Landscape trees & climate change: selection and management

Igor Laćan Urban Forestry Advisor UCCE San Mateo/San Francisco

UC CE

University of California Agriculture and Natural Resources

Cooperative Extension

With slides from

Dr. Larry Costello UCCE emeritus

Dr. **Joe McBride** Professor, UCB

Drs. **Oki** and **Fujino** UC Davis

ilacan@ucanr.ed u 510 684 4323

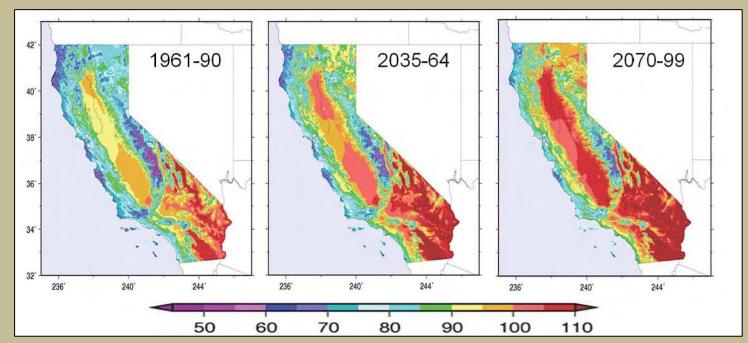
outline

We are discussing ornamental trees in residential landscapes; NOT wildlands forests, timber plantations, agriculture, orchards!

- 1 Street trees & climate change study: what we learned from space-for-time substitution
- 2 ...what do the study results suggest for individual landscapes
- 3 ... and how to establish your trees and maintain them during the drought

basic ideas	
warmer climate = challenge to trees and to management	but we still will be able to grow trees
mortality is unfortunate but normal	not an excuse for not (re)planting!
manage the factor(s) in tree loss (those that you can manage)	species selection? site conditions? management?
droughts will recur, perhaps more frequently	help your trees survive!

. . . .


outline

We are discussing ornamental trees in residential landscapes; NOT wildlands forests, timber plantations, agriculture, orchards!

1 Street trees & climate change study: what we can learn from space-for-time substitution

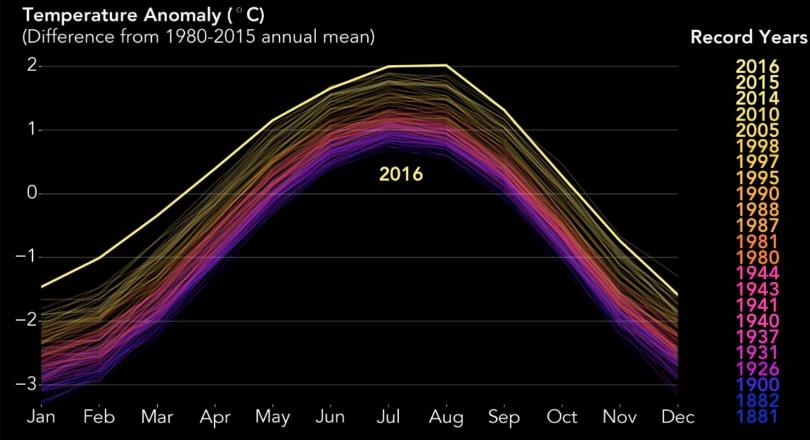
- 2 ...what do the study results suggest for individual landscapes
- *3 ...and how to establish your trees and maintain them during the drought*

Temperature Patterns & Planning for the Future: Street Trees and California's Changing Climate

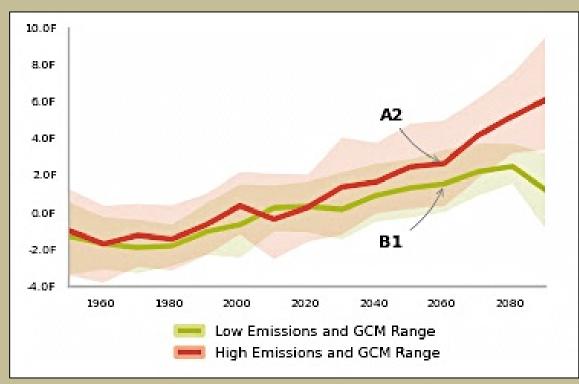
Joe R. McBride and Igor Lacan

Department of Landscape Architecture and Environmental Planning

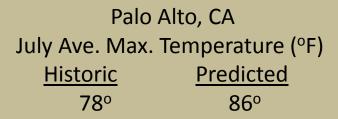
and


University of California Cooperative Extension

University of California


2015 Far Eclipsed 2014 As World's Hottest Year, Climate Scientists Say

Global Warming Blamed for System That


336 13 0°F -14 36

Problem Facing California' Urban Forests Increasing Temperature

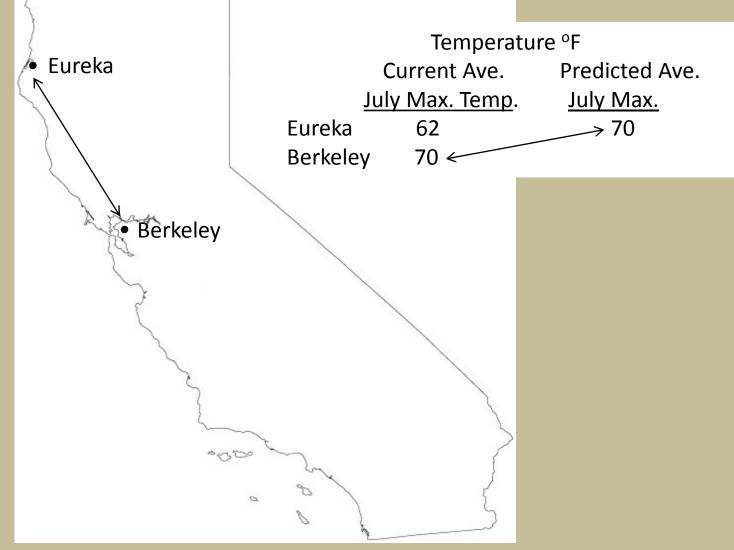
from: Cal-adapt.org

Heat Injury

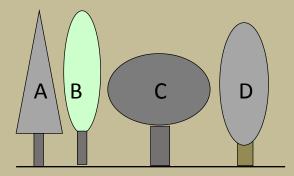
Oak

from: Michigan State University Extension (msue.anr.msu.edu)

