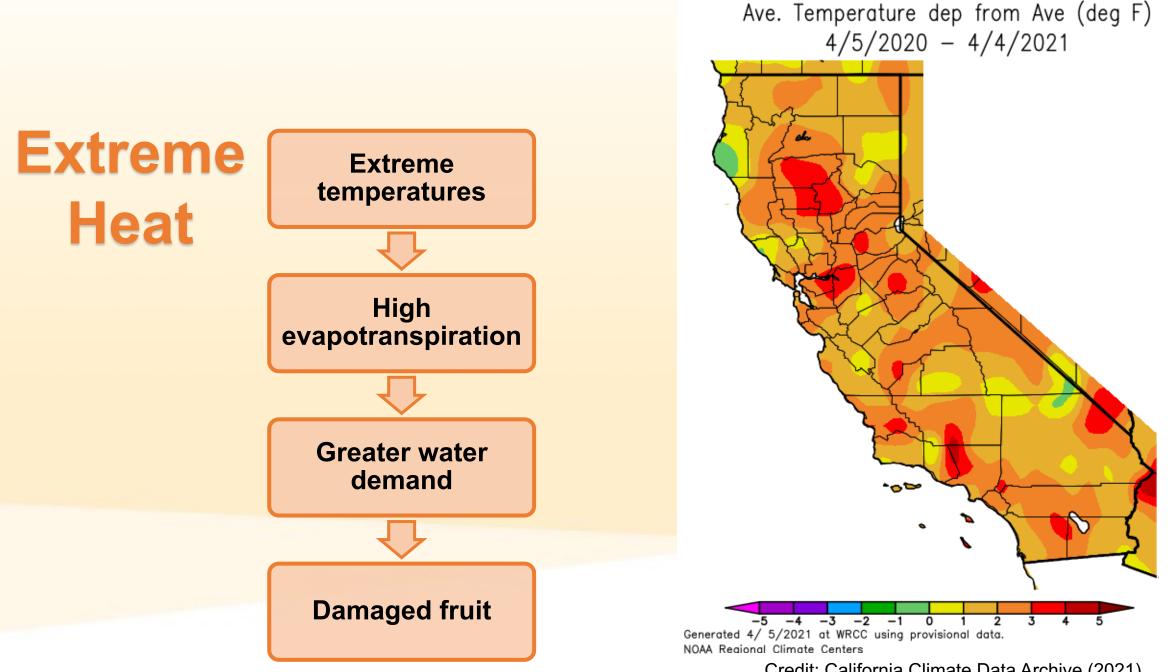
Water Use Efficiency in Vineyards Conservation, Irrigation, and Salinity Management

Christopher Chen, Ph.D. UCCE – Integrated Vineyard Systems Advisor North Coast

Climate Impacts

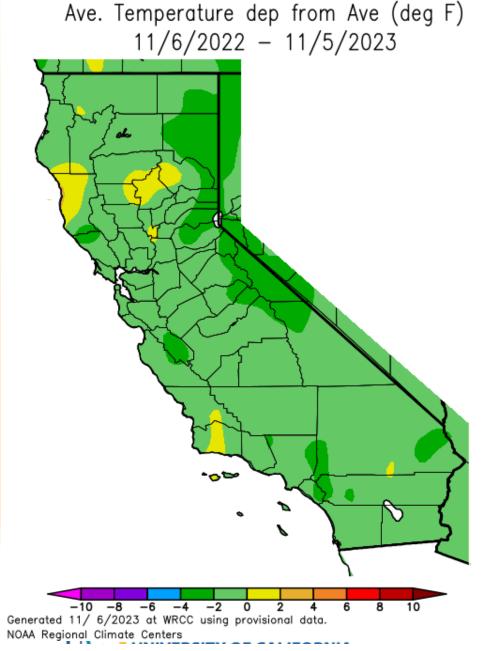
Must consider both **direct** and **indirect** impacts of changing climates

- 1. Change in growing season length
- 2. Earlier or later budbreak and ripening
- 3. Resource scarcity (i.e., water/fertilizer)
- Increased soil salinity 4.
- 5. More extreme weather events


Climate Impacts

Must consider both **direct** and **indirect** impacts of changing climates

- 1. Change in growing season length
- 2. Earlier or later budbreak and ripening
- 3. Resource scarcity (i.e., water/fertilizer)
- 4. Increased soil salinity
- 5. More extreme weather events



Credit: California Climate Data Archive (2021)

