
Salt Toxicity in Grapes

Christopher Chen, Ph.D.

UC Agricultural and Natural Resources Integrated Vineyard Systems Advisor Sonoma, Mendocino, and Lake

Scope of Soil Salinity

4.5 million acres
 worldwide

• 10,000's of acres in CA (Ag Sci and Tech, 1996)

 · 29-43% surface soils in Paso Robles area
 · (Mark Battany)

Modified from Presentation by Kevin Fort

A History of Salt and War

The Salting of Carthage (146 BCE)

- 'Salting the Earth' has been an idiom for societal destruction for millennia.
- Although widely disproven at this point, the salting of Carthage remains as a legend comparing the elimination of the city of Carthage during the Third Punic Wars (146 BCE).

Palestrina (1299 CE)

• Following the Carthaginian example, Pope Boniface VIII ordered the plowing and salting of Palestrina in 1299 CE.

Current role of Salt

Uses

- Salts are used widely in our society
 - > Icing control
 - Cleaning
 - > Food

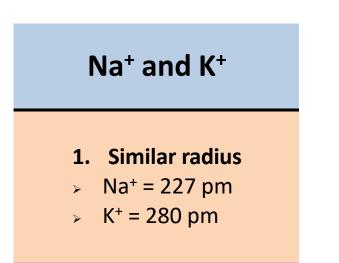
Definition

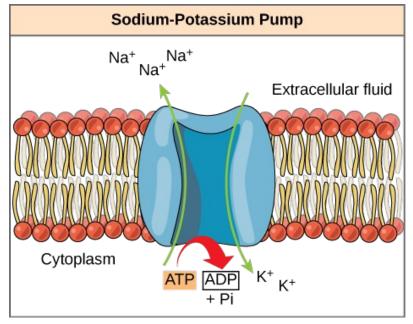
Acid + Base = Neutral Salt

- > Easily soluble in water
- > Separate easily and bind readily

Issues

Over use of some salts in fertilization or cleaning can become an issue


- Most commonly, NaCl (sodium chloride) is the salt which causes agricultural issues
- Recycling of winery wastewater for vineyard irrigation = excessive chloride levels in vineyard soils.



Sodium and Potassium

2. Similar charge

Malignant hyperthermia: A runaway thermogenic futile cycle at the sodium channel level. Advances in Bioscience and Biotechnology, 05, 197-200.

Sodium toxicity in Grapevine

Chloride toxicity in grapevine Ismail, A. (2013). Grapes for the Desert: Salt Stress Signaling in Vitis. Thesis (fig. 8)

Potassium deficiency symptoms: Photo by Mardi L. Longbottom; AWRI (Australia)

Sodium and Potassium

Grapevine *HKT 1;1*

- The *High-affinity Potassium Transporter* protein in grapevines selects only for potassium.
- But it can be fooled by Sodium (Henderson et al. 2014) \triangleright

What's the problem?

Sodium = "Imposter" for entry into plant

Similar for chlorine and nitrate

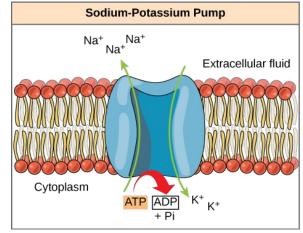
Cl⁻ becomes toxic

grapevines and a

perennial crops

before Na⁺ in

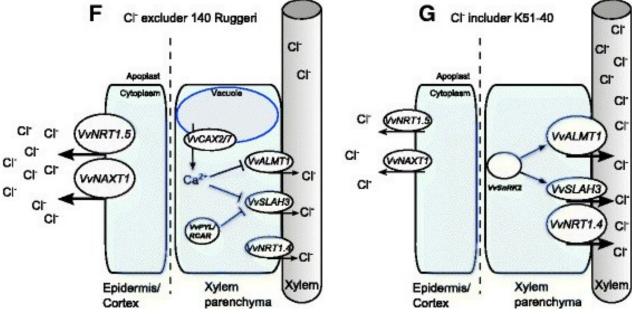
few other


Sodium toxicity in Grapevine

Chloride toxicity in grapevine Ismail, A. (2013). Grapes for the Desert: Salt Stress Signaling in Vitis. Thesis (fig. 8)

Potassium deficiency symptoms: Photo by Mardi L. Longbottom; AWRI (Australia)

Malignant hyperthermia: A runaway thermogenic futile cycle at the sodium channel level. Advances in Bioscience and Biotechnology, 05, 197–200.


What about Chlorine?

Cl⁻ and NO₃-

- Similar radius
 - Cl⁻ = 175 pm
 - > NO₃⁻ = 179 pm
- Similar charge and similar problems as K⁺ and Na⁺

A difference in action

- Salt tolerance in grapevine is. associated with chloride exclusion from shoots.
- Differences between varieties partially arise in the limiting of Clpassage between root symplast and xylem apoplast.