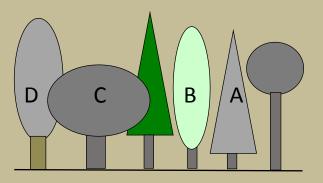
Objective


To identify tree species in California cities that are not expected to survive as the climate becomes warmer.

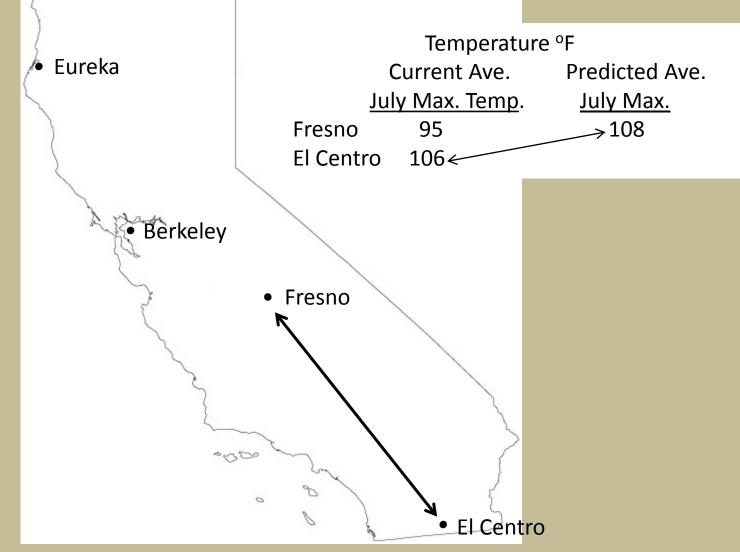
Method

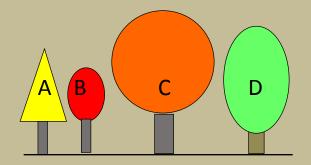

Compare tree species composition of "example" cities in each climatic zones of California to the species composition of cities that are currently as warm as the example cities will be in 2100 ("warm cities").

If any "example" city tree species is currently absent from the "warm" city, we shall conclude that it will not survive in the "example" city as the climate becomes warmer.

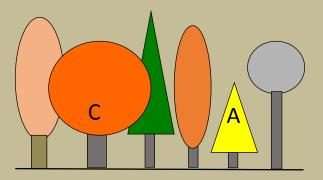

Example: Eureka "substituting space for time"

Urban Forest Composition

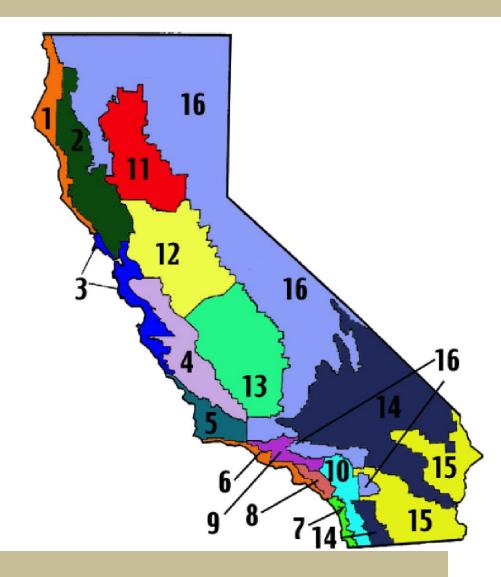

Eureka "Example" city for Zone 1


Berkeley "Warm" city

Conclusion: Street trees in Eureka will survive and perform well as the temperature becomes warmer.


Example: Fresno *"substituting space for time"*

Urban Forest Composition


Fresno Example city for Zone 13

El Centro "Warm" city

Conclusion: Two of the common street trees in Fresno (B, D) will not survive as the temperature becomes warmer.

Cities Selected as Example Cities

Climate	Example City
Zone	
1	Eureka
2	Ukiah
3	Berkeley
4	King City
5	Santa Maria
6	Santa Monica
7	San Diego
8	Santa Ana
9	Burbank
10	Riverside
11	Yuba City
12	Stockton
13	Fresno
14	Barstow
15	El Centro
16	Susanville
	1 🗆

Historic and Predicted July Average Maximum Temperatures

Climate	Example City	Historic July	Predicted July
Zone		Ave. Maximum	Ave. Maximum
		Temp. (°F)	Temp. (°F)
1	Eureka	61.9	68.9
2	Ukiah	89.7	96.2
3	Berkeley	70.3	80.4
4	King City	85.7	93.7
5	Santa Maria	76.3	80.4
6	Santa Monica	70.5	82.0
7	San Diego	74.0	83.8
8	Santa Ana	82.3	86.9
9	Burbank	86.2	95.2
10	Riverside	91.9	100.8
11	Yuba City	93.5	106.7
12	Stockton	90.4	101.7
13	Fresno	95.4	107.9
14	Barstow	99.5	112.5
15	El Centro	106.0	115.6
16	Susanville	88.7	97.7

