Current water supply status and climate preparedness strategies for orchards and vineyards

Dr. Lau Garza

Water and Climate Change Advisor UC Cooperative Extension Mendocino and Lake

Legarza@ucanr.edu

Agenda

Current State of Water Resources in the North Coast

- Water Supply Indices
- History of Drought and Floods
- The Hydro-Illogical Cycle

Climate Preparedness

- Social and Local Capacity
- **Strategies**

• Water Management

Status of Water and Climate in Mendocino and Lake Counties

Status of Water and Climate in Mendocino and Lake Counties

Are we in a Dry, Normal or Wet year?

Are we in a dry, normal, or wet year? Rainfall Index

Are we in a dry, normal, or wet year? Rainfall Index

Are we in a dry, normal, or wet year? Snow Depth Index

Snow Depth 2023

Snow Depth 2015

Reservoir Levels

January 2023

2020 2021 2022 Wet 2023 Normal/We 2024

May 2024

Reservoir Levels

Reservoir Levels

Drought and Floods Index

W1

W2

W3

Drought and Floods Index

W0

W1

W2

Drought duration on average 3 years.

The Hydro-Illogical Cycle

What can we do to be Climate Prepared?

What can we do to be Climate Prepared?

Social Capacity

Enhance the ability of communities to effectively respond and cope with extreme climate events

What can we do to be Climate Prepared?

Social Capacity

COUNTY OF MENDOCINO Drought Resilience Development Plan and Drought Task Force Participation Project (RFP No. DOT 240004)

What can we do to be Climate Prepared?

Social Capacity

Enhance the ability of communities to effectively respond and cope with extreme climate events

Implementing water conservation activities and planning to enhance climatic resilience

What can we do to be Climate Prepared?

Portfolio of Strategies

Water demand Management

Before the Growing Season

- Winter crops, dry farming/low water use ullet
- Regenerative Agriculture: Low/no tillage, IPM, ulletcomposting, biodynamics
- Irrigation Uniformity \bullet
- Frost protection readiness \bullet

During the growing season

- Irrigation scheduling •
- **Deficit Irrigation** ullet
- Land rotation / Land fallowing ullet

Water Supply Management

Before the Growing Season

- Increase soil moisture storage •
- \bullet rain, fog, recycled water, desalination
- Building ponds \bullet
- Managed Aquifer Recharge •

During the growing season

• Water transfers

- Conjunctive use of water: Surface, Groundwater, snow,

Courtesy of Dr. Sam Sandoval

What can we do to be Climate Prepared?

Portfolio of Strategies

Water demand Management

Before the Growing Season

Winter crops, dry farming/low water use

- Regenerative Agriculture: Low/no tillage, IPM, ulletcomposting, biodynamics
- Irrigation Uniformity •
- Frost protection readiness \bullet

During the growing season

Irrigation scheduling

- **Deficit Irrigation** •
- Land rotation / Land fallowing ullet

Water Supply Management

Before the Growing Season

- •
- \bullet rain, fog, recycled water
- Building ponds \bullet
- •

During the growing season

• Water transfers

Increase soil moisture storage

Conjunctive use of water: Surface, Groundwater, snow,

Managed Aquifer Recharge

Courtesy of Dr. Sam Sandoval

<u>Climate Preparedness</u>: Know your Orchard/Vineyard water requirements

IRRIGATION SCHEDULING

Irrigation scheduling involves planning when and how much water to apply

Local Activities

nts LING anning apply

<u>Climate Preparedness</u>: Know your Orchard/Vineyard water requirements

IRRIGATION SCHEDULING

Irrigation scheduling involves planning when and how much water to apply

Local Activities

nts LING anning apply

Climate Preparedness: Know your Orchard/Vineyard water requirements

CROP/IRRIGATION REQUIREMENT

Crop Requirement: Amount of water supplied by irrigation to satisfy crop needs in terms of evapotranspiration **Irrigation requirement** = crop + other requirements

Local Activities

Climate Preparedness: Know your Orchard/Vineyard water requirements

CROP AND IRRIGATION REQUIREMENT

Crop Requirement: Amount of water supplied by irrigation to satisfy crop needs in terms of evapotranspiration **Irrigation requirement** = crop + other requirements

Local Activities

Water Use = Outflows - Inflows

Inflows = Precipitation and Irrigation Outflows = Evaporation, Transpiration, Runoff, Frost Protection, Leaching

Water Budget

Evapotranspiration (ET)

Loss of water through **Evaporation + Transpiration**

Water Budget

Evapotranspiration (ET)