Henderson et al. BMC Plant Biology 2014

The *(partial)* model for complex control of salt tolerance

What does NaCl do to photosynthesis?

	Applied [NaCl]							
[NaCl]	E mol $*m^{-2} * s^{-1}$		$\begin{array}{c} A_{net} \\ mol * m^{-2} * s^{-1} \end{array}$		CO_2 $mol * mol^{-1}$		g_s $mol*m^{-2}*s_s^{-1}$	
$0 \mathrm{mM}$	0.002 ± 0.0004	а	9.10 ± 0.9	а	220.45 ± 14.8	а	0.13 ± 0.03	а
$25 \mathrm{~mM}$	0.002 ± 0.0003	а	9.45 ± 0.9	а	216.71 ± 12.4	а	0.12 ± 0.02	а
$75 \mathrm{~mM}$	0.001 ± 0.0001	b	6.41 ± 0.7	b	177.54 ± 11.2	а	0.06 ± 0.01	b
100 mM	0.0009 ± 0.0001	b	6.35 ± 0.6	b	169.37 ± 11.3	а	0.05 ± 0.01	b
p value		$< 0.001^{*}$		$< 0.001^{*}$		0.573	×	$< 0.001^{*}$

Table 2.5. Photosynthesis based on LiCOR measurements

This result makes sense when you consider that 40 mMol NaCl (\approx 4.0 dS * m⁻¹) is the widely accepted threshold for defining a soil as 'sodic'

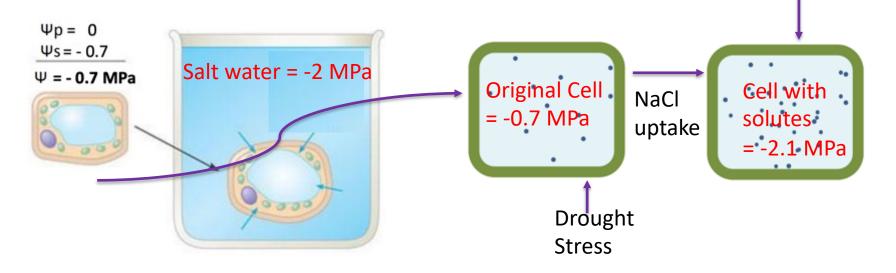
With little [NaCl] applied there are no differences in PS from unsalted vines.

However, at $[NaCl] \ge 75$ mMol ($\approx 7.5 \text{ dS} * \text{m}^{-1}$), stomatal conductance, transpiration, and carbon assimilation rates can drop by half.

Salt and Drought

Similarities

- Initial stages of NaCl toxicity ≈ Drought induced stress
 - > Drop in SWP, stomatal conductance, & transpiration rates
- Why salt-induced stress differs
 - Two-stage responses:
 - 1. Osmotic shock \approx drought stress
 - 2. Toxicity: accumulation of salt ions results in toxic response from the plant



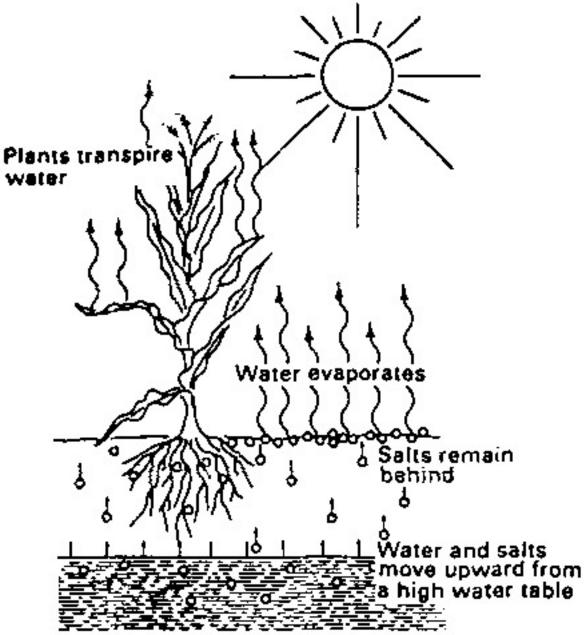
Water Potentials and Solutes

Osmotic potential

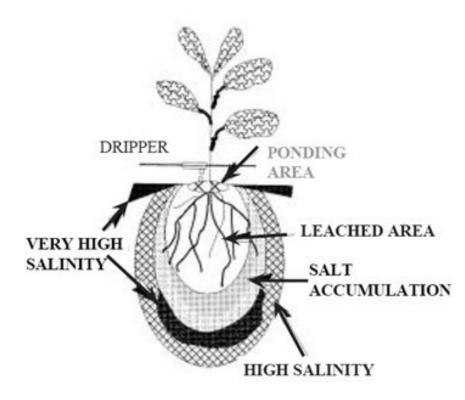
- Cells are filled with dissolved solutes Creates a concentration gradient that attracts water molecules
- A higher concentration = a stronger pulling force for water

Water uptake possible, but salt toxicity now

Salt and Drought


How are they related?