Example City and "Warm" Cities

Climate Zone	Example City	"Warm" City
1	Eureka	Berkeley
2	Ukiah	Fresno
3	Berkeley	Santa Ana
4	King City	Stockton
5	Santa Maria	Santa Ana
6	Santa Monica	King City
7	San Diego	Santa Ana
8	Santa Ana	Burbank
9	Burbank	Fresno
10	Riverside	Barstow
11	Yuba City	El Centro
12	Stockton	Barstow
13	Fresno	El Centro
14	Barstow	El Centro
15	El Centro	Furnace Creek
16	Susanville	Barstow

Number of Tree Species

Climate Zone	Example City	Number of
		Species
1	Eureka	56
2	Ukiah	85
3	Berkeley	71
4	King City	55
5	Santa Maria	49
6	Santa Monica	68
7	San Diego	63
8	Santa Ana	42
9	Burbank	47
10	Riverside	62
11	Yuba City	79
12	Stockton	65
13	Fresno	57
14	Barstow	31
15	El Centro	28
16	Susanville	57

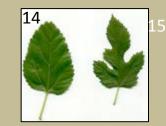
Most Common Species in the Example Cities

Purple Leaf Plum

Southern Magnolia

Crape Myrtle

Crape Myrtle


London Plane Tree

Moreton Bay Fig

Mexican Fan Palm

White Mulberry

Sweetgum

Mexican Fan Palm

Redwood

Silver Wattle

London Plane Tree

London Plane Tree

London Plane Tree

Siberian Elm

Common Eureka Street Trees and their Occurrence in Berkeley

Common Name	Example City Zone #1	Warm City	
	Eureka	Berkeley	
Apple	+	+	
Coast redwood	+	+	
Crabapple	+	+	
Dragon Tree	+	+	
English holly	+	+	
European White Birch	+	+	
Japanese flowering cherry	+	+	
Monterey cypress	+	+	
Oregon ash	+	+	
Purple leaf Plum	+	+	
Southern Magnolia	+	+	
Victorian box	+	+	

Conclusion

The common street trees in Eureka will survive and perform well as the climate becomes warmer

Japanese Flowering

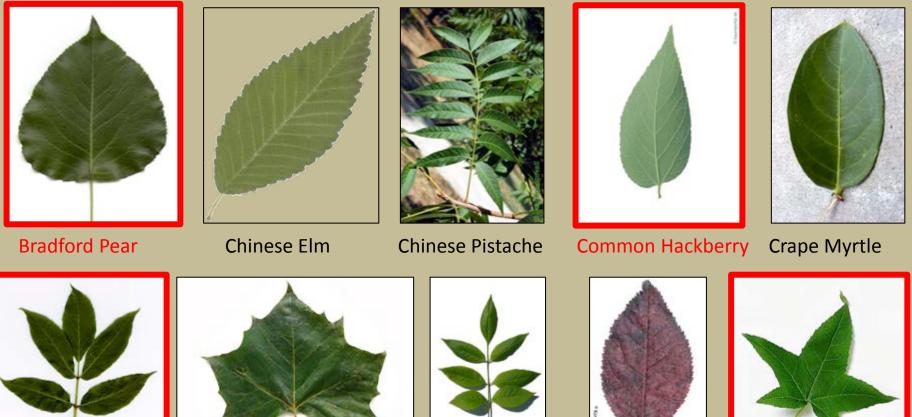
Monterey Cypress

Slighter 97 **Oregon Ash**

Purple Leaf Plum

Southern Magnolia

Climate Zone 12 Example City = Stockton; "Warm" City = Barstow


	July Average Max. Temp (°F)			
<u>City</u>	<u>Historic</u>	Predicted		
Stockton	90.4	101.7		
Barstow	99.5			

Common Stockton street trees and their occurrence in Barstow and warmer cities

Common Name	Example City Zone #12	Warm City	Warmer Cities	
	Stockton	Barstow	El Centro	Furnace Creek
Bradford pear	+	-	-	- 1
Chinese elm	+	+	-	-
Chinese pistache	+	+	-	-
Common Hackberry	+		-	-
Crape myrtle	+	+	-	-
Evergreen ash	+	+	-	-
London plane tree	+	-	-	-
Modesto ash	+	+	+	-
Purple leaf plum	+	+	-	-
Sweetgum	+	-	-	-

