

IMPACT OF RED BLOTCH DISEASE ON GRAPE AND WINE COMPOSITION AND QUALITY

ANITA OBERHOLSTER

Foothills Grape Day 2016: Healthy Vines, Fine Wines Amador County Fairgrounds, Spur Emporium Building May 18th, 2016

Introduction

- Grapevine red blotch-associated virus (GRBaV)
 - Red Blotch disease was first described in Cab Sauv, Zin and Cab Franc in New York and California (1)
 - A DNA virus (GRBaV) was shown to be the causal agent of red blotch diseases (2)
 - Widespread in vineyards in USA and Canada

(1) Al Rwahnih et al., (2013) Phytopath. 103: 1069-1076

(2) Fuchs (2013) http://lecture.ucanr.org/Mediasite/Play/7e6250539e5e4676ad4cd888051164c1d

Introduction

• Red Blotch disease symptoms

• RB disease shows symptoms similar to leafroll disease

 Unlike leafroll - RB show red veins on leaf undersides and no rolling

Introduction

Red Blotch disease spread

- Widespread occurrence of Red Blotch disease indicate primary spread through propagation (1)
- Increase incidence in young healthy vines adjacent to infected vineyards suggest vector (3)
- 3-cornered alfalfa treehopper (*Spissistilus festinus*) have recently be shown to be able to spread the disease (Bahder and Zalom)

- (1) Al Rwahnih et al., (2013) Phytopath. 103: 1069-1076
- (3) Poojaric et al. (2013) PLosONE 8: e64194

Perceived impact of RB disease on grape composition

- $\cdot \downarrow$ Sugar accumulation
 - · As much 4-5 °Brix less
 - \cdot Delay in ripening
- $\cdot \downarrow Color development$
- $\cdot \uparrow TA$
 - \cdot Current research show not always true
 - $\cdot \uparrow$ Malic acid
 - \cdot True for CH and CS, not Zin

UCDAF9r CH, Jyield

Practices to negate impact of RB disease?

- Dropping 50% of crop
 - Seems to have no impact (CH, CS)
- Other practices? (none formally investigated so far)
 - Pruning?
 - Nutrients?

Study objectives

- To determine the impact of GRBaV on the composition of grapes at harvest and the resulting wines
- To investigate potential sensory and quality differences between wines made from GRBaV positive and negative grapes

Experimental layout

- Virus testing (GRBaV and GRLaV) of subset vines to determine GRBaV (+) and (-) sample plots
- Sample grapes at harvest
 - · Chemical panels
 - Metabolomics analysis (primary and secondary metabolite profile)
 - · Phenolic profile (AH-assay, RP-HPLC)
 - Tannin composition (SPE isolation, phloroglucinolysis)

Experimental layout

- Winemaking from GRBaV (+) and (-) grapes
 - Chemical analyses similar to grapes (previous slide)
 - \cdot Descriptive sensory analysis
 - Correlate wine composition with sensory attributes
 - · Impact of GRBaV on wine style/quality

Experimental layout

Variety (site #)	Source County	Grape Sampling	Winemaking
Chardonnay 1a	Sonoma	Yes	Yes
Chardonnay 1b	Sonoma	Yes	No
Chardonnay 2	Sonoma	Yes	No
Merlot 1	Napa	Yes	No
Merlot 2	Napa	Yes	Yes
Cab Sauv 1	Napa	Yes	Yes
Cab Sauv 2	Napa	Yes	Yes

Red Blotch symptoms – Chardonnay Site 1a

Red Blotch symptoms – Site 1 Cab Sauv

Results: Grape chemical composition

Sample	GRBaV Status	Harvest Date	°Brix	рН	TA (g/L)
Chardonnay 1a	-	12-Sep-14	24.4	34	6.0
	+	12-Sep-14	23.0	↓6%	6.7
Chardonnay 1b	-	11-Sep-14	23.0	2 /	6.6
	+	11-Sep-14	22.5	↓2%	6.9
Chardonnay 2	-	16-Sep-14	24.1	> 3	7.8
	+	16-Sep-14	24.2	0%	8.9

- ↓°Brix 0-6% GRBaV(+) CH grapes
- Small differences in pH
- TA in GRBaV(+) grapes