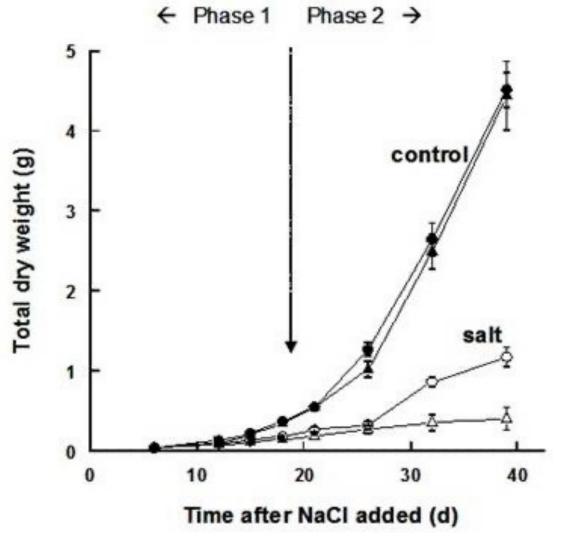
- Drought often leads to less available water
 - Less water for irrigation
 - Drip and micro-sprinkler irrigation often take the place of traditional,
 'high- input' irrigation methods
- These developments often lead to both drought and salt –induced stresses



Salt sources

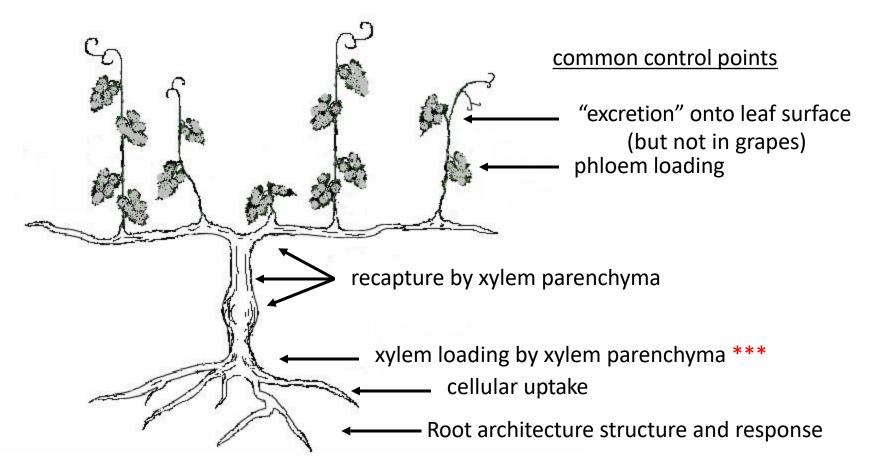
Salt patterns

Drip irrigation


- A relatively new practice
- Flood irrigation (previously)

Flood Irrigation

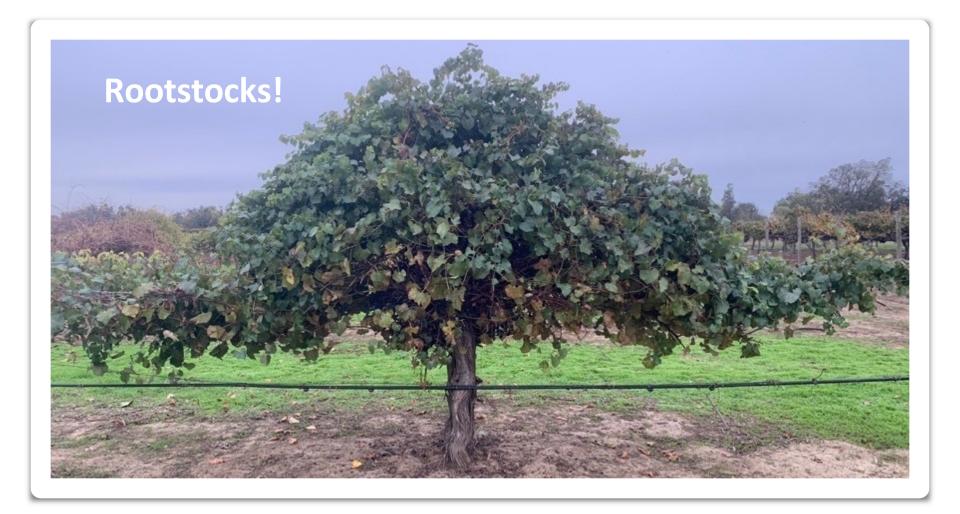
- Salinity accumulation less of a problem with flood