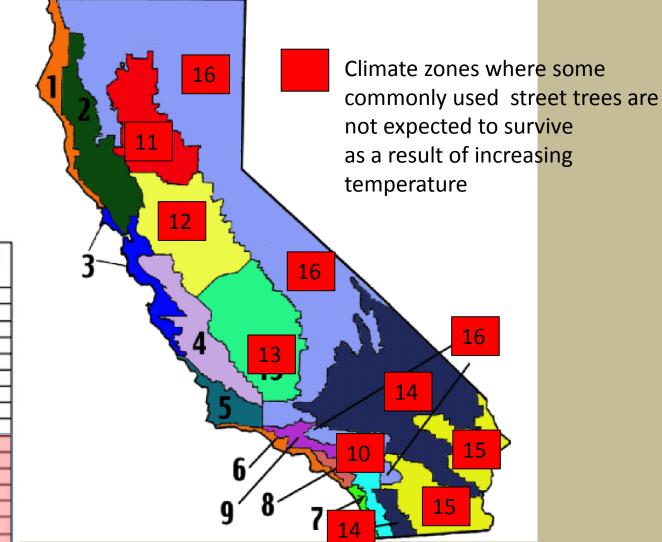
Conclusion

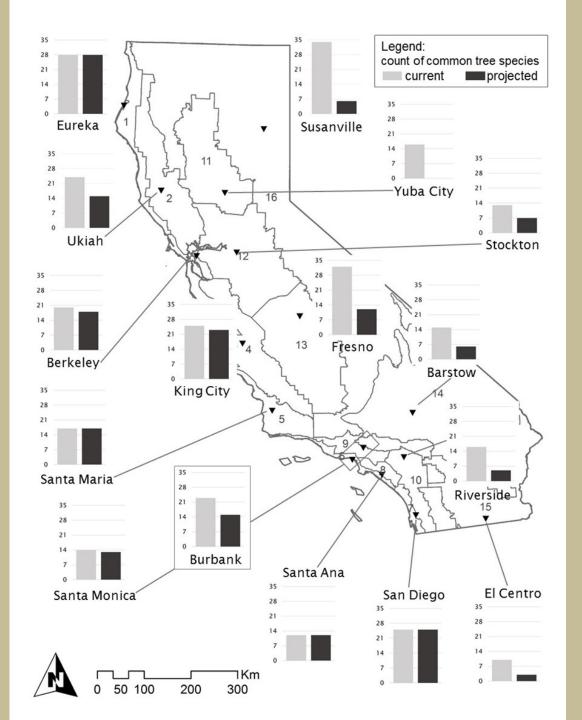
Four of the common street trees in Stockton will not survive as the climate becomes warmer

London Plane Tree

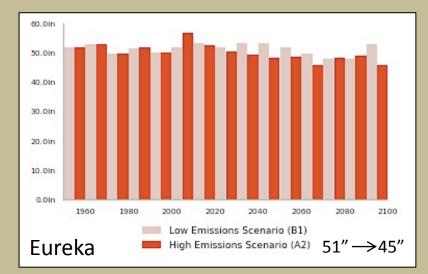
Evergreen Ash

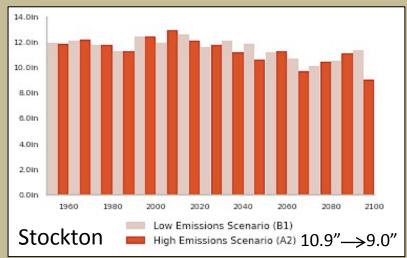
24


Modesto Ash

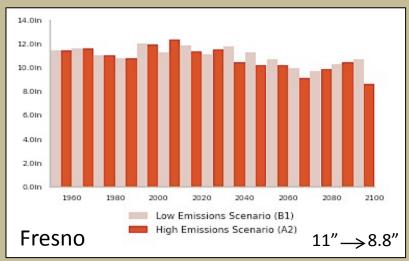

Sweetgum

California Climate Zones

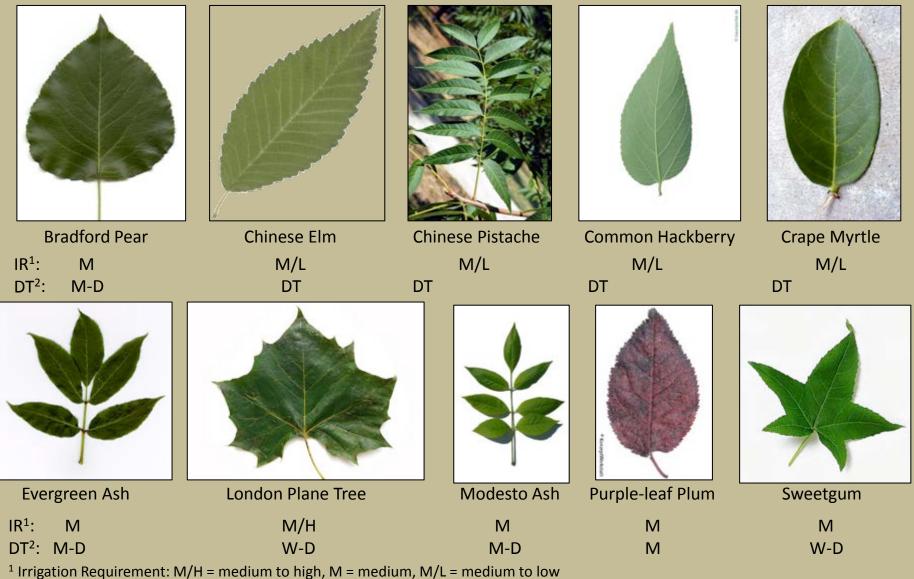



Climate Zone	Example City
1	Eureka
2	Ukiah
3	Berkeley
4	King City
5	Santa Maria
6	Santa Monica
7	San Diego
8	Santa Ana
9	Burbank
10	Riverside
11	Yuba City
12	Stockton
13	Fresno
14	Barstow
15	El Centro
16	Susanville