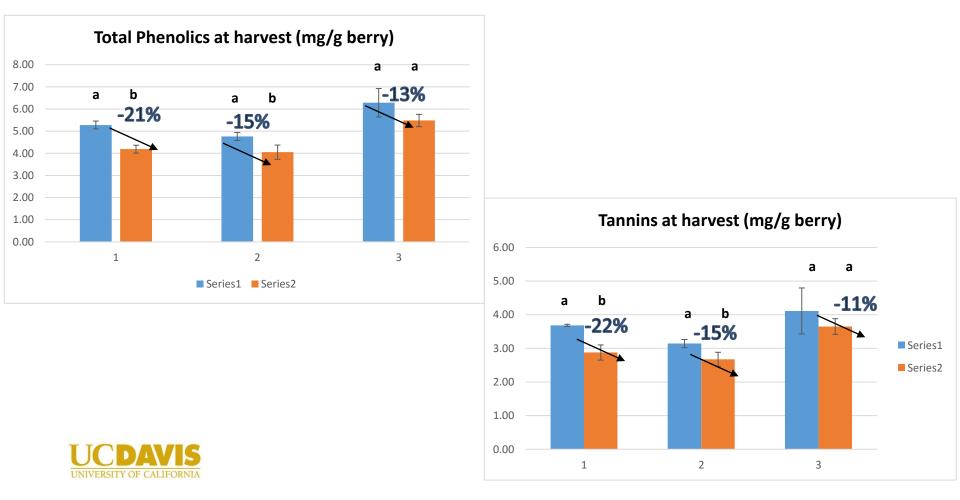
Results: CH 1a chemical composition

CH 1a	GRBaV Status	Harvest Date	°Brix	рН	TA (g/L)
2014	-	12-Sep-14	24.4	34	6.0
	+	12-Sep-14	23.0	↓6%	6.7
2015	-	9-Sep-15	25.7	25	5.3
	+	9-Sep-15	23.6	√8% J.U	6.3

- For both years a \downarrow° Brix 6-8% GRBaV(+) CH grapes
- Small differences in pH
- TA in GRBaV(+) grapes

Results: Grape chemical composition

Sample	GRBaV Status	Harvest Date	°Brix	рН	TA (g/L)
Merlot 1	-	29-Aug-14	25.0	36	3.2
	+	29-Aug-14	21.1	↓16%	3.6
Merlot 2	-	26-Sep-14	24.9	↓6%	4.2
	+	26-Sep-14	23.5	3.5	4.7
Cab Sauv 1	-	18-Sep-14	25.7	ວວ ↓ 20%	7.8
	+	18-Sep-14	20.6	√20%	8.6
Cab Sauv 2	-	7-Oct-14	26.3	↓4%	4.8
	+	7-Oct-14	25.2	3.0	4.9

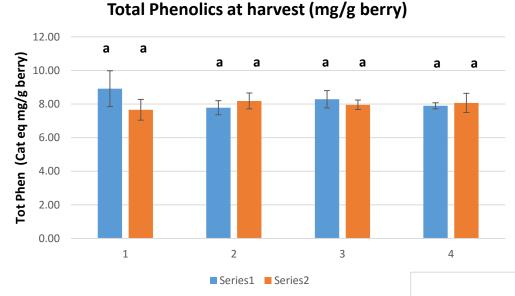

- \downarrow °Brix 6-16% GRBaV +) ME and 4-20% in CS grapes
- Small differences in pH
- \uparrow TA in GRBaV(+) grapes

Results: Grape chemical composition

CS 2	GRBaV Status	Harvest Date	°Brix	рН	TA (g/L)
2014	-	7-Oct-14	26.3	3.6	4.8
	+	7-Oct-14	25.2	↓4%	4.9
2015	-	21-Sep-15	26.0	↓14%	4.3
	+	21-Sep-15	22.4	3.7	4.4

- Both years ↓°Brix 4-14% GRBaV (+)
- Small differences in pH
- TA in GRBaV(+) grapes

