Why control weeds?

- Compete for water, nutrients, and light with trees
- Interference is especially problematic during establishment years
- Can affect crop management, irrigation, and harvest operations
- Impacts on other pest problems
- Crop quality concerns?

Complex populations

- Rarely just one weed species present
 - Annual vs perennial vs biennial
 - Grass vs sedges vs broadleaf
 - Time of emergence
 - Fall vs spring emergence vs year-round
 - Reproductive strategy
 - Seed vs vegetative
Factors affecting orchard weeds

- Orchard age and arrangement
 - Shading and space capture
- Irrigation type, timing, and amount
 - Furrow, sprinklers, micros, drip
- Tillage practices
 - Berms, cross-disking, etc.
- Herbicide options
- Orchard access

Integrated weed management

- Using all available strategies to manage weed populations in a manner that is economically and environmentally sound.
 - Cultural
 - Mechanical
 - Chemical

Goals of IWM

- Both short- and long-term goals
 - Prevent or reduce weed spread
 - Delay and/or suppress weed growth
 - Prevent or suppress weed seed production
 - Reduction of weed seed bank in soil
Weed identification

- Unknown weeds cannot be properly managed
 - No technique controls all weed species
 - Not all weeds cause equal damage (thresholds)
 - Species respond differently to control strategies
 - Even variants within a species (i.e. herbicide resistant biotypes)

Weed ID books and pamphlets

A number of weed books are available

Weed ID - software

Several available,
I use a set by XID Services
- UC Davis
- WSSA
- WSWS
- others
A few online (FREE) resources are available:

UC Davis Weed Research and Information Center
www.wric.ucdavis.edu

UC Integrated Pest Management Program
http://ipm.ucdavis.edu/PMG/menu.weeds.html

Online weed ID resources

Weed management

- Orchard and vineyard floors divided into two management zones: middles and crop row
 - Zones may have very different strategies
 - Also may differ during the life of the orchard
How do we manage weeds?

- A few broad categories
 - Exclusion/sanitation
 - Cultural
 - Mechanical
 - Biological
 - Chemical

Sanitation

- Weed management should be an ongoing concern
 - Scout and manage in the orchard
 - Manage weeds on field margins and access roads
 - Clean equipment between sites
 - Scout and prevent seed set of “new” problems

Cultural practices

- Irrigation and fertilizer management
- Canopy management
- Cover crops
- Mulches
- Flaming
- Animals
Cover crops

ADVANTAGES
- Winter orchard access
- Reduced soil erosion
 - And pesticide and fertilizer runoff
- Addition of OM
- Soil structure and water/root penetration
- Competes with weeds

DISADVANTAGES
- Need to manage 2nd crop
- More equipment
- Competes for water and nutrients
- Frost concerns
- Vertebrate and insect pests
- Addition of nutrients (N) may be unwanted (vineyard)

Cover crop issues

Flaming / heating

- Non-chemical
- High fuel cost
- Just need to “heat” not “burn” weeds
- Best on young broadleaf
- No residual control
- Danger of damage to young trees or vines and irrigation systems
Animals

- Animals can be used to manage vegetation in some cases
 - Can work very well ... or very poorly
 - Expensive (own or rent?)
 - Management effort
 - Animal health and welfare limits weed control
 - Can damage trees or vines (buds) if left too long
 - Food safety concerns

Mechanical control

- Tillage / cultivation
- Mowing
- Hand labor
- T&V rows vs middles
 - equipment options and costs

Cultivation

ADVANTAGES

- Non-chemical tactic
- Organic matter additions and nitrogen release
- Reduces competition for water
- Reduces frost potential
- Easy control in middles
- No “resistance”

DISADVANTAGES

- Fuel and time costs
- Trunk and root injury
- Dust
- Erosion
- Compaction
- Can spread seed and fragments
- Weeds near tree difficult
- Effects on tree vigor?
Mowing

- **Advantages.**
 - Suppresses weeds, reduces seed set
 - Orchard access and erosion benefits

- **Disadvantages.**
 - Frost potential
 - Weeds still use water and nutrients
 - Favors low growing and perennial weeds
 - Favors grasses (advantages or disadvantages?)
 - Cost of repeat operations (slow and frequent)

Chemical control

Herbicides

- CA orchards and vineyard herbicides usually applied to “strips” under the tree/vine row
 - 2-20 ft strip, may treat 20-50% of the floor
 - Middles managed with mowing, tillage, or less intensive herbicide program
 - Often with a “preharevest” broadcast application
Types of herbicides

- Preemergence (PRE)
 - Applied to bare soil and affect germinating seeds and seedlings
 - Provide residual effects (weeks or months)
- Postemergence (POST)
 - "Burn down" treatments applied to the foliage of emerged weeds
 - Can be "contact" or "translocated" materials
 - Some products have residual control, some do not