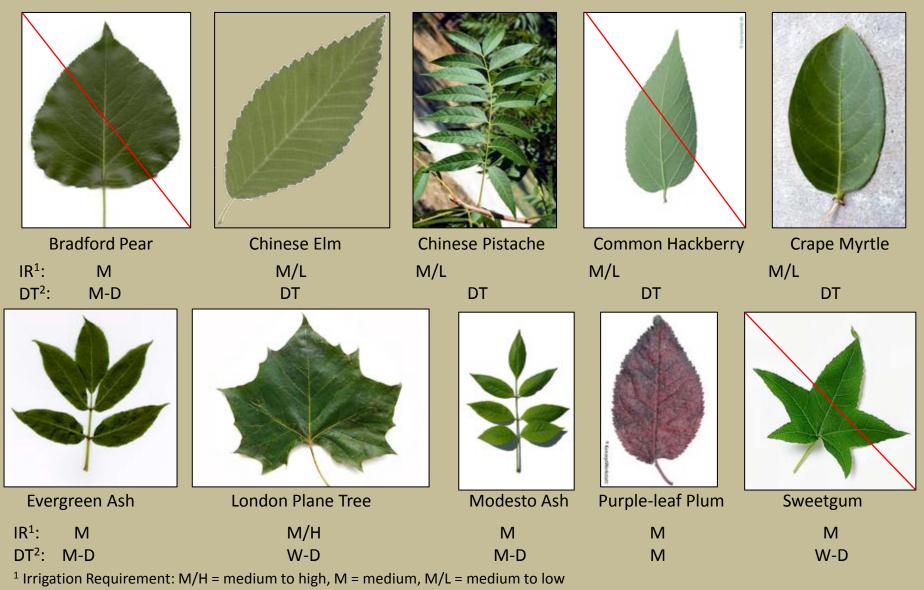
results



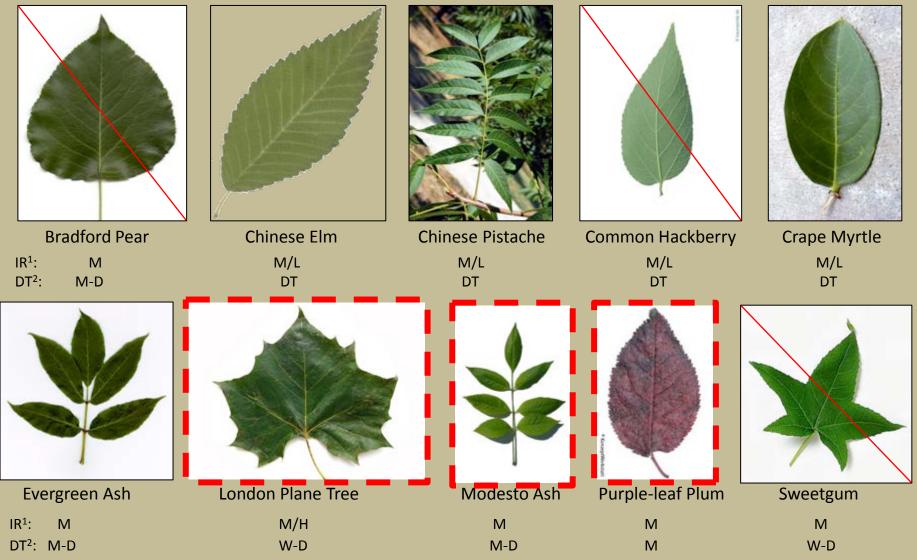
Change in Precipitation



from: Cal-adapt.org


Common Street Tree Species - Stockton

² Soil Moisture Tolerance or Drought Tolerance: M-D = moist to dry soil, W-D = wet to dry, M = moist soil, DT = drought


tolerant

Street Tree Species not in "Warm' or Warmer" Cities

² Soil Moisture Tolerance or Drought Tolerance: M-D = moist to dry soil, W-D = wet to dry, M = moist soil, DT = drought tolerant

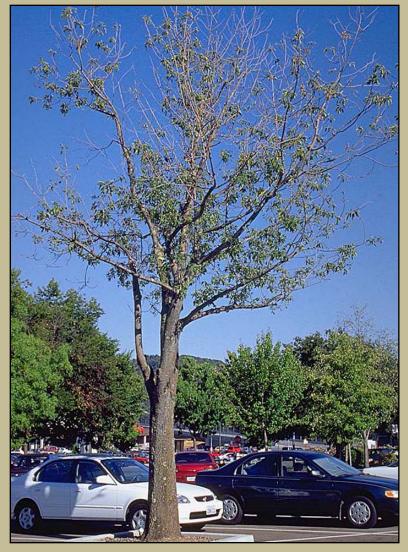
Irrigation Requirement and Drought Tolerance

¹ Irrigation Requirement: M/H = medium to high, M = medium, M/L = medium to low

² Soil Moisture Tolerance or Drought Tolerance: M-D = moist to dry soil, W-D = wet to dry, M = moist soil, DT = drought tolerant 30

Consequence of Climate Change: Some currently used trees will not survive or not perform well

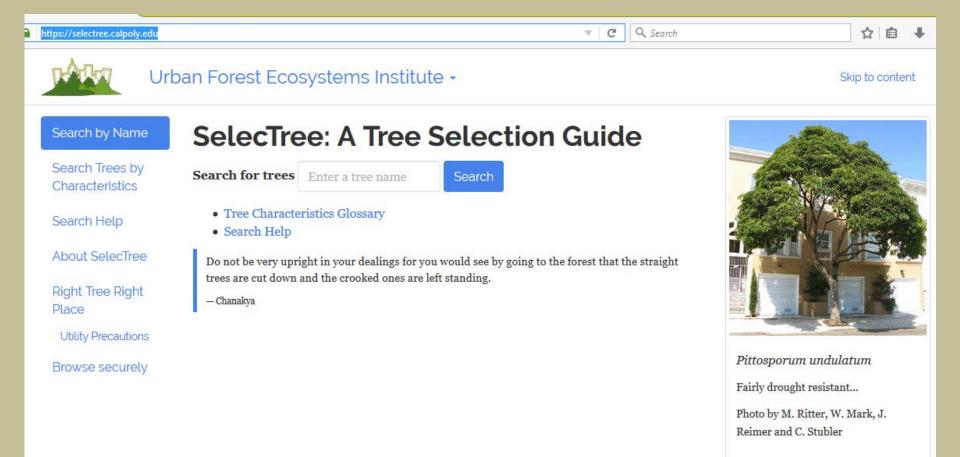
outline


We are discussing ornamental trees in residential landscapes; NOT wildlands forests, timber plantations, agriculture, orchards!

