

Best fermentation management practices

WF101: CURRENT ISSUES IN FERMENTATION MANAGEMENT JULY 27TH, 2018 ANITA OBERHOLSTER

Know your grapes

- Brix potential EtOH production
- YAN nutritional needs
- TA acid balance
- · pH antimicrobial control, taste
- Organic acid composition
 - For ex. malic acid contribution to predict pH change in the case of red wine production

Know your grapes

- Condition of the grapes
 - Raisons Brix measurement will be inaccurate
 - Mold or rot what is the risk?
 - Uneven ripeness
 - · Unripe/over-ripe

Brix

- Why measure?
 - Indication of fruit ripeness
 - \cdot Potential ethanol production in wine
 - Yeast vary in their efficiency to convert sugar to alcohol - could differ up to 0.8 % v/v
 - · Conversion factor of Brix to EtOH% 0.55-0.64
 - Determine optimal yeast to use for fermentation
 - Follow progress of fermentation

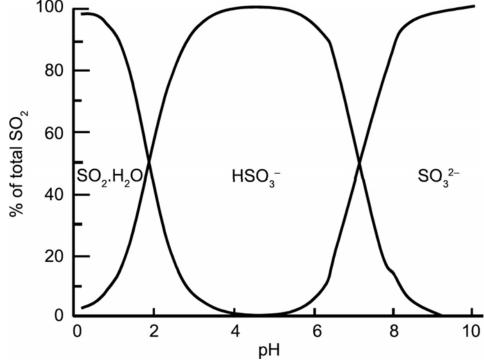
Brix adjustments

- Water back
- · Grape concentrate
 - Use Pearson's Square
 - · Vol of water/concentrate = V(D-A)/(C-D)
 - \cdot V = vol juice
 - \cdot D = desired Brix
 - \cdot A = initial Brix
 - C = Brix of water/concentrate
- · Saignee

• Remember changing in some cases more **Cthan** Brix - TA, pH, YAN

Retest after any adjustments

Brix adjustments


- Error in calculation
 - Accuracy of Brix determination depends on homogeneity of grapes
 - \cdot Influenced by grape ripeness
 - Dehydrated and raisoned berries

рΗ

- Why is knowing the pH important?
 - Microbial stability (pH < 3.7)
 - Effectiveness of SO₂
 - Molecular SO₂ is the form effective against microorganisms

рΗ

- Juice pH levels range from 2.8 to 4+
 - Saccharomyces optimal pH of 6, but grows well below and above this value
 - <u>pH > 3.5</u> favors acetic acid bacteria and Oenococcus (LAB)
 - pH > 3.6 enables growth of larger diversity of LAB

pН

- Mouth-feel ("flabby") wine style
- \cdot Color of red wine
- High pH ↑oxidation risk

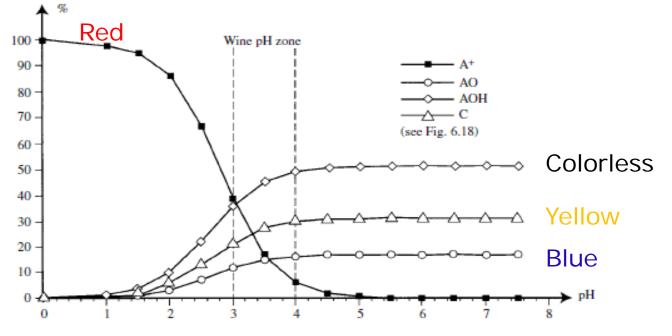


Fig. 6.19. Changes in the proportion of different forms of anthocyanins according to pH: $pK_a = 3.41$, $pK_h = 2.93$, $K_t = 0.61$ (Glories, 1984)

Titratable acidity (TA)

- Tartaric and malic acid are the main organic acids present in grapes
 - Citric acid is 3rd most prevalent
 - Rest formed during fermentation by yeast or bacteria
- Why is knowing the TA important?
 - \cdot Guide to acid taste of wine
 - \cdot Desired amounts depends on wine style
 - · Wine balance
 - · Adjust pH of juice/wine