Results: CH grape composition - AH assay

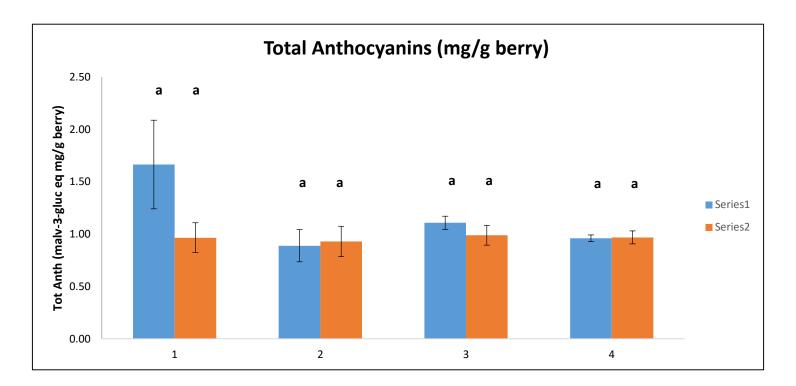


• Bars with the same letter indicate no significant difference within a site

Results: Red grape composition - AH assay

Tannin (Cat eq mg/g berry)

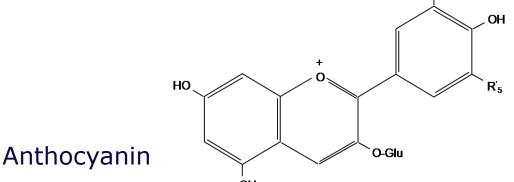
0.00



Tannins at harvest (mg/g berry) 8.00 а а а а 7.00 а а а а 6.00 5.00 Series1 4.00 Series2 3.00 2.00 1.00

 Bars with the same letter indicate no significant difference within a site

Results: Red grape composition - AH assay



• Bars with the same letter indicate no significant difference within a site

Results: Grape composition RP-HPLC

- RP-HPLC results of individual phenols support AH-assay
 - Mostly small differences
 - When significant RB(-) > RB(+)
 - <u>CH 1b and 2</u> flavan-3-ols RB(-) > RB(+)
 - · <u>CS 1</u> flavan-3-ols, Tot anth, pol pigm RB(-) > RB(+)
- Variable response to RB disease within a variety

OH

OH

OH

H

OH

OH

►H ∽OH

H

ÓН

Interflavan bond

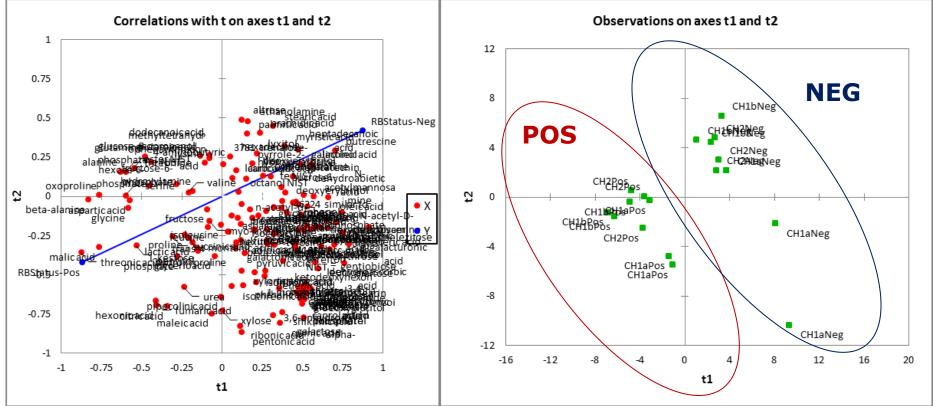
.OH

 $n = 0 \ 1 \ 2$

H

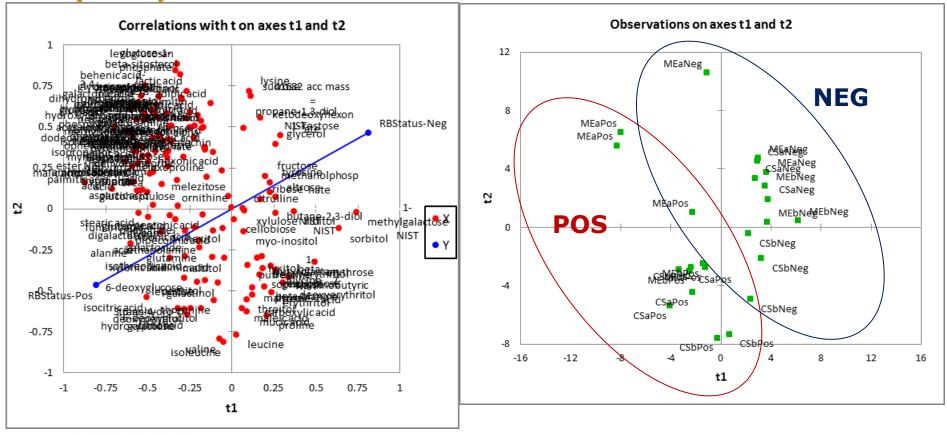
он но.