- 1 Street trees & climate change study: what we can learn from space-for-time substitution
- 2 ...what do the study results suggest for individual landscapes
- 3 ...and how to establish your trees and maintain them during the drought

warmer, maybe drier on average... so...

assess your tree's environment →	~ reflective surfaces? Paving? ~ sandy/rocky soils? slope? ~ etc. (you know this!)
evaluate your tree's climate envelope \rightarrow	~ is it "at the edge" now? ~ our study ~ SelecTree
consider the major landscape pests \rightarrow	~ UC IPM website ~ Pest Vulnerability Matrix (PVM)
understand and meet your tree's water needs \rightarrow	~ WUCOLS ~ calculate! ~ apply properly


Landscape Situations that favor Water Deficits...

yes, I know your landscape probably differs from these...

https://selectree.calpoly.edu/

~ you can search for a species by desired characteristics!

Species not expected to perform well – based on "warm" or "warmer" city

	Climate Zone:		11	12	13	14	15	16
	Species	Riverside	Yuba City	Stockton	Fresno	Barstow	El Centro	Susanville
	Allepo pine					•		
	Apple							•
	Australian willow						•	
	Black Cottonwood							•
\rightarrow	Bradford pear		-	•	•			
	Canary Island pine	•			•	·		
	Chinaberry					•		
	Chinese elm				•	•		
	Chinese Pistache		•		•			
\rightarrow	Common Hackberry			•		·		
	Crape Myrtle		-		•			
	Darlington oak				•			
	Deodar cedar				•		·	
\rightarrow	Evergreen ash			•		·		
	Fern pine				•			
	Gingko				•			
	Golden chain trees	•				·		
	Honey Locust							•
	Indian laurel fig						•	
	Lemon scented gum		_				•	
	London plane tree	•	•			·		
	Modesto ash						•	
	Norway Spruce							•
	Orange	•						
	Purple leaf plum		•		•	·		
	Raywood Ash	•			•			
	Redwood		•					
	Siberian elm					·	•	
	Silver dollar eucalyptus						•	
	Silver wattle						•	
	Southern Magnolia	•	•					
\rightarrow	Sweetgum		•	•	•			
	White Mulberry		•			•		

http://ipm.ucanr.edu/

Pest	London plane tree	Maple	Honey Locust	Callery pear	Linden	Zelkova	% Tree species affected	Proportion of tree population affected		F
Pest count >>>	5	6	3	์ 1	2	2			١	
♥ Proportion of all trees >>>	0.4	0.2	0.1	0.1	0.1	0.1				
Anthracnose (fungal disease)							50%	70%	Γ	
Defoliating caterpillars							50%	70%		
Soft scales (insect)							50%	70%		
Aphids (other)							50%	70%		
Asian longhorned beetle							33%	60%		
Spider mites (combined)							33%	30%		
Armillaria root rot or Oak root fungus.							17%	10%		
Fireblight (bacterial disease)							17%	10%		
Other native borers (combined)							17%	10%		

outline

We are discussing ornamental trees in residential landscapes; NOT wildlands forests, timber plantations, agriculture, orchards!

- 1 Street trees & climate change study: what we can learn from space-for-time substitution
- 2 ...what do the study results suggest for individual landscapes
- 3 ... and how to establish your trees and maintain them during the drought

Young trees: Lack of water = quick death

← Problem: what does "Deep watering" mean here?

(how much can it hold?)

"Crispy critters" (Larry Costello)

Young tree solutions

How much?

Amazingly little: 5-10 gal

How often?

Frequently! (X times/WEEK)

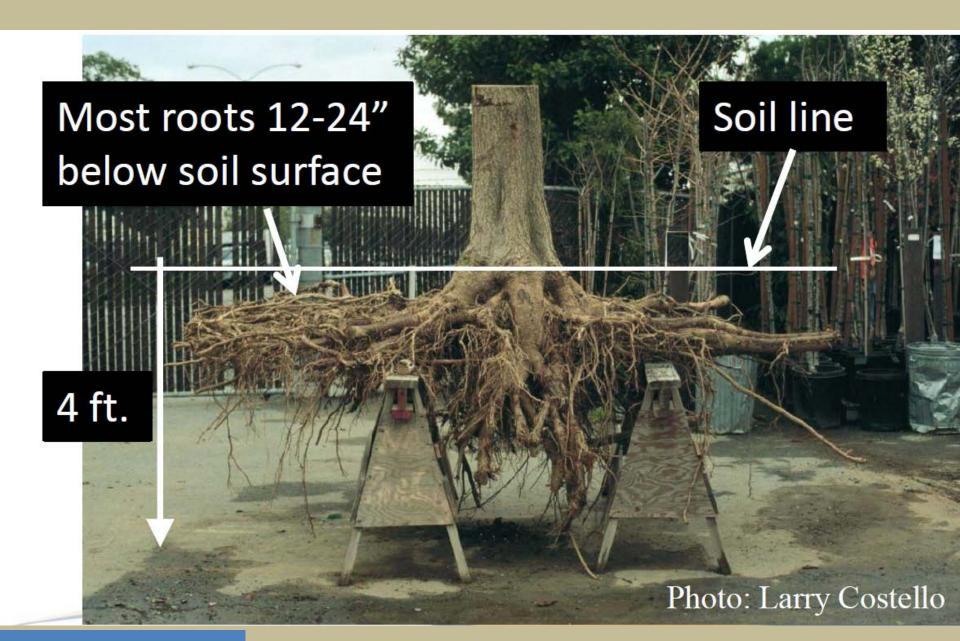
Who?