UCDAVIS Difficult to predict

Titratable acidity (TA)

- · Adjust potential wine pH
 - Change in pH not directly related to acid addition
 - \cdot Depends on wine's buffer capacity
 - Rule of thumb: 1 g/L of tartaric acid, decrease pH by 0.1
 - \cdot Efficiency of acidification can improve with CaSO_4 addition
 - Add L(+)-tartaric acid
 - DL-tartaric acid addition increase calcium tartrate instability

• De-acidify when pH <2.9 + TA > 10 g/L • Add 1.3 g/L of $KHCO_3$ - lower TA 1 g/L H_2T

· Ion-exchange

Titratable acidity

- \cdot Measure malic acid (and lactic acid) conc
 - High malic conc will impact pH if planning on MLF
 - · \downarrow 1 g/L malic acid, \downarrow TA 0.56 g/L and \uparrow pH
 - \cdot Also if high conc of malic and very low pH
 - MLF at pH<3 difficult

Nitrogen (NH₃, NH₄⁺ and amino acids)

- \cdot N₂ deficiency (< 100 mg/L)
 - Stuck fermentation
 - \cdot Utilization of sulfur containing amino acids formation of $\rm H_2S$
- \cdot Too much N_2
 - Modify aroma character
 - †Fusel alcohols, esters
 - Formation of ethyl carbamate
- \cdot N₂ needed

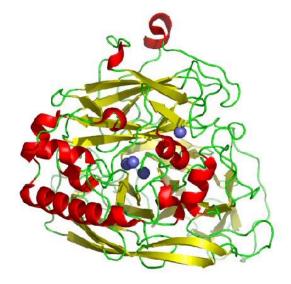
Depended on yeast needs and starting Brix

UCDAVI21-27° Brix, need 200-350 YAN (mg N/L)

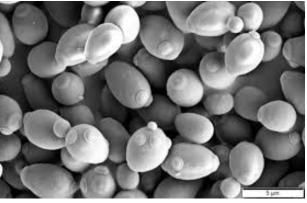
Yeast Assimilable Nitrogen (YAN) levels in juice

- Need to measure YAN of each fermentation
- Can vary greatly across fermentation lots even if from same vineyard
- YAN vary by season, varietal, rootstock and region

Adjusting N levels


- DAP (di-ammonium phosphate) most popular
 - \cdot Easy and cheap
 - Approximately 5 mg/L DAP for 1 N mg/L added
 - Adjustment needed before inoculation for cell growth
 - Any additional addition must be made before the half way point (< 8% alc)

Laccase activity


- Why measure?
 - If Botrytis in the vineyard knowing the number and potential risk
 - Better adaptation during the winemaking process

So what is needed for a healthy fermentation?

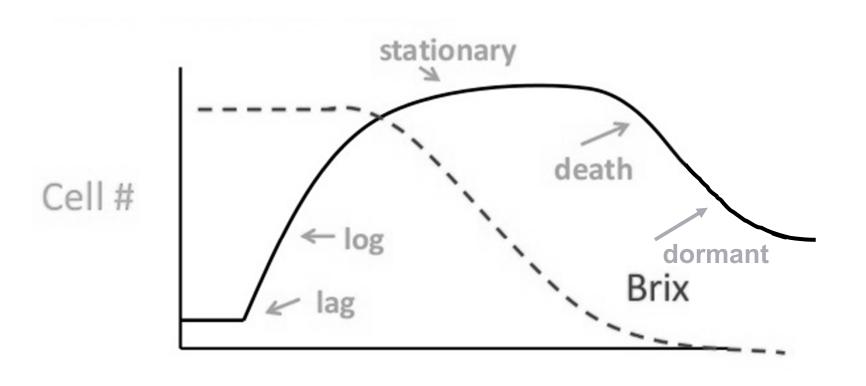
- Yeast goal is survival
- Enable max cell growth
 - Meet nutritional needs
 - Minimize inhibitors
 - Minimize shocks like temp
- Sustain permissive conditions ~ minimize stress
 - Enhance ability to resist premature metabolic
 DATREST

