## Responses to Smoke-Taint in Vineyards Management Practices for Vines

Christopher Chen, Ph.D. UCCE – Integrated Vineyard Systems Advisor North Coast





• 'Health' – the state of being **free** from illness or injury





- 'Health' the state of being free from illness or injury
- No way to be **totally free** of healthlimiting factors
- The next best option is to look for preventative options



- Vine Function ≈ Vine Health
- Important Vine Functions
  - i. Photosynthesis
  - ii. Vascular system
  - iii. Reproductive efficacy
  - iv. Physical support





- Photosynthesis
  - Source = Leaves
  - Rate = Vigor & canopy size
  - Dependencies
    - i. Resource availability
    - ii. Vascular function
    - iii. Minimal stressors
    - iv. Light availability





## Photosynthesis

Requirements for Photosynthesis

- 'Clean' leaf surfaces
- Open stomata
- Light (Solar radiation)
- Water
- CO<sub>2</sub>





Photosynthesis under Smoke-Conditions Requirements for Photosynthesis

- <u>'Clean' leaf surfaces</u>
- Open stomata
- Light (Solar radiation)
- Water
- CO<sub>2</sub>





#### Climate Concerns

- Global average temperatures have risen by at least 3 °F since the start of the 20<sup>th</sup> century
- Drought persists in the West Coast
- Extreme weather events have become more frequent
- Fire events are of primary concern







- Climates are changing and impacting the factors that affect vine health.
  - i. Temperatures
    - Affects all aspects of vine health
  - ii. Precipitation
    - > Affects all aspects of vine health
  - iii. Extreme weather events
    - Heatwaves, fire, and late frost events
    - Impacts photosynthesis and reproduction

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources Cooperative Extension



Temperatures

- > Impact all living things
- > Alter physiology
- > Ideal range differs by species
- > Range differs by cultivar too





Precipitation

- > Mediterranean climates with unique precipitation patterns
- > Changing with the climate
- » No precipitation in late-Summer
- > Limits Summer diseases





#### Extreme weather events

> Impacts dependent on microclimates

#### > Existing infrastructure matters

- Heatwaves
  - \* More damaging in coastal regions
- Spring Frosts
  - \* More damaging inland
- Wildfires
  - \* More damaging where not prepared





#### Changes in Phenological Timing

In Central Europe the impact of warming climates has been documented in Bernáth et al. 2022 (pre-print)

Between 1985 and 2018

- > Budbreak:
- Flowering:
- » Berry maturity:
- > Harvest:

- 5-7 days earlier
- 7-10 days earlier
- 18 days earlier

UNIVERSITY OF CALIFORNIA

8-10 days earlier

Agriculture and Natural Resources Cooperative Extension

#### **Increasing Temperatures**



#### **Temperatures rising**

Total GDD increasing

Heat hours accumulating earlier in the year

Changing phenological timing for grapes

Annual accumulation of heat hours (°F) Santa Rosa, Sonoma County



Cumulative heat accumulation in Santa Rosa, California in 2012, 2015, 2018, and 2020; linear model. (Data from https://cimis.water.ca.gov)











#### Smoke Impacts on Grapevine Physiology





# Physiological impact of abiotic stressors

- 1. Heat stress:
  - Increases vine water demand
  - Increases vine respiration
  - Timing of heat stress can increase foliar growth
    - i. Resulting in more sugars for phytophagous insect pests
- 2. Drought stress:
  - Can result in whole-vine oxidative stress
  - Polyphenol synthesis increases (abiotic stress response)
  - Modified morphological and phenological characteristics
    - i. e.g., xylem vessel size and hydraulic conductivity



## Combined stressors: heat and drought

Changes in morphology and physiology are greater with combined stressors:

• Heat and drought in combination decrease plant growth and yields more so that each stressor individually. <sup>(10, 18)</sup>

Responses include ROS production and/or hormonal signaling  $^{\rm (10)}$ 

Some stressors impact both the plant and the pests in the vineyard







## Research into combined stress responses

Plant responses to combined stressors may be unique to the specific combination of stressors. • e.g., drought and *Xylella fastidiosa* 

Research on phytotoxic metabolite biosynthesis in response to changing environmental conditions

Combined stressors may be thought of as a third-type of stress beyond biotic and abiotic





#### Effects of smoke on gasexchange & photosynthesis

Three parameters of photosynthesis affected by smoke exposure

- 1. Stomatal Conductance (g<sub>s</sub>)
- 2.  $CO_2$  assimilation rates
- 3. Intercellular CO<sub>2</sub> levels

However, reductions in these functions are short term

Plants can acclimate to the smoke-exposure within 24 - 48 hours



#### Effects of smoke on gasexchange & photosynthesis

Fuel type matters for the short-term responses observed in gas exchange

 Research has observed a difference in grapevine stomatal conductance impacts depending if smoke comes from Coast Live Oak or Eucalyptus species (Bell et al. 2013)

Overall, the impacts of smoke *by itself* on gas exchange and photosynthesis are transitory and can be self-corrected by the vine



Bell et al. 2013

Agriculture and Natural Resources | Cooperative Extension

#### Effect of smoke on light-availability

While smoke itself may not have a significant impact on photosynthesis, particulate matter from smoke can