 - Natural flooding controlled for now

NaCl is a problem of accumulation

R. Munns et al. 2002

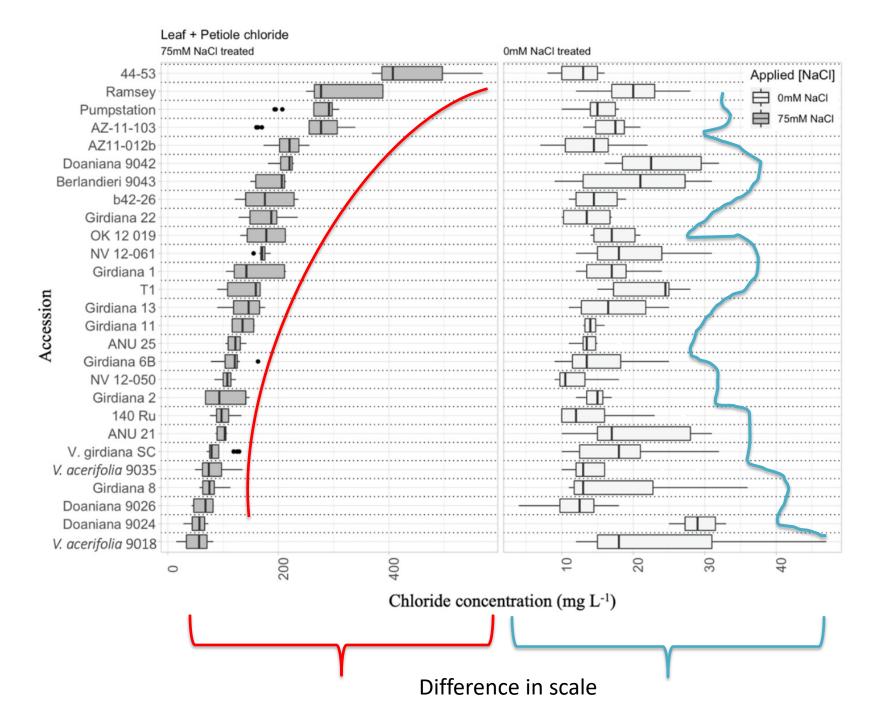
What exactly is salt tolerance?

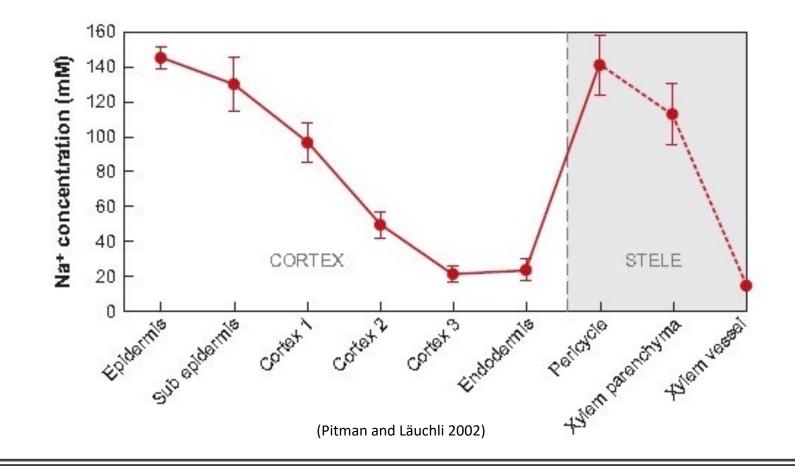


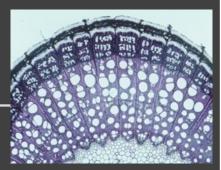
Answer: A complex trait, composed of exclusion, recapture, excretion, and avoidance

