## **UC Cooperative Extension Update: Foothill Wine Grape Research Projects**

Lynn Wunderlich UC Cooperative Extension Farm Advisor El Dorado and Amador Counties *Foothill Grape Day 6/9/11* 

University of California

## Thanks to:

- Amador Wine Grape Growers Association
- Betsy Tsumbas, Beth Rosenthal, Pat Rohan
- Amador Fairgrounds
- Donating Wineries
- *All* of our speakers
- Robin Cleveland 🛧

Packets: Please fill out the gold comment postcard and return to me!!

EGVM posters available to post in your farmshed.



#### What's happening with the WEATHER? National Weather Service "daily observer"site near Camino May 15, 2011



Max: 56° Min: 32° Observ:35° 3.5 in. snow

#### Average Max Air Temp, Average Min Air Temp, Average Air Temp (all 'F) and Total Precipitation (in.) for the month of <u>May</u> 1990-2011. *Camino CIMIS station data.*



Comparison of foothill CIMIS stations, Diamond Springs (DS), Plymouth (PLY) and Camino (CA): Montly average max, min, and average air temperature and total precipitation, Nov 2010-May 2011.



#### **Comparison of CIMIS stations: Diamond Springs, Plymouth and Camino, Precip. Nov 2010-present**

| Month  | Diamond |          |        |
|--------|---------|----------|--------|
|        | Springs | Plymouth | Camino |
|        | precip  | precip   | precip |
| Nov-10 | 3.76    | 2.15     | 6.02   |
| Dec-10 | 7.99    | 0.32     | 13.94  |
| Jan-11 | 2.26    | 1.39     | 2.6    |
| Feb-11 | 4.04    | 2.22     | 5.47   |
| Mar-11 | 11.58   | 3.17     | 15.24  |
| Apr-11 | 0.69    | 0.43     | 1.65   |
| May-11 | 2.66    | 1.16     | 3.35   |
| sum    | 32.98   | 10.84    | 48.27  |



UCCE Foothill Grape Research Project Summary Recurrent theme: What's causing the "Red Leaf" phenomenon? *Increasing our knowledge over time* 

- Nutritional deficiencies: can we mitigate symptoms and show petiole uptake with fertilizing?
  - Understanding foothill soils and potential for nutrient management recommendations based on soil type
- **Leafroll virus: which species are present here?** 
  - Mealybugs and other potential leafroll vectors **Phylloxera**?
  - Gill's mealybug biology and management

New collaboration: Pierce's Disease cold curing study

## **Case study: What's causing the red leaf?** (nutritional deficiency or leafroll virus or?)

## **Background: Grapevine leafroll associated virus (GLRaV)**

• Transmitted by planting or grafting infected material and by mealybugs or scale

(vector-lr species specific).

- Symptoms appear in fall as "red leaf"; reduced yield, poor color, and sometimes trouble with Brix, ripening.
- Currently 9 distinct virus species GLRaV-1 to GLRaV-9
- Detection methods continue to improve-vary in accuracy to pick up virus.







# Leafroll and other viruses can cause "red leaf" symptoms

What symptoms you see depends on:

- Time of year
- Rootstock, scion and the interaction
- Stress of the vine (drought conditions, other pest issues, etc.)

"worse some years than others"

- Nutritional status.
- Viruses are unevenly distributed
  - In the vine
  - In the vineyard
- Some viruses can be present but asymptomatic
- Not much known about a lot of other viruses->50 viruses known in grape.



#### Nutrient deficiencies can look similar and confuse the picture





Potassium deficiency Cab Franc Pete Christensen **Boron deficiency** 



Phosphorous deficiency Cab. Sauvignon P. Christensen

## **Case study: What's causing the red leaf?** (nutritional deficiency or leafroll virus or?)

## "Red Leaf" case study

- Located in SE El Dorado County
- Boomer-Sites soils series -tend to be P deficient
- Two blocks, Primitivo on St. George and Barbera on 1103P, St. George, 110R
- Planted in 2002, "Red leaf" showing up beginning in 2007 across both varieties
- Several Barbera clones, some certified scions; rootstocks not certified
- Petiole history inconsistent
- LR virus tested by Golino lab using PCR (Oct. 2009): 3 samples, one + for GLRaV-5

| Date<br>sampled | Variety   | Total % P | Total % | K    |
|-----------------|-----------|-----------|---------|------|
| 5/28/2009       | Barbera   | 0.54      |         | 3.13 |
| 5/27/2008       | Barbera   | 0.34      |         | 1.86 |
| 6/11/2006       | Barbera   | 0.39      |         | 1.44 |
|                 |           |           |         |      |
| 5/28/2009       | Primitivo | 0.76      |         | 4.4  |
| 5/27/2008       | Primitivo | 0.21      |         | 1.1  |
| 6/11/2006       | Primitivo | 0.18      |         | 1.07 |