1

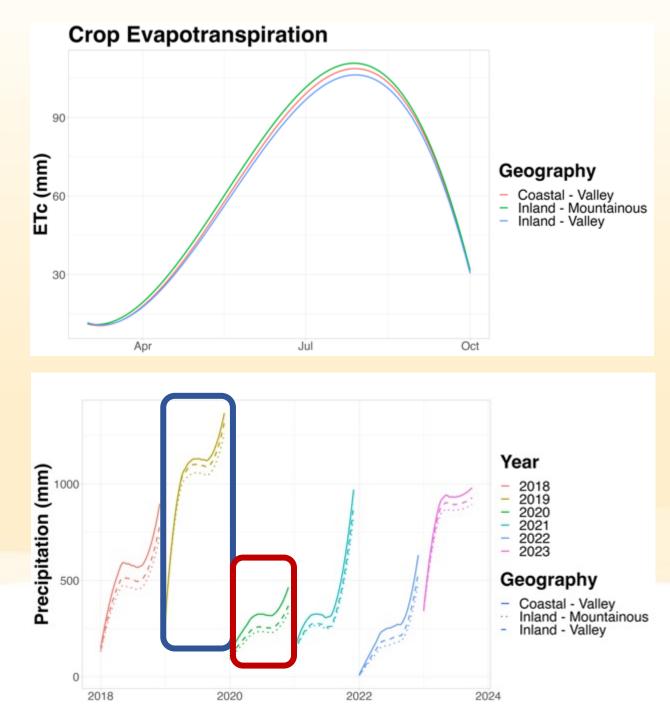
Extreme Heat?

Average temperatures in the 2023 growing season were notably lower across the state compared to average

h

	Winkler Zone	Final GDDs	Year	Station
	III	3301.5	2023	Ukiah
Hottest	III	3475.5	2022	Ukiah
	IV	3679.1	2021	Ukiah
	IV	3604.9	2020	Ukiah
	III	3470.4	2019	Ukiah
	IV	3602.5	2018	Ukiah
Coolest	IV	3640.7	2017	Ukiah
	III	3344.6	2016	Ukiah
	IV	3656.8	2015	Ukiah
	IV	3635.5	2014	Ukiah
	III	3326.1	2013	Ukiah
	III	3285.4	2012	Ukiah
	II	2965.9	2011	Ukiah
	III	3136.9	2010	Ukiah
	IV	3572.9	2009	Ukiah
	IV	3516.6	2008	Ukiah
	III	3392.1	2007	Ukiah
	IV	3666.2	2006	Ukiah
	III	3335.1	2005	Ukiah
	IV	3575.9	2004	Ukiah
	IV UC	3509.8	2003	Ukiah

 UC
 UNIVERSITY OF CALIFORNIA


 Agriculture and Natural Resources
 Cooperative Extension

Short-Term Amnesia

True for precipitation and water availability as well as temperatures

Water use of a vineyard often remains constant year-to-year

Precipitation does not and we cycle through years of drought followed by years of sufficient precipitation

Vineyard Water Conservation

Water use of different crops

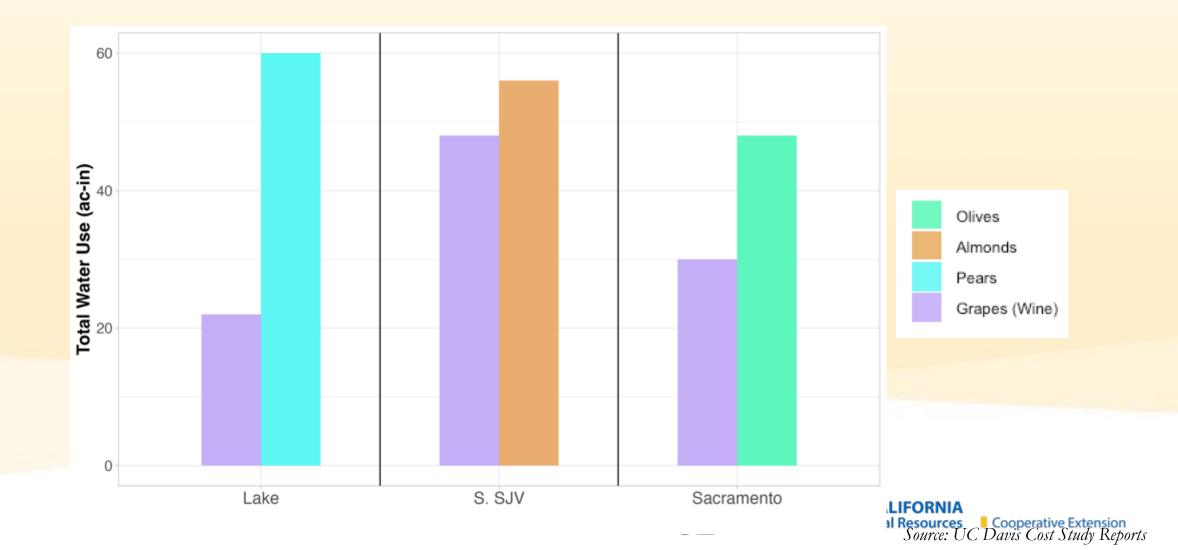
		Water Inputs for Plant Use				
Crop System	Location	Est. Effective Precipitation (ac-in)	Irrigation Applied (ac-in)	Total Plant Water Demand (ac-in)	Frost Protection (ac- in)	Total Water Use (ac-in)
Olives	Sacramento	12	36	48	n/a	48
Almonds	S. SJV	12	42	54	2	56
Pears	Lake	12	30	42	18	60