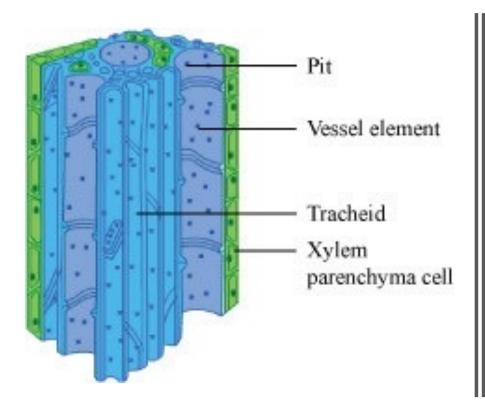
Mangroves

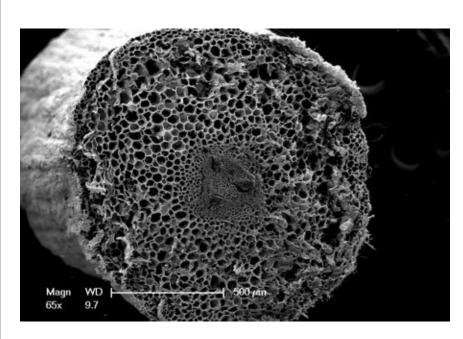
- Mangroves are possibly the most salt-tolerant perennial plant on land.
- By sequestering NaCl in roots and shedding the salt-laden roots they have been nicknamed "the walking trees"





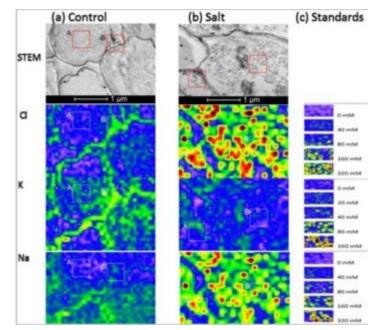

Phylloxera image source: UC ANR IPM


			Nema	Nematode Resistance Tolerance			Influence on scion						
Rootstock		Phylloxera resistance		Dagger (Xiphinema index)	Drought	Wet soil	Salinity	Lime	Vigor	Mineral nutrition ¹	Soil adaptation	Ease of propagation	Other characteristics
Riparia Gloire	riparia	High	Low	Med.	Low	Low	Med.	Low	Low-med.	N, P: low K, Mg: low-med.	Deep, well-drained, fertile, moist soils	High	Early maturation; scions tend to overbear
St. George (Rupestris du lot)	rupestris	High	Low	Low	Low-med. in shallow soils; high in deep soils	Low-med.	. Medhigh	Med.	High	N: high P: low on low-P soils, high on high-P soils K: high	Deep soils	High	Fruit set problems with some scions; latent virus tolerant
	berlandieri × riparia	High	Med.– high	Low-med.	Low-med.	Med.–high	Low-med.	Med.	Low-med.	N: low–med. P: med. K: med.–high Mg: med.	Moist, clay soils	Med.	Noted as a cool-region rootstock
	berlandieri × riparia	High	Med.– high	Med.	Med.	Low	Med.	Med.—high	Med.	N: med.–high P, K, Zn: med. Ca, Mg: med.–high	Moist, clay soils	High	Susceptible to phytoph- thora root rot; adapted to high-vigor varieties
	berlandieri × riparia	High	Med.– high	Low-med.	Low	Low-med.	Med.	Med.	Low-med.	N: low P, K: med. Mg: med.—high Zn: low—med.	Moist, clay soils	High	_
	berlandieri × riparia	High	Med.	Low	Med.	Low-med.	Low	Med.—high	Low	N, P, K: low Mg: med. Zn: low-med.	Fine-textured, fertile soils	Med.	Scions tend to overbear when young
	berlandieri × rupestris	High	Med.– high	Low-med.	Med.–high	Low	Med.	Med.	Medhigh	P: med. K: high Mg: med.	Tolerant of acid soil	Med.	Young scions may develop slowly
	berlandieri × rupestris	0	Low– med.	Low	High	Low-med.	. Med.	Med.	Med.	N: med. P: high K: low–med. Mg, Zn: med.	Hillside soils; acid soils	Low-med.	Develops slowly in wet soils