Christensen threshold for P is 0.15-0.20 (DellaValle 0.2-0.5)

For K is 1.5 (DellaValle 2-3)

## Barbera positive for GLRaV-5



Negative Barbera



#### Negative Primitivo



#### P &K fertilizer trial: Can we mitigate red leaf and/or see uptake in petioles?

5 replicates, 9 vines/plot, sampled middle Babera and Primitivo

Treatments:

- Untreated
- 0.15 lb actual P per vine (1/3 lb P per vine 0-45-0)
- 1.25 lb actual K per vine(2.5 lb of 0-0-50 KS04)
- 0.15 lb P + 1.25 lb. K
- 2.5 lb. K
- 0.15 lb P + 2.5 lb. K



#### Fertilizer applied March 1, 2010 Petioles sampled June 14, 2010





## Fertilizer results

|                                                    |                       | Total       | Total       |  |  |
|----------------------------------------------------|-----------------------|-------------|-------------|--|--|
|                                                    |                       | %           | %           |  |  |
| Description                                        |                       | Р           | K           |  |  |
|                                                    | Treatment             |             |             |  |  |
| Sampled 6/14/2010                                  |                       |             |             |  |  |
| Barbera 1 Pet                                      | Untreated             | <u>0.41</u> | <u>3.66</u> |  |  |
| Barbera 2 Pet                                      | 0.15 lb P             | 0.64        | 3.92        |  |  |
| Barbera 3 Pet                                      | 1.25 lb. K            | 0.44        | 3.92        |  |  |
| Barbera 4 Pet                                      | 0.15 lb P+ 1.25 lb.K  | 0.63        | 3.89        |  |  |
| Barbera 5 Pet                                      | 2.5 lb. K             | 0.48        | 3.83        |  |  |
| Barbera 6 Pet                                      | 0.15 lb P + 2.5 lb. K | 0.59        | 3.98        |  |  |
| Primitivo 1 Pet                                    | Untreated             | <u>0.54</u> | <u>1.63</u> |  |  |
| Primitivo 2 Pet                                    | 0.15 lb P             | 0.73        | 1.71        |  |  |
| Primitivo 3 Pet                                    | 1.25 lb. K            | 0.52        | 2.43        |  |  |
| Primitivo 4 Pet                                    | 0.15 lb P+ 1.25 lb.K  | 0.66        | 2.01        |  |  |
| Primitivo 5 Pet                                    | 2.5 lb. K             | 0.44        | 1.87        |  |  |
| Primitivo 6 Pet                                    | 0.15 lb P + 2.5 lb. K | 0.58        | 1.67        |  |  |
| Barbera on 1103P, Primitivo is on St. George       |                       |             |             |  |  |
| 1103P tends to increase P uptake in literature     |                       |             |             |  |  |
| St George tends to increase K uptake in literature |                       |             |             |  |  |

Petiole sampling is a valuable tool:

P uptake demonstrated in both trials.

K higher in all treatments; rootstock effect. \*\*Thank you to DellaValle Lab

Christensen threshold for P is 0.15-0.20 (DellaValle 0.2-0.5)

For K is 1.5 (DellaValle 2-3)

10/11/2010

#### Barbera Untreated

#### Barbera 0.15 lb P + 2.5 lb. K



## Grapevine Leafroll Associated Virus Studies



### Recall 2008:Local "red leaf" investigation with Amador growers

- 12 blocks: various symptoms; scion/rootstock combinations; fertilizer practices.
- Complaints: won't ripen, can't get sugar levels up, "chocolate to burnt" leaf color symptoms; turns red after verasion.
- Sampled for virus panel 9/24/08 and sent to Golino lab
- Goal: to identify which viruses are present in the region.



### 2008 virus testing results (PCR method)

Leafroll virus testing results:

- Several samples + for
  - GLRaV-2, graft transmissible. (not mealybug vectored)
- A few samples + for
  - GLRaV-3, which is graft and mealybug transmitted.

Other virus testing results:

- Several samples + for - GVB.
- A couple samples + for
  - GVD, gives red leaf symptoms.
- Several samples + for
  - GFkV. (mealybug transmitted?? Symptoms in V. rupestris; otherwise not economically important...we think)
- Several samples + for
  - RSPaV (common; not economically important?)

Almost all samples that were positive for one virus *also were positive for at least one* other virus.

#### 2008 conclusions: What does this all mean?

- Viruses in grapevines are *really common*.
- Our knowledge is relatively "young"-only researched for 20-30 years and detection is improving.
- We do not know much about other vectors (i.e. Phylloxera?)
- Use CERTIFIED WOOD if you can.
- Do not top work graft onto rootstock that had a scion that showed virus symptoms. Rootstock
- If field selected, visit the field the fall before and flag vines without symptoms to take budwood from.
- Remember you still may see symptoms if you use a different rootstock, or if your cultural conditions are different (i.e. leafroll doesn't show symptoms on own rooted).