Residents

NGOs

Partners (schools, churches, business)

Mature trees: Functional irrigation approach, or refilling the "water reservoir" (Nelda Matheny and Larry Costello)

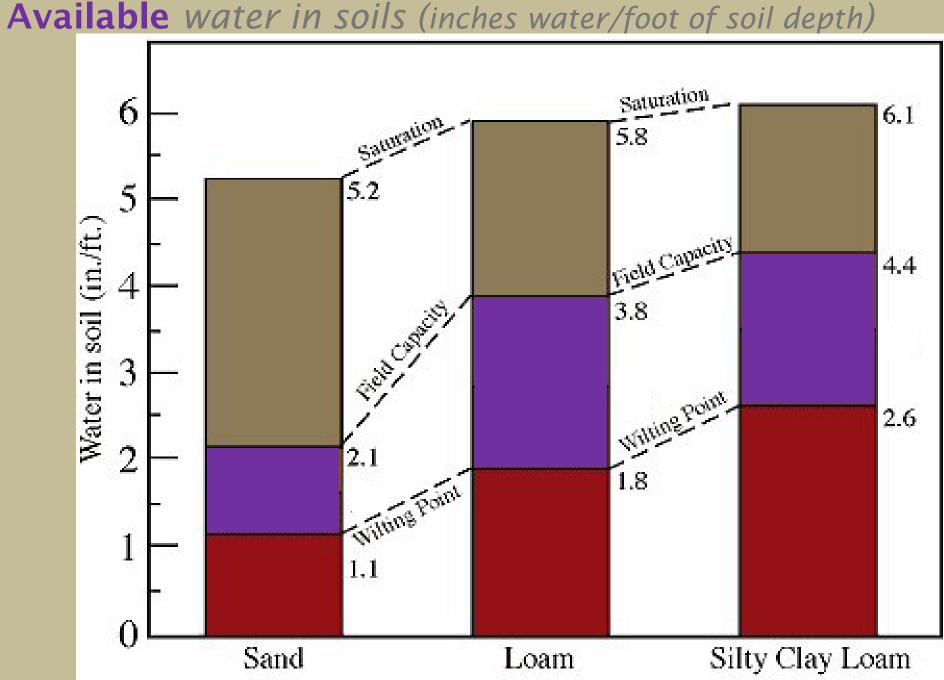


Soil water reservoir capacity: 2 elements

Volume \rightarrow area*depth, or inches water/foot depth

Texture \rightarrow *available water* \rightarrow *loam* > *clay* > *sand*

Soil water reservoir: Where are the roots?


Functional irrigation approach for mature trees: estimating the size of the "water reservoir"

Soil water reservoir capacity: 2 elements

Volume \rightarrow area*depth, or inches water/foot depth

Texture \rightarrow *water stored* \rightarrow *clay* > *loam* >> *sand water available* \rightarrow *sand* > *loam* > *clay*)

Estimating Soil Moisture by Feel and Appearance

Appearance of clay, clay loam, and silt clay loam soils at various soil moisture conditions.

Available WaterCapacity 1.6-2.4 inches/foot

Percent Available: Currently available soil moisture as a percent of available water capacity.

In/ft. Depleted: Inches of water currently needed to refill a foot of soil to field capacity.


0-25 percent available 2.4-1.2 in/ft. depleted

Dry, soil aggregations separate easily, clods are hard to crumble with applied pressure. (Not pictured)

50 - 75 percent available 1.2-0.4 in./ft. depleted

Moist, forms a smooth ball with defined finger marks, light soil/water staining on fingers, ribbons between thumb and forefinger.

United States Department of Agriculture.

Natural Resources Conservation Service

Mature tree solutions

How much?

Substantial: 100 to 100s of gal.

How often?

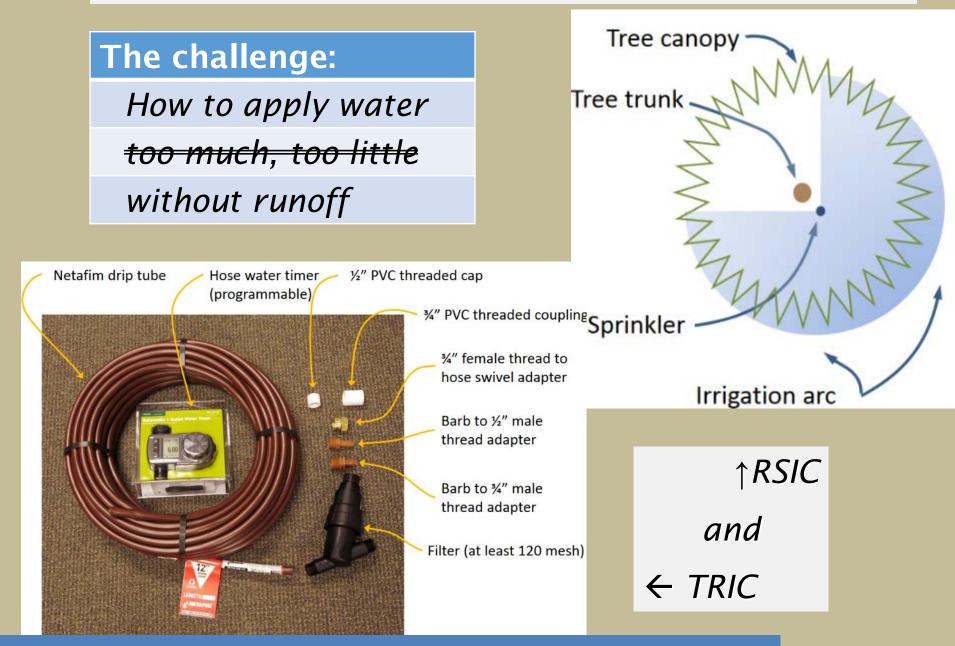
Seldom! (X times/SUMMER)