Xylem parenchyma regulation

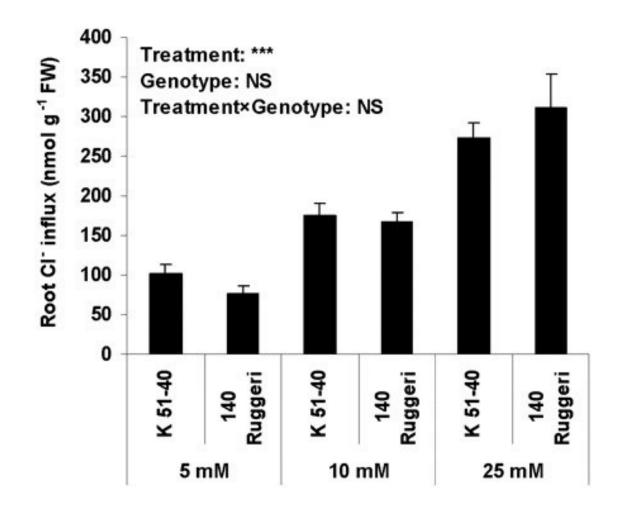
Xylem parenchyma

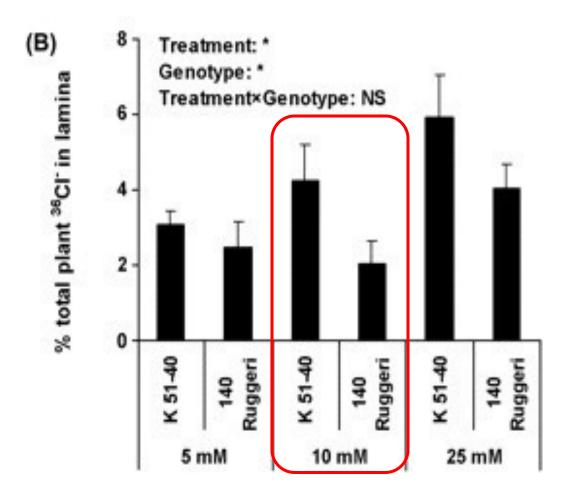

Elemental Compartmentalization

Ion Subcellular Compartmentalization:

- Cl⁻, Na⁺, K⁺
- (Ca²⁺ and Mg²⁺)

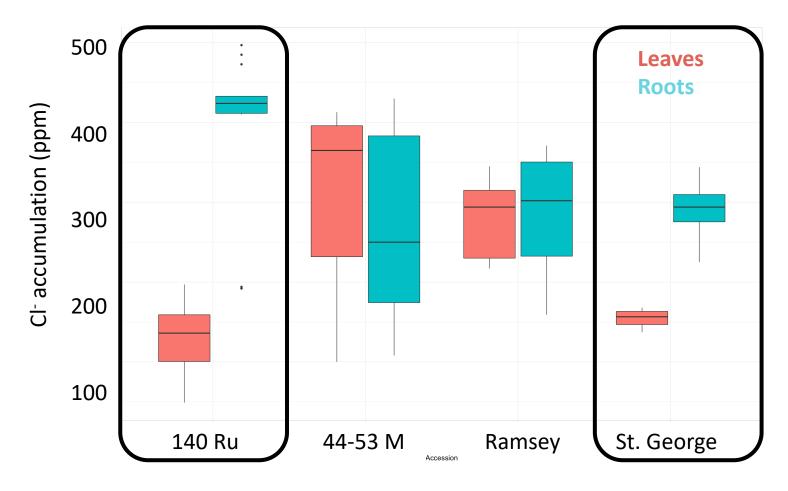
TEM – EDX


Analyze and quantify ion content in the different root cell-types at subcellular level


TEM-EDX imaging of elemental ion composition in cortical cells of *P. euphratica. Credit: (Chen et al. 2014)*

Previous work: Xylem parenchyma regulation model

Part I: No differential exclusion at the level of chloride uptake into the root



Part II: Differential exclusion *was* observed at the level of chloride translocation from root to shoot

More Evidence

- During my PhD trials, I found evidence for this delineation also
- As in the previous slides, more delineation was observed in Leaf + Petiole chlorine levels than in Roots.

- When separated into Post-hoc groups:
 - Leaf and petiole tissue under
 75 mM NaCl
 - > 10 distinct groups
 - Root tissue chloride
 - One group
- The trait of salt-tolerance in grapevines likely occurs during the **long-distance transport** of chloride from root to shoot.
- Continuous variability suggests Cltolerance may be a **complex trait**

	Leaf and Petiole tissue $[Cl^-]$		Root tissue $[Cl^-]$	
	75 mM NaCl		75 mM NaCl	
Accession	$[Cl^-](mg \cdot L^{-1})$	Post hoc	$[Cl^-]~(mg\cdot L^{-1})$	Post ho
18113-077	98.00 ± 28.2	а	327.67 ± 82.36	a
18113-008	85.67 ± 26.2	ab	257.5 ± 91.3	а
18113-055	83.75 ± 27.3	abc	286.42 ± 70.6	а
18113-038	81.59 ± 19.7	abed	366.00 ± 42.4	а
18113-018	78.67 ± 20.3	abcde	294.75 ± 34.5	а
18113-046	76.42 ± 12.2	abcdef	298.92 ± 26.2	а
18113-058	75.83 ± 35.7	abcdefg	355.83 ± 122.9	a
18113-076	73.67 ± 21.1	abcdefgh	345.75 ± 42.5	а
GRN3	67.67 ± 26.4	abcdefghi	145.5 ± 27.8	а
18113-048	66.5 ± 22.6	abcdefghi	256.17 ± 45.2	а
18113-043	47.83 ± 15.6	bedefghij	371.08 ± 93.1	а
18113-026	36.09 ± 8.8	cdefghij	234.92 ± 58.9	a
18113-007	33.58 ± 5.2	defghij	228.92 ± 97.0	а
18113-027	32.34 ± 7.5	efghij	404.92 ± 127.9	а
18113-051	28.67 ± 5.8	fghij	265.58 ± 61.6	а
18113-034	26.92 ± 4.4	ghij	340.67 ± 74.6	а
18113-024	26.42 ± 6.1	hij	288.67 ± 37.3	а
18113-001	23.99 ± 6.8	ij	322.67 ± 96.9	а
V. acerifolia '9018'	15.92 ± 1.6	j	165.5 ± 34.5	а
p value	2.20-16 ***		0.054	

