• Successful fermentations
 • Selecting correct yeast strain for EtOH range
 • Meeting nutritional needs of yeast
 • Limit stress and follow fermentation progress
 • Intervene early if not ‘normal’

• Most off-flavors can be minimized or prevented by
 • Using clean fruit
 • Sufficient nutrient, oxygen and temperature control during fermentation
 • Good winery sanitation and adequate SO₂ use
Thank you