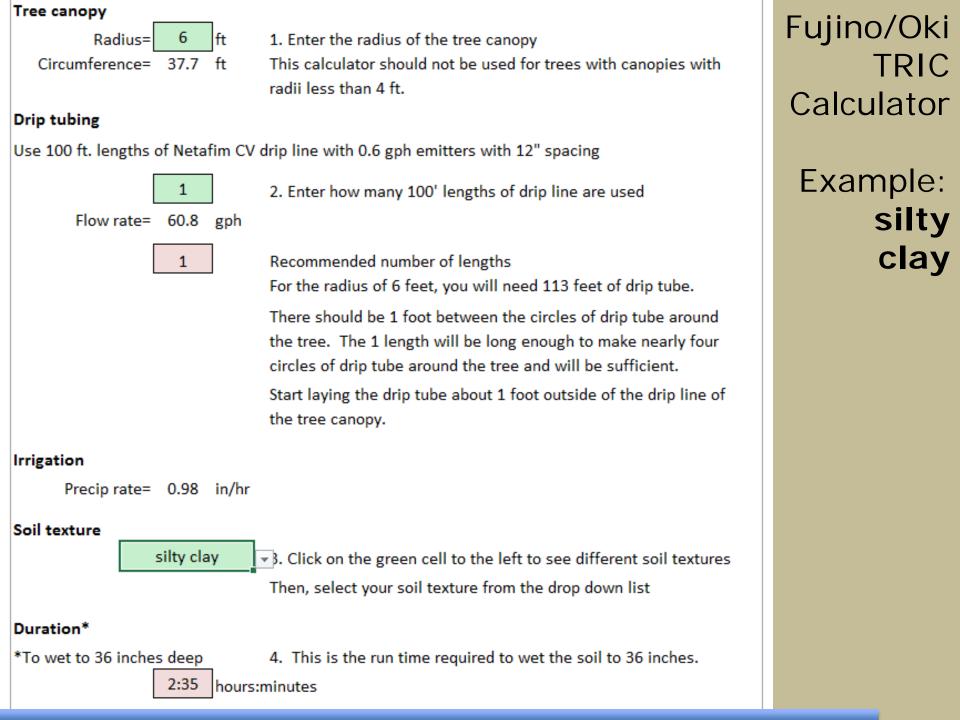
Who?

Residents

Municipalities

Partners (schools, churches, business) Oki/Fujino RSIC→


and


 $TRIC \downarrow$

Mature tree solutions: ccuh.ucdavis.edu

Compare my trees' water use to other species:

ucanr.edu/sites/Wucols

☆ マ C 8 - Google

ucanr.edu/sites/WUCOLS/

WUCOLS W Water Use Classification of Landscape Species

Home Page

User Manual

Plant Search Instructions

Plant Search Database

Download WUCOLS IV Plant List

Download WUCOLS IV User Manual

Water Requirements for Turfgrasses

Partners

Acknowledgements

Home Page

GETTING STARTED

If you are using the WUCOLS list for the first time, it is essential that you read the *User Manual*. The manual contains very important information regarding the evaluation process, categories of water needs, plant types, and climatic regions. It is necessary to know this information to use WUCOLS evaluations and the plant search tool appropriately. To access the *User Manual*, click on the tab (on left) and view specific topics.

Water conservation is an essential consideration in the design and management of California landscapes. Effective strategies that increase water use efficiency must be identified and implemented. One key strategy to increase efficiency is

a

WUCOLS categories

CATEGORIES OF WATER NEEDS

Category	Abbreviation	Percentage of ET₀
High	Н	70-90
Moderate	М	40-60
Low	L	10-30
Very Low	VL	< 10

Fig. 2. Five-finger fern was assigned to the "high" water needs category in four regions.

ucanr.edu/sites/UrbanHort

Mission Environmental Horticulture Industry in California Home Gardening Pests And Weeds US Hardiness Zone Map

Contact Information

Home

Current Projects

Landscape Water Conservation and Management

Landscape Management

Turfgrass Management

Tree Care and Management

Publications

UC CE

Welcome to the Center for Landscape and Urban Horticulture (CLUH), an information resource of the University of California Cooperative Extension (UC Cooperative Extension), CLUH supports UC Cooperative Extension educational and applied research programs serving California's

environmental horticulture industry.

- landscape water management and conservation.
- urban tree management and selection.
- assistance for consumers of horticultural products and services.

Information is contributed by University of California Cooperative Extension scientists. All content is reviewed by these or other experts to assure it is authoritative and sciencebased. Featured are fact sheets, newsletters, reports, commentary, and web links.

Does the site you manage have

Q

📇 PRINT

Dennis Pittenger's Bakersfield presentations on February 11, 2014

a water budget or water conservation goal that seems impossible to meet? Read about **Five Simple Steps for Conserving** Landscape Water.

basic ideas						
warmer climate = challenge to trees and to management	but we still will be able to grow trees					
mortality is unfortunate but normal	not an excuse for not (re)planting!					
What are the factor(s) in tree loss (which you can manage?)	species selection? site conditions? management?					
droughts will recur, perhaps more frequently	help your trees survive!					

. . .

Igor Laćan ilacan@ucanr.edu 510 684 4323 UC CE

University of California Agriculture and Natural Resources

Cooperative Extension