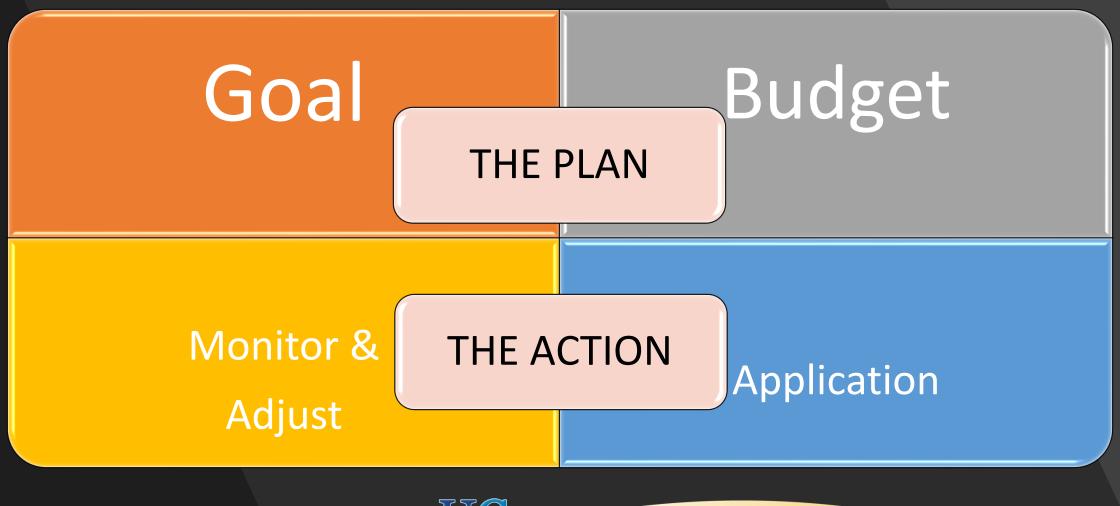
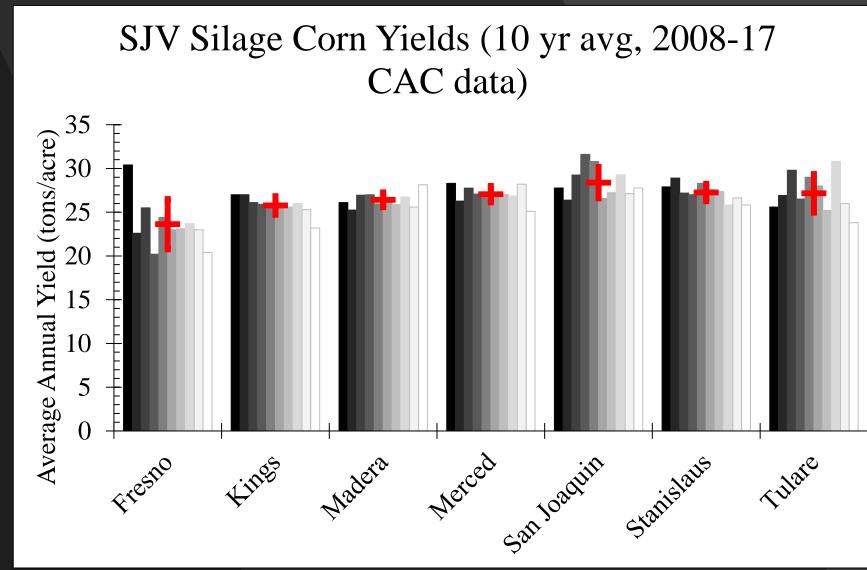


Field view of manure N management in CA forage production: A hypothetical crop N budget


Nicholas Clark – Agronomy & Nutrient Mgmt. Farm Advisor: UCCE Tulare, Kings, & Fresno Counties

UC Golden State Dairy Management Conference Monday, November 18, 2024 Modesto, CA

Planned Nitrogen Management Concept



The Elements of a Nitrogen Management Plan

Identify your expectations; set THE GOAL

What are your nitrogen targets? Nitrogen concentrations in harvested plant parts - A literature overview

Daniel Geisseler

2016

Source material: https://plants.usda.gov/npk/main https://www.ipni.net/app/calculator/hom

Predict N removal with harvest:

Simple arithmetic example Expected N removed (lbs/acre) with harvested corn silage @ 70% MC

	Yield level (tons corn/acre)		
Info source	1	30	35
Geisseler	7.56	227	265
IPNI	8.8	265	309