Factors affecting herbicide choice

- Availability in the crop (registration)
- Weeds to be controlled (weed ID)
- Toxicity and safety (to crop and non-target)
- Soil type and texture
- Cost

Herbicides registered in pistachio

<table>
<thead>
<tr>
<th>Preemergence (PRE)</th>
<th>Postemergence (POST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission</td>
<td>Shark</td>
</tr>
<tr>
<td>Chateau</td>
<td>SelectMax</td>
</tr>
<tr>
<td>Alion</td>
<td>2,4-D</td>
</tr>
<tr>
<td>Trellis</td>
<td>Diquat**</td>
</tr>
<tr>
<td>Broadworks</td>
<td>Glyphosate</td>
</tr>
<tr>
<td>Surfian</td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td></td>
</tr>
<tr>
<td>Prowl H2O</td>
<td></td>
</tr>
<tr>
<td>Pindar GT</td>
<td></td>
</tr>
<tr>
<td>Matrix</td>
<td></td>
</tr>
<tr>
<td>Zeus</td>
<td></td>
</tr>
<tr>
<td>Rely H2O</td>
<td></td>
</tr>
<tr>
<td>Sandea</td>
<td></td>
</tr>
<tr>
<td>Gramoxone</td>
<td></td>
</tr>
<tr>
<td>Pelargonic acid</td>
<td></td>
</tr>
<tr>
<td>Venue</td>
<td></td>
</tr>
<tr>
<td>Treevix</td>
<td></td>
</tr>
<tr>
<td>Poast</td>
<td></td>
</tr>
<tr>
<td>+organic contact</td>
<td></td>
</tr>
<tr>
<td>products</td>
<td></td>
</tr>
</tbody>
</table>

*Trade names for example only
** Registered in HB pistachio only
CA pistachio herbicide use

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>2011 Acreage</th>
<th>2017 Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphosate</td>
<td>392,611</td>
<td>270,608</td>
</tr>
<tr>
<td>Glyfosinate (Rely 2X)</td>
<td>141,966</td>
<td>54,223</td>
</tr>
<tr>
<td>Glyphosate (Goal, GoalTender)</td>
<td>144,186</td>
<td>104,900</td>
</tr>
<tr>
<td>Sulfentrazone (Trevino)</td>
<td>103,471</td>
<td>43,674</td>
</tr>
<tr>
<td>Paraquat (Homogenyx)</td>
<td>84,996</td>
<td>27,725</td>
</tr>
<tr>
<td>Paraoxyde (Trexol)</td>
<td>65,302</td>
<td>47,393</td>
</tr>
<tr>
<td>Rimsulfuron (Matrix)</td>
<td>42,921</td>
<td>21,791</td>
</tr>
<tr>
<td>Indaziflam (Alion)</td>
<td>40,691</td>
<td>6,552</td>
</tr>
<tr>
<td>Pyraflufen (Venue)</td>
<td>34,599</td>
<td>2,056</td>
</tr>
<tr>
<td>Carfentrazone (Shark)</td>
<td>27,135</td>
<td>6,514</td>
</tr>
<tr>
<td>Flumioxazin (Chateau)</td>
<td>22,435</td>
<td>28,224</td>
</tr>
<tr>
<td>Penoxsulam (PindarGT)</td>
<td>20,459</td>
<td>16,017</td>
</tr>
<tr>
<td>Clethodim (SelectMax)</td>
<td>16,887</td>
<td>284</td>
</tr>
<tr>
<td>Oryzalin (Surflan)</td>
<td>12,296</td>
<td>29,951</td>
</tr>
<tr>
<td>Paraquat (Gramoxone)</td>
<td>84,066</td>
<td>27,725</td>
</tr>
<tr>
<td>Pendimethalin (Prowl H2O)</td>
<td>65,302</td>
<td>47,393</td>
</tr>
<tr>
<td>Rimsulfuron (Matrix)</td>
<td>42,921</td>
<td>21,791</td>
</tr>
<tr>
<td>Indaziflam (Alion)</td>
<td>40,691</td>
<td>6,552</td>
</tr>
<tr>
<td>Pyraflufen (Venue)</td>
<td>34,599</td>
<td>2,056</td>
</tr>
<tr>
<td>Carfentrazone (Shark)</td>
<td>27,135</td>
<td>6,514</td>
</tr>
<tr>
<td>Flumioxazin (Chateau)</td>
<td>22,435</td>
<td>28,224</td>
</tr>
<tr>
<td>Penoxsulam (PindarGT)</td>
<td>20,459</td>
<td>16,017</td>
</tr>
<tr>
<td>Clethodim (SelectMax)</td>
<td>16,887</td>
<td>284</td>
</tr>
<tr>
<td>Oryzalin (Surflan)</td>
<td>12,296</td>
<td>29,951</td>
</tr>
<tr>
<td>Paraquat (Gramoxone)</td>
<td>84,066</td>
<td>27,725</td>
</tr>
<tr>
<td>Pendimethalin (Prowl H2O)</td>
<td>65,302</td>
<td>47,393</td>
</tr>
<tr>
<td>Rimsulfuron (Matrix)</td>
<td>42,921</td>
<td>21,791</td>
</tr>
<tr>
<td>Indaziflam (Alion)</td>
<td>40,691</td>
<td>6,552</td>
</tr>
<tr>
<td>Pyraflufen (Venue)</td>
<td>34,599</td>
<td>2,056</td>
</tr>
<tr>
<td>Carfentrazone (Shark)</td>
<td>27,135</td>
<td>6,514</td>
</tr>
<tr>
<td>Flumioxazin (Chateau)</td>
<td>22,435</td>
<td>28,224</td>
</tr>
<tr>
<td>Penoxsulam (PindarGT)</td>
<td>20,459</td>
<td>16,017</td>
</tr>
<tr>
<td>Clethodim (SelectMax)</td>
<td>16,887</td>
<td>284</td>
</tr>
<tr>
<td>Oryzalin (Surflan)</td>
<td>12,296</td>
<td>29,951</td>
</tr>
<tr>
<td>Paraquat (Gramoxone)</td>
<td>84,066</td>
<td>27,725</td>
</tr>
<tr>
<td>Pendimethalin (Prowl H2O)</td>
<td>65,302</td>
<td>47,393</td>
</tr>
<tr>
<td>Rimsulfuron (Matrix)</td>
<td>42,921</td>
<td>21,791</td>
</tr>
<tr>
<td>Indaziflam (Alion)</td>
<td>40,691</td>
<td>6,552</td>
</tr>
<tr>
<td>Pyraflufen (Venue)</td>
<td>34,599</td>
<td>2,056</td>
</tr>
<tr>
<td>Carfentrazone (Shark)</td>
<td>27,135</td>
<td>6,514</td>
</tr>
<tr>
<td>Flumioxazin (Chateau)</td>
<td>22,435</td>
<td>28,224</td>
</tr>
<tr>
<td>Penoxsulam (PindarGT)</td>
<td>20,459</td>
<td>16,017</td>
</tr>
<tr>
<td>Clethodim (SelectMax)</td>
<td>16,887</td>
<td>284</td>
</tr>
<tr>
<td>Oryzalin (Surflan)</td>
<td>12,296</td>
<td>29,951</td>
</tr>
<tr>
<td>Paraquat (Gramoxone)</td>
<td>84,066</td>
<td>27,725</td>
</tr>
</tbody>
</table>

