Sorry, but giving up meat is not going to save the planet

Frank Mitloehner, PhD
Professor & Air Quality CE Specialist
Dept Animal Science
University of California, Davis
Follow me on Twitter

@GHGGuru

Blog: https://ghgguru.faculty.ucdavis.edu
The 2050 Challenge
4.5 Billion + population of USA in 10 years

There are more people living inside this circle than outside of it.
2050 Challenge –
Population Growth by Region
Global cropland

Turning Challenges into Solutions
Global Waste: 1 out of 3 calories
40% in US
NORTH AMERICAN* FOOD LOSSES AT EACH STEP IN THE SUPPLY CHAIN

*Percentages calculated collectively for USA, Canada, Australia, and New Zealand.

01. PRODUCTION LOSSES
- GRAIN PRODUCTS: 2%
- SEAFOOD: 11%
- FRUITS & VEGETABLES: 20%
- MEAT: 3%
- MILK: 3%

02. POSTHARVEST, HANDLING AND STORAGE LOSSES
- GRAIN PRODUCTS: 2%
- SEAFOOD: .5%
- FRUITS & VEGETABLES: 3%
- MEAT: 2%
- MILK: .25%

03. PROCESSING AND PACKAGING LOSSES
- GRAIN PRODUCTS: 10%
- SEAFOOD: 5%
- FRUITS & VEGETABLES: 1%
- MEAT: 4%
- MILK: .5%

04. DISTRIBUTION AND RETAIL LOSSES
- GRAIN PRODUCTS: 2%
- SEAFOOD: 9.5%
- FRUITS & VEGETABLES: 12%
- MEAT: 4%
- MILK: .25%

05. CONSUMER LOSSES**
- GRAIN PRODUCTS: 27%
- SEAFOOD: 33%
- FRUITS & VEGETABLES: 28%
- MEAT: 12%
- MILK: 17%

**Includes out-of-home consumption

Source: Food and Agriculture Organization 2011
<table>
<thead>
<tr>
<th>A)</th>
<th>B)</th>
<th>C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water, Pea Protein Isolate*, Expeller-Pressed Canola Oil, Refined Coconut Oil, Rice Protein, Natural Flavors, Cocoa Butter, Mung Bean Protein, Methylcellulose, Potato Starch, Apple Extract, Salt, Potassium Chloride, Vinegar, Lemon Juice Concentrate, Sunflower Lecithin, Pomegranate Fruit Powder, Beet Juice Extract</td>
<td>Pea, Sweet Potato, Pea Protein, Pea Starch, Lentils, Flaxseed Meal, Sunflower Oil Preserved with Mixed Tocopherols, Calcium Carbonate, Vegetable Flavoring, Salt, Vitamins (Choline Chloride, Vitamin E Supplement, Vitamin A Supplement, Vitamin D3 Supplement, Calcium Pantothenate, Thiamine Mononitrate, Pyridoxine Hydrochloride, Riboflavin Supplement, Niacin, Folic Acid, Biotin, Vitamin B12 Supplement), Minerals</td>
<td>Water, Soy Protein Concentrate, Coconut Oil, Sunflower Oil, Natural Flavors, 2% or less of: Potato Protein, Methylcellulose, Yeast Extract, Cultured Dextrose, Food Starch Modified, Soy Leghemoglobin, Salt, Soy Protein Isolate, Mixed Tocopherols (Vitamin E), Zinc Gluconate, Thiamine Hydrochloride (Vitamin B1), Sodium Ascorbate (Vitamin C), Niacin, Pyridoxine Hydrochloride (Vitamin B6), Riboflavin (Vitamin B2), Vitamin B12</td>
</tr>
</tbody>
</table>
Can we eat our way out of climate change?

- Omnivore to vegan (per yr) = 0.8 tons CO2e
- One trans-atlantic flight (per passenger) = 1.6 tons CO2e
- Meatless Monday (US) = 0.3% GHG reduction
- Vegan US = 2.6%
STAYING VEG
lessons from former vegetarians/vegans

U.S. POPULATION
17 AND OVER

10% former vegetarians/vegans

2% current vegetarians/vegans

88% never vegetarian/vegan

There are more than 24 million former vegetarians/vegans and fewer than 5 million current vegetarians/vegans.

84% OF VEGETARIANS/VEGANS ABANDON THEIR DIET.

[These figures are devised by extrapolating survey findings to the U.S. population as a whole.]
Climate change and GHG
Emission Intensities
(direct emissions from livestock)

GTAP 2001 data base
Mitigation: interventions to improve productivity

Gill et al. (2010)
Global Warming Potential (GWP_{100}) of Main GHG

- Carbon Dioxide, CO\textsubscript{2} 1
- Methane, CH\textsubscript{4} 28
- Nitrous Oxide, N\textsubscript{2}O 298
Carbon Dioxide and Carbon Flux

Source: Rohde. 2007
GLOBAL METHANE BUDGET

TOTAL EMISSIONS

558 (540-568)

CH₄ ATMOSPHERIC GROWTH RATE
10
(9.4-10.6)

TOTAL SINKS

548 (529-555)

105 (77-133)

188 (115-243)

34 (15-53)

167 (127-202)

64 (21-132)

Fossil fuel production and use
Agriculture and waste
Biomass burning
Wetlands
Other natural emissions

Sink from chemical reactions in the atmosphere
Sink in soils

EMISSIONS BY SOURCE
In million-tons of CH₄ per year (Tg CH₄ / yr), average 2003-2012

Anthropogenic fluxes
Natural fluxes
Natural and anthropogenic
Fossil CO$_2$ has accumulated in the atmosphere as we have exceeded the ability of plants and the ocean to take up new CO$_2$.

CO$_2$ (Carbon Dioxide)

- Photosynthesis
- Methane

Carbohydrates

- Fossil fuels (old photosynthetic carbon - 100 to 200 million years old - not in the carbon cycle)

Oceans
Livestock is a significant source of methane, a potent but short-lived greenhouse gas. from www.shutterstock.com, CC BY-SA

Why methane should be treated differently compared to long-lived greenhouse gases
National-Level U.S. GHG Inventory

Source: EPA (2016)