Table 1.4. Accumulated leaf + petiole combined tissue, and root tissue, Cl^- concentration at harvest following 21 day application period for 75 mM NaCl applied treatment; representative accessions from each Tukey posthoc group

Grapevine Breeding for Salinity Tolerance: a potential solution

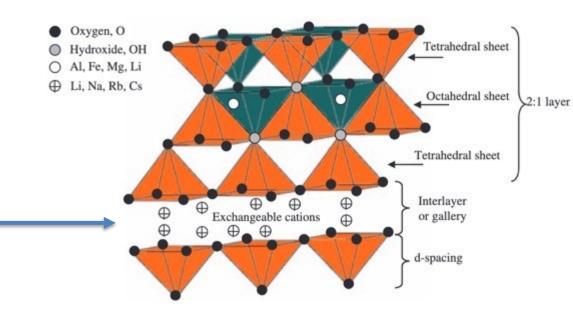
Why does salinity pose such a difficult problem for plant breeders?

T.J. Flowers*, S.A. Flowers

Developing a rapid & reliable assay

Propagation

- Type of propagule:
 - Hardwood
 - Herbaceous
- This affects the uptake of the cuttings
 - Carbohydrate reserves differ
 - Only herbaceous cuttings are actively growing at time of excision
- Does this limit us to testing during growing season?



Fritted-clay

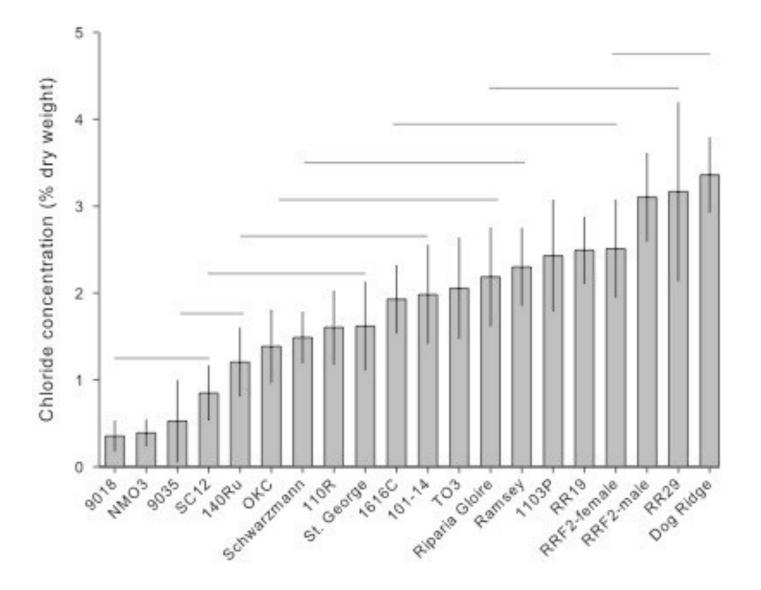
Medium: Fritted Clay

- Calcined, non-swelling illite clay
 - 2:1 layer silicate
- Porosity
 - 74% total (39% micro;35% macro)
 - Bulk Density = 600 kg m^{-3}
- CEC
 - $30 \pm 5 \text{ mEq} \bullet 100 \text{ g}^{-1}$
- pH range: 5.5 7.5
- Helps prevent losses to hydraulic conductivity while retaining nutrients
- Potassium retainer
 - (K+ trapped in interlayer between tetrahedral layers)