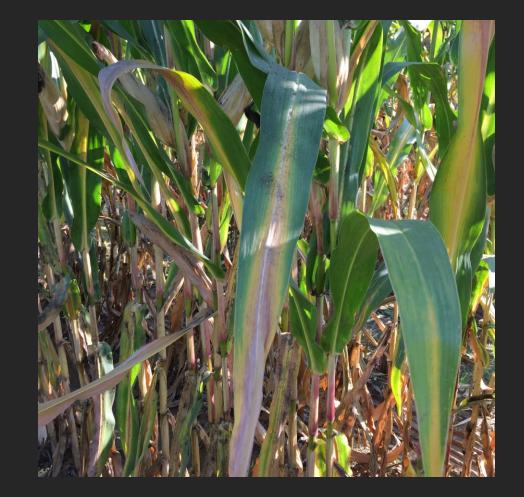
Create THE BUDGET

- Residual soil Ν
- Credits • Previous crop residue N
 - Irrigation water N
 - Soil N mineralization

• Organic Inputs amendments • Fertilizer

• Yield Outputs • Inefficiency

University of California


Another way to think of THE BUDGET

fertilizer + soil + water = harvest + inefficiency

environment

Nitrogen Management Planning in Action – Silage Corn N Budget Example

Start with this field:

- 4 years ago corn was 32 Tons/acre
- Coming out of alfalfa
- History of dairy manure
- Soil is uniform, deep, welldrained loam

Neutral pH, very low salinity,2% SOM

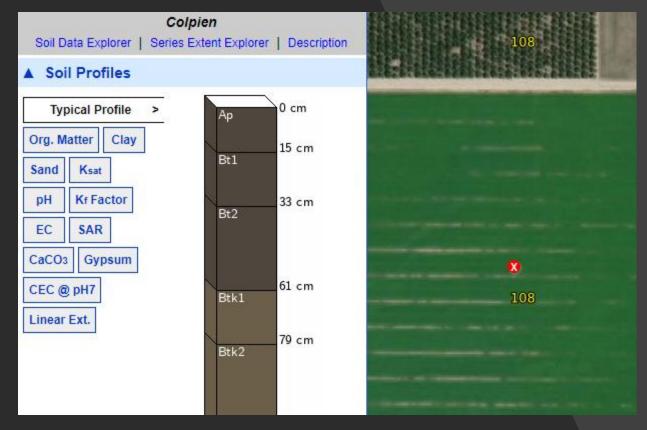


Image generated using: https://casoilresource.lawr.ucdavis.edu/

Translate yield to seasonal crop N requirement

Nitrogen Removed in Silage Corn Harvest*			
Yield (tons)	N (lbs)		
1	8.3		
32	266		
*WFH 9 th ed.			

Budgeting with a set goal

Start with the endpoint: Yield, or N yield

266 lbs N/acre

Determine your credits, start with pre-plant soil

Output: Yield: 266 lbs N/acre

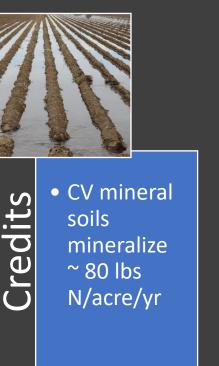
Calculate the soil fertilizer equivalent:

10 ppm x 4 x 2 ft = *80 lbs N/acre*

Multiply by a conservative efficiency factor, 70%

80 lbs N/acre * 0.7 = **<u>56 lbs N/acre</u>**

What about soil N mineralization?


Outputs:

Yield: 266 lbs N/acre

Credits:

Soil nitrate: 56 lbs N/acre

Estimate contribution from SOM: 80 lbs N/acre/yr \neq N mineralized from April 15 – August 15 growing season. Assume <u>40 lbs</u> <u>N/acre*</u>

Dutputs

Tool used:

http://geisseler.ucdavis.edu/Tomato_N_Calculator.html Literature cited: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/s

<u>https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssa</u> 018.12.0473

Remember N in irrigation water

Outputs:

Yield: 266 lbs N/acre

Credits:

Soil nitrate: 56 lbs N/acre SOM mineralization: 40 lbs N/acre

Calculate contribution from 46 in. .±

2 ppm NO3-N * 0.23 = 0.46 lbs NO3-N/acre*in. IW

Only count ETc: corn silage ETc \approx 1 acre*in./ton corn silage

32 tons * 1 acre*in. * 0.46 lbs NO3-N \approx **15 lbs NO3-N/acre**

Extra reading: https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnu

 Irrigation water = 2 ppm NO3-N

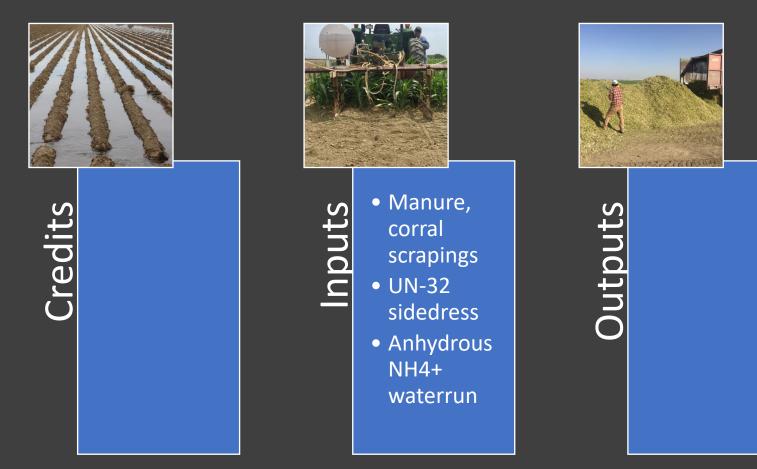
Dutputs

N inputs = (Outputs – Credits)*

Outputs:

Yield: 266 lbs N/acre

<u>Credits:</u>


Soil nitrate: 56 lbs N/acre SOM mineralization: 40 lbs N/acre

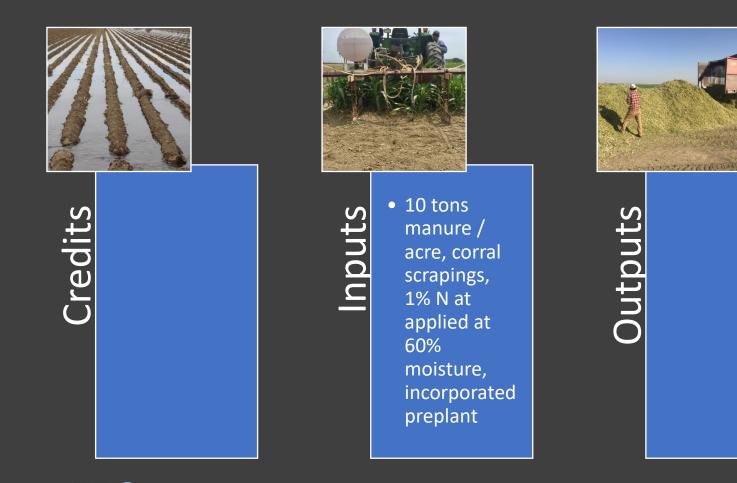
Irrigation: 15 lbs N/acre

Calculate remaining crop N requirement:

Inputs = 266 – (56 + 40 + 15) = 155 lbs N/acre...*

*Still need to account for NUE of inputs

N Use Efficiency, corral scraped manure


Calculate manure application & efficiency <u>Application:</u>

10 tons/acre of 1% N at 60% moisture (as is) =

10 tons * 0.01 = 200 lbs N/acre

Efficiency:

25% availability, year 1 = 200 lbs N * 0.25 = <u>50 lbs</u> <u>N/acre</u>

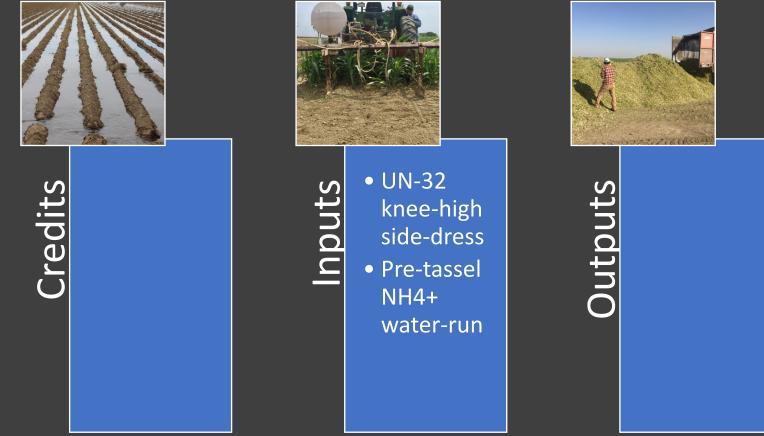
Extra reading: <u>http://manuremanagement.ucdavis.edu/Resources/Manure_Tech</u> Guidance/

The remainder made up by in-season fertilizer*

Yield: 266 lbs N/acre

<u>Credits:</u>

Soil nitrate: 56 lbs N/acre SOM-N mineralization: 40 lbs N/acre Irrigation NO₃⁻: 15 lbs N/acre Inputs:


Manure: 50 lbs N/acre Calculate remaining N requirement 266 – (111 + 50) = 105 lbs N/acre

Efficiency: 70% fertilizer NUE

105 lbs N/acre / 0.7 = 150 lbs N/acre

*Applications should be made based on soil and tissue testing levels

Extra reading: https://www.cdfa.ca.gov/is/ffldrs/frep/FertilizationGuidelines/Corn.htr

Compare what the crop sees vs. what you applied

Example Corn N Budget

<u>CATEGORY</u>	<u>ITEM</u>	In the crop (lbs N/acre)	<u>Applied (lbs N/acre)</u>
Outputs (goal)			
	Yield	266	
Credits			
	Soil Residual Nitrate	56	
	SOM Nitrogen Mineralized	40	
	Irrigation Water	15	21
Inputs			
	Manure	50	200
	Fertilizer	105	150
		A/R	<u>1.39</u>
Extra viewing: http://lecture.ucanr.edu/Mediasite/Play/fbda32cb894e4757a05648aa dcdbd0ba1d		UC CR Agriculture and Nat	a lifornia ural Resources