Yeast nutrition

- Growth is dependent upon available nutrients
- Insufficient nutrients causes:
 - Limit cell numbers (biomass)
 - Impact fermentation speed
 - Result in premature arrest of fermentation
 - Decrease ethanol tolerance due to increase in stress sensitivity
- Macronutrients are building blocks for new cell material
- Micronutrients catalyzes biochemical reactions

Yeast Nutrition

- Macronutrients are building blocks for new cell material
 - Carbon/energy sources glucose, fructose, sucrose (never limiting)
 - Nitrogen Sources amino acids, ammonia, nucleotide bases, peptides (often limiting)
 - Phosphate Sources inorganic phosphate, organic phosphate compounds (occasionally limiting)
 - Sulfur Sources inorganic sulfate, organic sulfur compounds (rarely limiting)


Yeast nutrition

- Micronutrients catalyzes biochemical reactions
 - Minerals and trace elements Mg, Ca, Mn, K, Zn, Fe, Cu
 - Vitamins biotin is the only required vitamin, but others are stimulatory
 - Sufficiency is site and varietal/rootstock dependent

Yeast nutritional phases

Time

Yeast Nitrogen Requirements

- · Strain used
- \cdot Level of starting sugar/final ethanol
 - \cdot At \leq 21Brix need starting YAN \sim 200
 - \cdot At > 25 Brix need starting YAN ~ 300
- Accompanying deficiencies
 - \cdot Presence of other microorganisms
- N needs increase with *falcohol*
 - · Decreased amino acid transport
 - \cdot Decreased ammonia uptake

UCStress can increase amino acid demand

Inoculation practices

- Active Dry Yeast
 - · Rehydration is important
 - · Can lose cytoplasmic components during rehydration
 - \cdot Will decrease viability if held too long prior to use
 - Water versus juice depends upon preparation: <u>follow</u> <u>manufacturer instructions</u>
 - Temperature equilibration is critical
 - Osmotic equilibration is critical for high Brix juices

Success of implantation depends upon
 UCDACOnditions

Inoculation practices

- Starter culture fermenting juice
 - May exacerbate nutritional deficiencies if juice is deficient
 - If too far along (too high in ethanol) return to high osmotic concentration poses a biological shock
 - Need to assess viability (stressors present)
 - Need to assess nature of organisms growing
- Starter success

• Length of lag time before biomass production and fermentation initiation (12 Brix)

Use of sulfur dioxide

- It is an antioxidant
- Protects musts and wines from browning
- · Binds oxygen and acetaldehyde
- Antiseptic activity
- Prevent microbiological spoilage in wines
 - Acetic acid and lactic acid bacteria, molds, wild yeast

Use of sulfur dioxide

- When to add SO2
 - Crushing amount depends on condition of grapes, temp and pH (50-80 mg/L)
 - Immediately after alcoholic fermentation
 - Amount based on wine style and variety
 - Usually aim for 30 mg/L free
- Other antimicrobials
 - Lysozyme
 - Heat treatments

Inhibitory levels of sulfur dioxide

<u>Microbe</u>	<u>Molecular SO₂</u>
Saccharomyces	0.825
Acetobacter	0.05-0.6
Lactic Acid Bacteria	0.01-0.2
Brettanomyces	0.1-0.6
Non-Saccharomyces yeast	0.1-0.6

Temperature control

- Important to control fermentation rate
 - Viability of yeast
 - \cdot For red wine heat accumulates in the cap
 - · Temp gradients of up to 12°C have been observed
 - \cdot Yeast growth from 12 to 42 $^\circ C$ (53 to 107 $^\circ F)$
 - \cdot Temp tolerance reduced at high EtOH
 - Yeast strains vary in their ability to adapt to temp shifts
- Non-Saccharomyces yeast and bacteria