Acreage: 2011 ~226k; 2017~335k*

Conventional herbicides

ADVANTAGES
- Can be very cost effective (in some cases)
- Consistent results
- Ease of application (speed)
- Crop safety (generally)
- Erosion benefits (vs tillage)
- Season-long control with some products and combos
- Selectivity can be used to maintain desired cover

DISADVANTAGES
- Cost (in some cases)
- Potential for off-site movement with some products
- Regulations and record keeping
- Herbicide resistance can occur
- Crop injury can occur
- Some market sectors have preference against
- PRE, POST, or PRE/POST mix?
- Tank mixes
- Weed spectrum controlled
- Surfactants and adjuvants
- Coverage (GPA)
- Timing and weed size
- Sprayer calibration (esp. OC nozzles)
- Nozzle selection
- Litter and debris
- Check current herbicide labels
- Scouting and record keeping
- Training and PPE for handlers and applicators
- Potential for off-site movement?
- Double check calculations and recommendations!
Weed challenges in orchards

- Old favorites:
 - Normal mix of annual grasses and broadleaves
 - Challenge with perennial weeds, especially in new orchards or crops with fewer herbicide options
- New weed problems
 - Most of the "new" issues seem to be related to glyphosate resistance and/or shifting populations to tolerant species
 - Changing control options
 - Less tillage, some new herbicides, water issues

Extra challenges in young orchards

- Crop less competitive with weeds
- Greater sensitivity to weed competition
- Greater sensitivity to injury from weed control tactics
- Fewer herbicides registered on new plantings

Orchard weed management

- Weed ID
 - Understand the problem and biology
- Use integrated management tactics
 - Cultural and mechanical approaches
 - Chemical tactics
 - Right herbicide, right target, right time
 - Resistance management considerations
 - Environmental impacts
 - VOC, surface water, ground water
Manage “your” weeds

- Weed management is an annual concern and production cost that must be considered in a local context.
- No “one size fits all” solution for all orchards - integrated weed management requires systemic and long-term thinking.

T&V herbicide registrations

Brad Hanson
b hannson@ucdavis.edu
530 752 8115
http://hanson.ucdavis.edu/

UC Davis Weed Research and Information Center
http://wric.ucdavis.edu/
http://ucanr.org/blogs/UCDWeedScience/
@UCDWeedScience on Twitter

UC Davis Statewide Integrated Pest Management Program
http://www.ipm.ucdavis.edu/