Procvanidin: R = H


Prodelphinidin: R = OH

Results: Grape composition phloroglucinolysis

- Tannin analysis showed signf differences among diffr varieties
 - No diffr due to disease status of grapes (mDP, % gallo units, % galloylation)
- It looks as if tannin composition similar
 - However method limitations



PLS-DA of metabolomics grape data (white)

PLS-DA of metabolomics grape data (red)

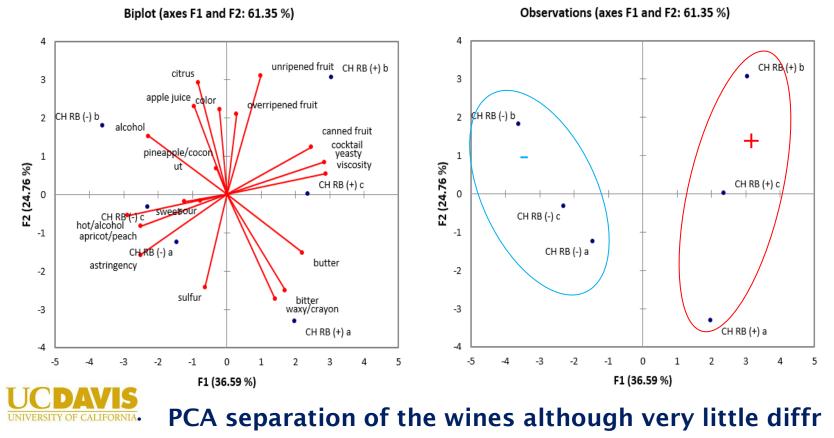
Results: Wine chemical composition

Wine	GRBaV Status	EtOH% (v/v)	рН	TA (g/L)	RS (g/L)	AA (g/L)
CH 1a	-	$16.1 \pm 0.2^*$	3.6 ± 0.2*	5.2 ± 0.1	1.9 ± 0.2*	$0.1 \pm 0.0*$
	+	$15.4 \pm 0.0*$	3.8 ± 0.2*	5.6 ± 0.0	$1.1 \pm 0.2^{*}$	$0.1 \pm 0.0^{*}$
ME 2 (b)	-	$15.3 \pm 0.1*$	3.7 ± 0.2	5.2 ± 0.1	0.2 ± 0.0	0.0 ± 0.0
	+	$14.1 \pm 0.1^*$	3.7 ± 0.2	5.3 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
CS 1 (a)	-	$14.6 \pm 0.3^*$	3.2 ± 0.2*	7.4 ± 0.0	0.1 ± 0.0	$0.1 \pm 0.0^{*}$
	+	$13.0 \pm 0.1^*$	3.2 ± 0.2*	7.1 ± 0.4	0.1 ± 0.0	$0.1 \pm 0.0^{*}$
CS 2 (b)	-	$15.8 \pm 0.1^*$	3.9 ± 0.2*	4.8 ± 0.0*	0.3 ± 0.0	$0.1 \pm 0.0^{*}$
	+	$14.9 \pm 0.0^{*}$	3.7 ± 0.2*	5.5 ± 0.5*	0.2 ± 0.0	$0.1 \pm 0.0*$


CH = Chardonnay; CS = Cabernet Sauvignon; ME = Merlot *Indicate significance at n < 0.05 within a site

Results: Phenol analysis of wines

- CH only exhibited small differences (RP-HPLC) due to white winemaking protocols
- For both CS sites RB(+) wines signf < pol pigm + phenols
 - Not supported by AH-results
- · CS 2 RB(+) signf < anth > quer-glyc