#### 2010 Collaborating Projects: Investigating Grapevine Leafroll Associated Virus (GLRaV) Genetic Diversity and Distribution Rodrigo Almeida, Monti Sharma, Breanna Baraff, Kent Daane, John Hutchinson (UC Berkeley)



Research questions: What species of *Grapevine leafroll-associated virus* are present in Amador, El Dorado, San Luis Obispo, and Lodi California?

**Hypothesis:** *Grapevine leafroll-associated virus-3* is the most prevalent species of the virus in California.

## Methods



## Samples Collected Fall 2010

| Varieties sampled:<br>Barbera        | Site                  | Number of<br>Vineyards                 | Total Samples |
|--------------------------------------|-----------------------|----------------------------------------|---------------|
| Cabernet Franc<br>Gamay              | San Luis Obispo       | 5                                      | 149           |
| Merlot<br>Petite Sirah               | Lodi                  | 8                                      | 167           |
| Pinot Noir<br>Primitivo<br>Zinfandel | Amador & El<br>Dorado | 12<br>(4 in Amador,<br>8 in El Dorado) | 232           |

Total: 548



Samples NOT random; collected from suspect sites with symptoms.

## 2010 RESULTS: ALMEIDA LAB

## % Positive Sites



## **Species of GLRaV**



## **Multiple Species Infections**



## **Strains** *GLRaV-3*

- San Luis Obispo: strains A, B, C, E
- Lodi: strains A, B, C, G
- Amador & El Dorado: strains A, B, C
- Strains in these regions aren't unique, they have been found around the world

## Why should you care?

#### Pinot Noir

![](_page_32_Picture_2.jpeg)

### What about our case study site?

![](_page_33_Picture_1.jpeg)

## What about our case study site?

- Included in 2010 Berkely RNA fragment analysis
- Originally came back negative
  - Sampled late in season (Nov. )-virus titer low?
  - Virus titer unevenly distributed in vine (one petiole sampled per vine)
- Spoke with Monti Sharma (UCB), requested a second look
- Monti found 2 samples via sequencing and newly designed sequencing primers correlating with LR-5, possibly a new strain (current detection primers could not detect)
- Possible other effects: drought induced nutritional deficiency? B deficiency in Primitivo?

#### Collaborating project: Testing Phylloxera for leafroll transmission Kent Daane and Christina Wistrom, UC Berkeley

![](_page_35_Picture_1.jpeg)

## Phylloxera

- Tiny, aphid-like insect, *Daktulosphaira vitifoliae*
- Feeds on *Vitis vinifera* roots-stunting vines, sometimes killing them.
- Why rootstocks developed
  - St. George (V. rupestris)
  - 110R (V. berlandieri x V. rupestris)
  - 3309C (V. riparia x V. rupestris)

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_8.jpeg)

## **Can Phylloxera transmit leafroll virus?**

- 13 vines from 4 blocks sampled in Amador county in Nov., 2010
- Blocks showed suspect signs of Phylloxera *and* leafroll *and* were own-rooted *and* not treated for Phylloxera
- Petioles and roots sampled and were tested for leafroll virus (strains 1, 2, 3, 5 and 9) using rapid RNA technique
- Roots washed and inspected for Phylloxera nymphs
- Phylloxera nymphs recovered were tested for leafroll virus

![](_page_38_Picture_0.jpeg)

## Results

- 23% sampled vines had Phylloxera recovered from roots (even in apparently sandy soils).
- None of the roots or the Phylloxera tested positive for leafroll.
- 38% of the sampled petioles tested positive for leafroll.
- All positives were for GLRaV-2
- Will repeat this year.

#### Conclusions

#### Increasing our local knowledge of "red leaf"

- Leafroll virus is common in the foothills
- GLRaV-1, 2, 3 (a,b,c), 5,9 found in our region
- Multiple infections common
- Mealybugs (vectors) becoming more prevalent
  - Viable management options that preserve parasitiods demonstrated

![](_page_40_Picture_7.jpeg)

Applaud, Assail

- Future work testing Gill's mealybug for transmission ability
- So far Phylloxera negative for transmission ability
  - Testing continuing this year
- Sampling petioles at flowering will pick up fertilizer management

![](_page_40_Picture_13.jpeg)

#### Looking back at 2008 conclusions: What does this all mean?

- Viruses in grapevines are *really common*.
- Our knowledge is relatively "young"-only researched for 20-30 years and detection is improving.
- We do not know much about other vectors (i.e. Phylloxera?)
- Use CERTIFIED WOOD if you can.
- Do not top work graft onto rootstock that had a scion that showed virus symptoms. Rootstock <----- Scion
- If field selected, visit the field the fall before and flag vines without symptoms to take budwood from.
- Remember you still may see symptoms if you use a different rootstock, or if your cultural conditions are different.

![](_page_42_Picture_0.jpeg)