LAB grow at temp 18 to 48 °C (64 to 118 °F)
 but varies by strain

Temperature control

- High temp > 30 °C can stress yeast resulting in more off-flavors such as H₂S
- · Flavor stripping can occur at high temp
 - Cooked fruit character
- Temp control by jacketed tanks or submerged cooling/heating units

Temperature control

- Optimum temp for white and red wine fermentation is different
 - Whites ≤ 15 °C (59 °F)
 - \cdot Preserve aroma and flavor compounds
 - Reds 20-30°C (68-86°F)
 - \cdot For extraction of color, phenolics and tannins
 - \cdot In Cab we found opt temp to be 28-30 $^\circ\text{C}$
 - \cdot At 35 °C or 95 °F signf decreases in color

Lerno et al., 2015 AJEV 66:4

Cap management

- Mixing of the cap for red wine fermentations
 - Remove accumulated heat from cap
 - \cdot Prevent yeast inhibition in the cap
 - \cdot Remove extraction saturation close to the cap
 - Studies show the 1 vol twice a day are adequate to remove concentration and temp gradients
 - Complex pump over regimes with different frequencies and volumes have limited impact
 on extraction

- Amount of oxygen depends on fruit condition
- White vs red grape processing
- Crushing and pressing two processes with potentially signf O₂ exposure
 - As soon as berries are damaged, numerous oxidase enzymes including polyphenoloxidase (PPO) activates starting oxidative chain reactions which form quinones that can lead to browning

Oxygen management

- Protective inert gas blankets and SO₂ have shown to preserve thiols and glutathione (GSH), a natural grape antioxidant
 - \cdot GSH 51% in juice and 40% in skins
- Hyper-oxygenation 50 mg/L just before cold settling
 - \cdot Protects against future browning
 - \cdot Lack of scientific study
 - Sensory of Chardonnay indicated *†*banana and *↓*herbaceous and floral

• O₂ exposure during red grape processing is
 UCDAIes of concern for healthy fruit

Day et al., 2015 AJGWR 21:693

Oxygen management

- \cdot White or red wine fermentation
 - · Oxygen good for yeast viability
 - \cdot Lipid production needed for cell growth
 - \cdot O_2 addition at end of exponential growth phase most effective stimulation of fermentation
 - \cdot 5-10 mg/L O₂ is sufficient (macro-oxygenation)
 - When combined with DAP addition, faster fermentation completion to lower RS
 - In non-Saccharomyces- a range of aeration regimes, applied continuously for various durations starting at inoculation

• Do not know how laboratory studies translate to UCDAVIS large scale

Translation to native fermentations?

- Both yeast and bacteria grow better under aerobic environment
- Anaerobic conditions best to control acetic acid bacteria

- Excess O₂ removed by CO₂ during fermentation
- Too little O₂ can result in reductiveness
- \cdot Too much O₂ can result in oxidation
 - \cdot Loss of varietal character for aromatic whites

- Optimal use of O₂ can impact wine style greatly
 - Enhance fruit characters, limit reductive characters
 - Develop mouthfeel profiles
 - O₂ during fermentation can have the same impact as MOX following fermentation to remove reductive aromas
- The optimal amount of oxygen during red winemaking without leading to excessive
 UCDAad dition and concomitant spoilage still has to be determined

Concluding remarks

- Successful fermentations
 - Selecting correct yeast strain for EtOH range
 - Meeting nutritional needs of yeast
 - Limit stress and follow fermentation progress
 - Intervene early if not 'normal'
- Most off-flavors can be minimized or prevented by
 - Using clean fruit
 - Sufficient nutrient, oxygen and temperature control during fermentation

Good winery sanitation and adequate SO₂ use

Thank you