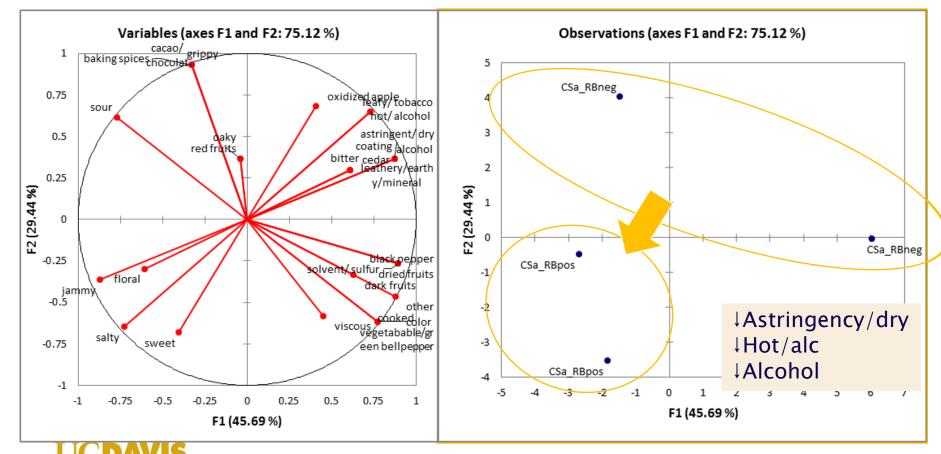


PLS-DA of wine metabolomics data

White wine sensory data PCA scores and loading plot

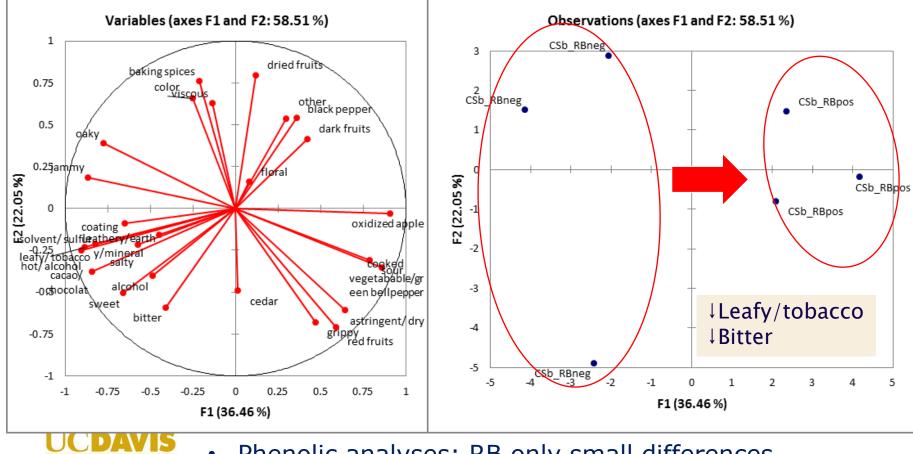


• Only 1 out of 18 attributes sigf diffr


Corrected F values for red DA attributes

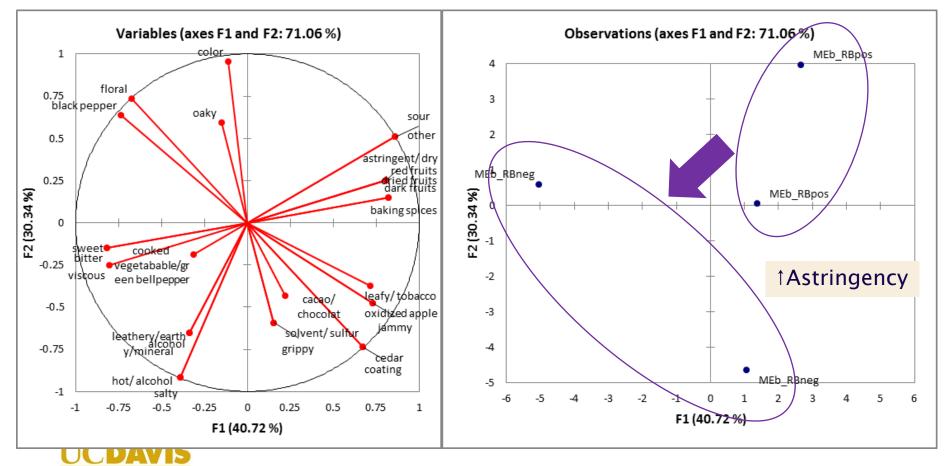
Attributes	F value wine	Significant
red fruits	1.184	no
dark fruits	1.393	no
dried fruits	2.744	yes**
oxidized apple	0.484	no
jammy	0.654	no
cooked vegetables/green bellpepper	1.551	no
leafy/tobacco	2.382	no
ceder	1.085	no
leathery/earthy/mineral	0.874	no
okay	0.970	no
alcohol	3.405	yes***
solvent/sulfur	0.520	no
baking spices	0.586	no
black pepper	0.805	no
cacao/chocolate	1.666	no
floral	1.135	no
sweet	1.994	yes
sour	3.798	yes
salty	1.418	no
bitter	1.753	no
coating	2.205	yes*
viscous	0.579	no
astringent/dry	6.484	yes***
grippy	2.205	yes*
hot/alcohol	2.587	yes**
color	1.630	no