Loss of water through **Evaporation + Transpiration**

ET = Crop water needs

Water needs of grass

Your crop coefficient

Evapotranspiration

Crop water Needs

needs of

your crop

Water needs of

grass

Your crop coefficient

Evapotranspiration

Crop water Needs

Evapotranspiration

Crop water Needs

$$ET_{crop} = ET_o \times K_{crop}$$

Obtain Eto using CIMIS

Table 11. Sample CIMIS data for Modesto, CA, July 1-15, 2005

Precipitation (in)	Air temperature		Wir	ET.	
	max (°F)	min (°F)	Direction	Speed (mph)	(in)
0.00	95	59	NW	4	0.26
0.00	92	58	NW	5	0.27
0.00	91	52	NW	4	0.25
0.08	92	53	NW	5	0.25
0.00	88	54	N	5	0.25
0.00	91	54	NW	6	0.25
0.00	88	54	N	6	0.27
0.00	84	52	N	8	0.27
0.00	81	52	NW	8	0.23

Evapotranspiration

Crop water Needs

$$ET_{crop} = ET_o \times K$$

crop

Kc is the crop coefficient. It represents the integrated changes in plant development

Date K. (W. Gape) Mar 16-31 0.32 Apr 1-15 0.41 Crop 0.50 Apr 16-30 Coefficient May 1-15 0.59 Values of 0.69 May 16-31 June 1-15 0.78 Wine Grapes Jun 16-31 0.82 (UC Cooperative Extension) July 1-15 0.82 0.82 July 16-31 0.82 Aug 1-15 0.77 Aug 16-31 Sep 1-15 0.66 Sep 16-30 0.55 Oct 1-15 0.44

Evapotranspiration

Historical ET

Table 9. Pear historical evapotranspiration estimates (inches during period)

Date	Lakeport	Ukiah	Courtland
Mar 16–31	—	0.25	0.83
Apr 1–15	1.65	0.86	1.28
Apr 16-30	1.44	1.46	1.77
May 1-15	1.90	1.83	2.22
May 16-31	2.28	2.21	2.68
June 1–15	2.52	2.44	2.90
June 16–30	3.14	2.87	3.31
July 1–15	3.05	2.91	3.33
July 16-31	3.14	2.87	3.31
Aug 1–15	2.79	2.64	3.05
Aug 16-31	2.52	2.40	2.77
Sept 1-15	2.20	2.11	2.46
Sept 16-30	1.61	1.53	1.79
Oct 1–15	1.16	1.13	1.26
Oct 16-31	0.82	0.79	0.88

Crop water Needs

 $ET_{crop} = ET_{o} \times K_{crop}$

Table 11. Sample CIMIS data for Modesto, CA, July 1–15, 2005

Date	Precipitation	Air temperature		Wind		ET.	
	(in)	max (°F)	min (°F)	Direction	Speed (mph)	(in)	
7-01	0.00	95	59	NW	4	0.26	
7-02	0.00	92	58	NW	5	0.27	
7-03	0.00	91	52	NW	4	0.25	
7-04	0.08	92	53	NW	5	0.25	
7-05	0.00	88	54	Ν	5	0.25	
7-06	0.00	91	54	NW	6	0.25	

Real-time ET

Date	K _c (W. Gape)
Mar 16-31	0.32
Apr 1-15	0.41
Apr 16-30	0.50
May 1-15	0.59
May 16-31	0.69
June 1-15	0.78
Jun 16-31	0.82
July 1-15	0.82
July 16-31	0.82
Aug 1-15	0.82
Aug 16-31	0.77
Sep 1-15	0.66
Sep 16-30	0.55
Oct 1-15	0.44

Evapotranspiration

Historical ET

Table 9. Pear historical evapotranspiration estimates (inches during period)

Date	Lakeport	Ukiah	Courtland
Mar 16-31	—	0.25	0.83
Apr 1–15	1.65	0.86	1.28
Apr 16-30	1.44	1.46	1.77
May 1-15	1.90	1.83	2.22
May 16-31	2.28	2.21	2.68
June 1–15	2.52	2.44	2.90
June 16–30	3.14	2.87	3.31
July 1–15	3.05	2.91	3.33
July 16-31	3.14	2.87	3.31
Aug 1–15	2.79	2.64	3.05
Aug 16-31	2.52	2.40	2.77
Sept 1–15	2.20	2.11	2.46
Sept 16-30	1.61	1.53	1.79
Oct 1-15	1.16	1.13	1.26
Oct 16-31	0.82	0.79	0.88

Crop water Needs

 $ET_{crop} = ET_{o} \times K_{crop}$

Table 11. Sample CIMIS data for Modesto, CA, July 1–15, 2005

Date	Precipitation	Air temperature		Wind		ET.	
	(in)	max (°F)	min (°F)	Direction	Speed (mph)	(in)	
7-01	0.00	95	59	NW	4	0.26	
7-02	0.00	92	58	NW	5	0.27	
7-03	0.00	91	52	NW	4	0.25	
7-04	0.08	92	53	NW	5	0.25	
7-05	0.00	88	54	N	5	0.25	
7-06	0.00	91	54	NW	6	0.25	