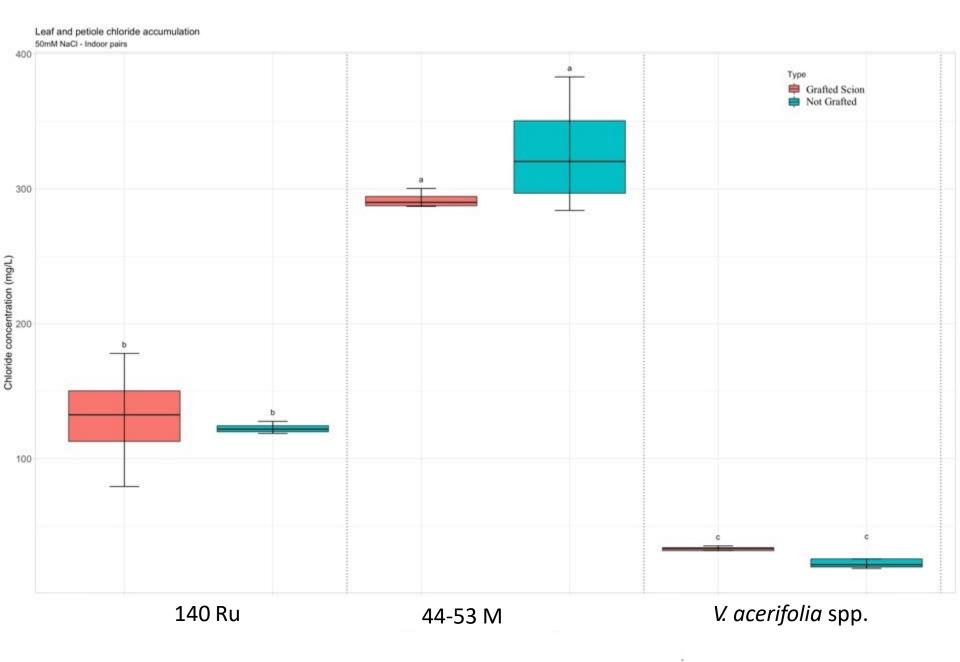
Multi-stage screening for chloride exclusion

- 1. Greenhouse acclimation
- 2. Growth and root development
- 3. NaCl application

Consistent methodology provides more consistent results across trials



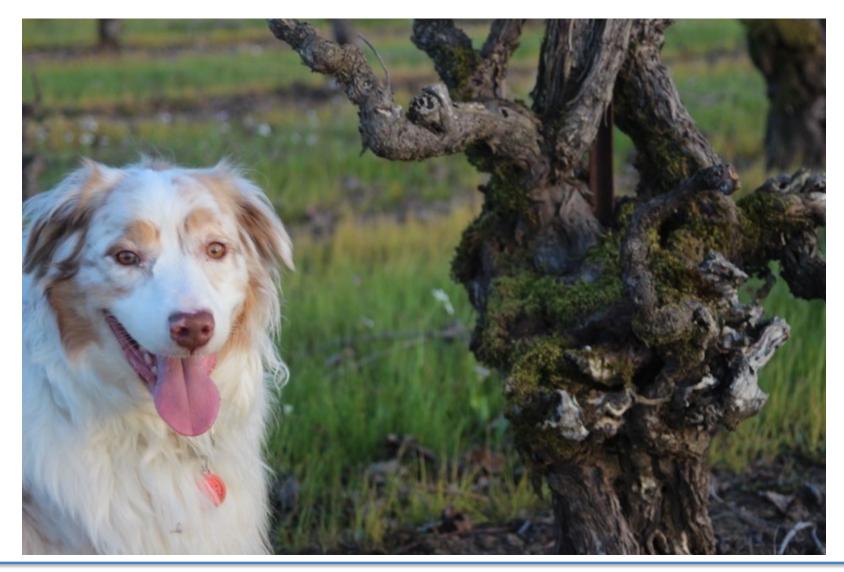
Leaf margin burn and nutrient deficiency symptoms


Chloride concentration in leaves (% dry weight)

Applying salt tolerance to scions Looking for new, salt-tolerant rootstocks is great but:

- 1. Can they impart their tolerance to a grafted scion?
- 2. Tandem Indoor and outdoor grafted trials conducted to explore this

What's next?


- 1. Field Trials
 - Are they functional in a real-world setting?
- 2. Horticultural evaluation
 - Yield, quality, and consistency
- 3. Foundation Plant Service
 - Clean material needed
- 4. Nursery propagation

Rootstock Recommendations

Strong Salt Excluders	140 Ru, Schwarzmann, St. George, 99R O
Lower Potential Salt Exclusion (yield maintenance)	1103 P, 110 R
Poor Exclusion Potential (yield mostly maintained)	Ramsey (a.k.a. 'Salt Creek')
Poor Salt Excluders (yield reductions)	039-16, 44-53 M, Dog Ridge, V. vinifera (own roots)

- Some of these rootstocks may be difficult to find at a nursery
- Be sure to check that you're getting the rootstock you wanted
- Avoid *V. riparia*-based rootstocks in saline environments; yield declines
 - > e.g. 101-14, 5C, Riparia 'Gloire'

Thanks for Listening

Contact me: codchen@ucanr.edu