PCA score plot



PCA: Descriptive analysis of CS (1)a

• Phenolic analyses: RB \ [tannin], [pol pigments] and % Alc


PCA: Descriptive analysis of CS (2)b

- Phenolic analyses: RB only small differences
 ↓ [anth], [pol pigments], [flavanols]
- 1 [tannin]. [flavonols]. % Alc

UNIVERSITY OF CALIFORNIA

PCA: Descriptive analysis of ME (2)b

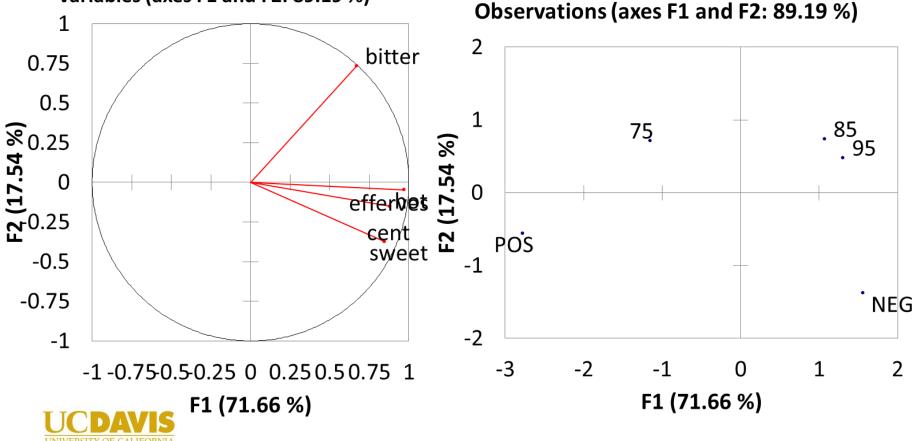
UNIVERSITY OF CALIFORNIA

 Phenolic analyses: RB(+) ↑ in most phenols including [tannin], [anth]

In Summary

- Relation between RB disease expression (phenology) and compositional and quality impact
 - qPCR indicated similar levels of GRBaV
- Results indicate RB impact is not variety but site specific
- Untargeted metabolomics indicated large impact on primary metabolites
 - · Organic acids
 - Sugars
 - $\cdot \,$ Amino acids

 Polysaccharides
 UCDAVIS
 Some volatile and non-volatile secondary metabolites (phenols, aroma precursors)


Next Steps

- · Determine seasonal impact
- Relation between phenological expression and altered grape and wine composition and quality
- How to deal with RB infection in the vineyard
 - Selective harvesting?
 - Making wine with 0, 5, 15 and 25% RB(+) fruit included
 - · Chemical (volatile and non-volatile) and sensory profiling

Averaged fermentation reps – signf attributes

Variables (axes F1 and F2: 89.19%)

Next Steps

- Make wines from RB (+) and (-) grapes with the same sugar content
- Continue to explore impact of site on variety impact
 - · Find correlation with soil, nutrient.....
- Targeted analysis combined with transcriptomics to identify metabolic pathways altered by RB disease resulting in changes in biochemical composition
- Use impact on gene expression to develop potential counter measures

Acknowledgements

- · AVF funding
- Napa Valley Grapegrowers
- Monica Cooper
- Rhonda Smith
- · Raul Girardello
- · Larry Lerno
- Linda Bisson
- · Karen Block
- Hildegarde Heymann

THANK YOU