Real-time ET

Date	K _c (W. Gape)
Mar 16-31	0.32
Apr 1-15	0.41
Apr 16-30	0.50
May 1-15	0.59
May 16-31	0.69
June 1-15	0.78
Jun 16-31	0.82
July 1-15	0.82
July 16-31	0.82
Aug 1-15	0.82
Aug 16-31	0.77
Sep 1-15	0.66
Sep 16-30	0.55
Oct 1-15	0.44

Evapotranspiration

Historical ET

Table 9. Pear historical evapotranspiration estimates (inches during period)

Date	Lakeport	Ukiah	Courtland
Mar 16-31	_	0.25	0.83
Apr 1–15	1.65	0.86	1.28
Apr 16-30	1.44	1.46	1.77
May 1-15	1.90	1.83	2.22
May 16-31	2.28	2.21	2.68
June 1–15	2.52	2.44	2.90
June 16–30	3.14	2.87	3.31
July 1–15	3.05	2.91	3.33
July 16-31	3.14	2.87	3.31
Aug 1-15	2.79	2.64	3.05
Aug 16-31	2.52	2.40	2.77
Sept 1–15	2.20	2.11	2.46
Sept 16-30	1.61	1.53	1.79
Oct 1-15	1.16	1.13	1.26
Oct 16-31	0.82	0.79	0.88

Crop water Needs

 $ET_{crop} = ET_{o} \times K_{crop}$

Table 11. Sample CIMIS data for M

Date	Precipitation	Air temperature		Wind		FT.	
Dutc	(in)	max (°F)	min (°F)	Direction	Speed (mph)	(in)	
7-01	0.00	95	59	NW	4	0.26	
7-02	0.00	92	58	NW	5	0.27	
7-03	0.00	91	52	NW	4	0.25	
7-04	0.08	92	53	NW	5	0.25	
7-05	0.00	88	54	N	5	0.25	
7-06	0.00	91	54	NW	6	0.25	

Real-time ET

	C 4		4 45	2005
lodesto,	CA,	July	1-15,	2005

Date	K _c (W. Gape)
Mar 16-31	0.32
Apr 1-15	0.41
Apr 16-30	0.50
May 1-15	0.59
May 16-31	0.69
June 1-15	0.78
Jun 16-31	0.82
July 1-15	0.82
July 16-31	0.82
Aug 1-15	0.82
Aug 16-31	0.77
Sep 1-15	0.66
Sep 16-30	0.55
Oct 1-15	0.44

Obtained by CIMIS

Obtained by UCCE

- Conserve water
- Water rotation among various fields
 - Reduce cost of water and labor
- Can increase yields and crop quality

Applied Water water demand

> lds or ality (

<u>Climate Preparedness</u>: Winter Cover Crops

Winter Cover Cropping: Growing crops between annual production seasons or perennial tree/vines crops

Aerials photos pf orchards with and without cover crops. (Andrew Gal, UC Davis)

Only 5% of **CA farms** grow winter cover crops

Cover crops are generally not substantial water users

DO NOT use more water than bare soil

(DeVincentis, 2022; Mitchell, 2012)

...and if they're left as residue and combined with no-till, soil evaporation can be reduced

Cover crops act like insurance Enabling more infiltration if the water is available

Two adjacent plots in an almond orchard after an intense winter storm. Donny Hicks, 2023

Cover crops have helped capture more precipitation

Water pools on the bare ground

Cover crops fight erosion

Cover crops can be used to meet soil conservation goals, specifically, from wind and water erosion

Two adjacent plots in a single-year demonstration plot at the Eastern Nebraska Research. (Miller, 2017)

Cover crops have many benefits including:

		← Confidence Low	Level Based on Availability	o f Research Higl
	Inflow	Increased Fog and Dew Capture		Increa Infiltra
Water Budget	Storage	Increased Percolation	Increased Soil Moisture and Water Storage	
	Outflow		Increased Evapotranspiration (ET)	Decrea Runc
Water Quality Benefits			Increased Nutrient Scavenging	Decrea Erosi

ised

ased

ased ion \checkmark Improve air quality ✓ Quicker field access ✓ Increase biodiversity ✓ Provide food for pollinators ✓ Increased water productivity (in pistachios) ✓ Nitrogen fixation (depending on species) ✓ Soil carbon accumulation in no-till systems

Implementing Cover Crops:

Seeds: Kamprath (supply), Seeds for Bees (free), USDA & CDFA (cost share)

Specialized seeders needed based on cropping system

Cover Crop Decision Support Tool will be released in October

CONCLUSION

Staying informed about our water supply and understanding climate change events like droughts and floods is crucial for building resilience.

> Learning about strategies for drought preparedness plays a crucial role in enhancing our ability to withstand periods of water scarcity.

Thanks!

Dr. Lau Garza

Water and Climate Change Advisor UC Cooperative Extension Mendocino and Lake

Legarza@ucanr.edu