Wood smoke has been shown to absorb solar radiation with specific spectral selectivity (Kirchstetter and Thatcher 2012)

• Ultraviolet to visible spectrum absorption

Up to a 50% reduction in UV-light and Visible-light



Kirchstetter and Thatcher 2012















#### Effect of smoke on surface temperatures

Because wood smoke preferentially filters light in the UV and Visible spectrums

• Most Infrared light makes it down to the surface

Most of the heat-imparting effects of solar radiation come from the Infrared spectrum

There is little to no decrease in surface temperatures under highinstances of smoke particulate matter





## Effects of Smoke on Fruit

Volatile phenols

- Smoke derived compounds associated with burning vegetation.
- Absorbed through the skin of ripening grapes and accumulate by binding to sugars
- Bound by a native grape enzyme: glycosyltransferase
- Results in Phenolic Diglycosides



Härtl and Schwab 2018 (Article)



### Effects of Smoke on Fruit

#### Phenolic Diglycosides

- A nonvolatile compound (volatile phenols bound to sugars)
- Stable compound while bottle aging (sticks around)
- Cannot be smelled or tasted while still in bound form
- Can be released by enzymes during fermentation or in the mouth



Crews et al. 2022



#### Preventative Management Strategies



#### Forests

Proper forest management can reduce the risk of smoke damage

If you have forests on your property try to: • Reduce fuel loads on the forest floor

- Remove dead and dying trees
- Keep a solid canopy and understory shrubs

Like grapevines, other plants can bind volatile phenols

Forests can be used as a 'smoke-break' and bind the volatile phenols before they reach your grapes





#### Particulate clay barriers – Kaolin

Foliar application of kaolin can reduce the concentration of volatile phenols in smoke-exposed fruits (van der Hulst et al. 2019)

Efficacy depends on the rate of kaolin application and extent of coverage

Some results are inconclusive, but this may work as a preventative measure (Szeto et al. 2022)





#### Biofilms

Fungal pathogen sprays applied 1 week before smoke exposure may help prevent accumulation of volatile phenols in nearly-mature grapes

Artificial grape cuticle (Favell et al. 2019)



### Canopy Management

Leaf removal (Ristic et al. 2013)

- Post-smoke exposure
  - Decreased intensity of smoke characters in wines relative to controls
- Pre-smoke exposure
  - Exposed grapes and increased smoke taint intensity in wines

Similar effect to the 'Forest Canopy Barrier' concept

Volatile phenols will bind to the leaf as well as the fruit; serves as a barrier against smoke before contact with the fruit



#### Fabrics

Activated Carbon Fabrics (Wilkinson et al. 2022)

- Have been tested as a protectant against volatile phenols in grapes
- Activated carbon is commonly used in water and air filtration
- These trap volatile phenols well
- However, wrapping each cluster in a bag made of activated carbon may be prohibitively costly to the grower





#### Response Strategies Fire and Smoke in Vineyards



#### Ozone (O<sub>3</sub>) Treatments

Researchers are examining exposure to gaseous ozone  $(O_3)$  to mitigate the intensity of smoke taint in affected grapes

At 1ppm O<sub>3</sub> exposure for 24 hours one experiment saw a significant decrease in volatile phenols and phenol glycoside concentrations (Modesti et al. 2021)

Decreases in sensory perception of smoke taint in wine were also observed in this study





#### Remote Sensing - Contamination Detection Fuentes et al. 2019

- Non-invasive detection of smoke contamination in grapevine canopies in-field.
- Using a machine-learning model to identify predictable changes in stomatal conductance (g<sub>s</sub>)
- Second method to identify levels of phenolic diglycosides in fruit and wine using near-infrared spectroscopy (NIR)
- Data can be collected with **drones** and is up to **96% accurate**





#### Artificial Intelligence - Contamination Detection Fuentes et al. 2020

- Sensor data can be **monitored by** AI to identify signs of smoke contamination using the remote sensing methods.
- Further development of an 'electronic nose' to identify volatile phenols and gases in wines and vineyards.





## Other processes out there

Mirabelli-Montan et al. 2021

- 1. Cold-maceration
  - Doesn't eliminate smoke taint, but may reduce perceived intensity of the smoke characters
- 2. Minimizing extraction from skins (shorter maceration times)
- 3. Yeast selection
  - Doesn't eliminate smoke taint, but may reduce perceived intensity of the smoke characters (some organoleptic properties mask smoke taint attributes)
- 4. Oak chips or Tannins again, mask and not remove smoke
- 5. Centrifuge of wine not sure this one works or how it would





#### Summary

- 1. Climate change is unpredictable
- 2. Smoke exposure has short-term impacts on photosynthesis and gas exchange in vines
- 3. Binding of volatile phenols as phenolic diglycosides makes the smoke characteristics stable in the fruit
- 4. Mitigation is possible with emerging response-management strategies









You can find the sources for this presentation at: <u>https://ucanr.edu/sites/ChenLab/files/378149.pdf</u>

Or go to:

1. <u>https://ucanr.edu/sites/chenlab</u>

2. Resources

3. "Presentation Bibliographies and Cited Sources" (end of page)

Some original images created by OpenAI Labs Dall-E Program