Water use of grapes – it depends

		Water Inputs for Plant Use				
Crop System	Location	Est. Effective Precipitation (ac-in)	Irrigation Applied (ac-in)	Total Plant Water Demand (ac-in)	Frost Protection (ac- in)	Total Water Use (ac-in)
Olives	Sacramento	12	36	48	n/a	48
Grapes (Wine)	Sacramento	12	18	30	n/a	30
Almonds	S. SJV	12	42	54	2	56
Pears	Lake	12	30	42	18	60

Water use of grapes – it depends

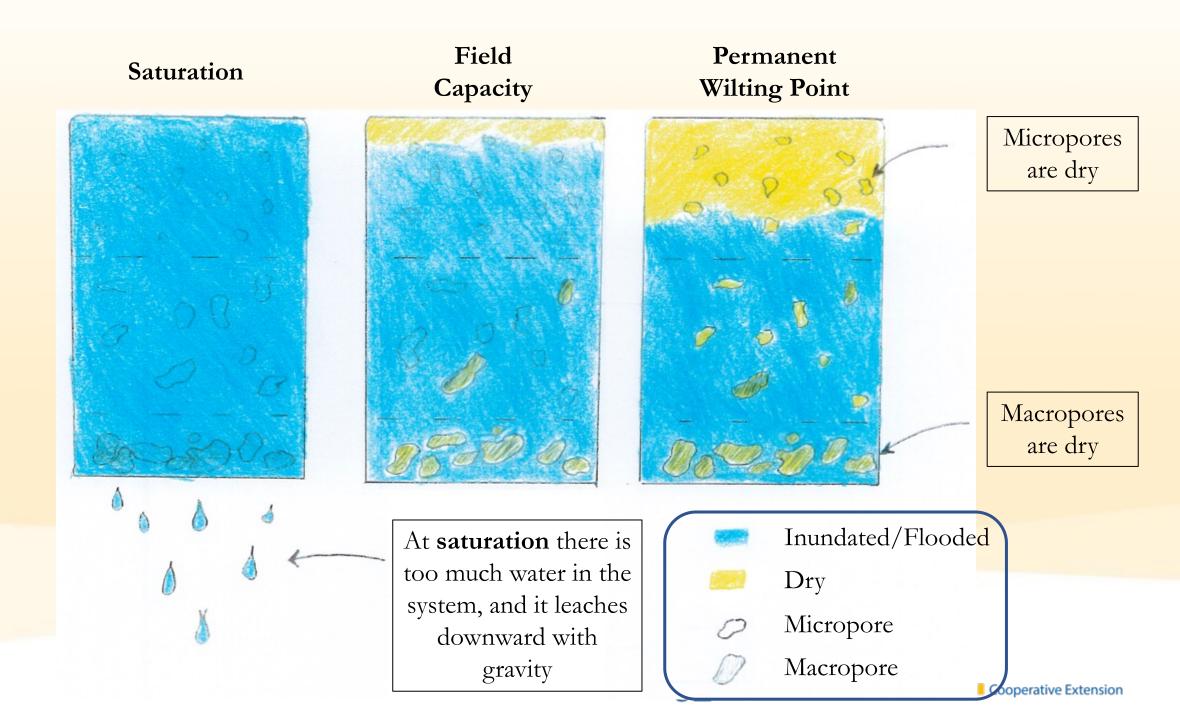
		Water Inputs for Plant Use				
Crop System	Location	Est. Effective Precipitation (ac-in)	Irrigation Applied (ac-in)	Total Plant Water Demand (ac-in)	Frost Protection (ac- in)	Total Water Use (ac-in)
Olives	Sacramento	12	36	48	n/a	48
Grapes (Wine)	Sacramento	12	18	30	n/a	30
Almonds	S. SJV	12	42	54	2	56
Grapes (Wine)	S. SJV	12	36	48	n/a	48
Pears	Lake	12	30	42	18	60

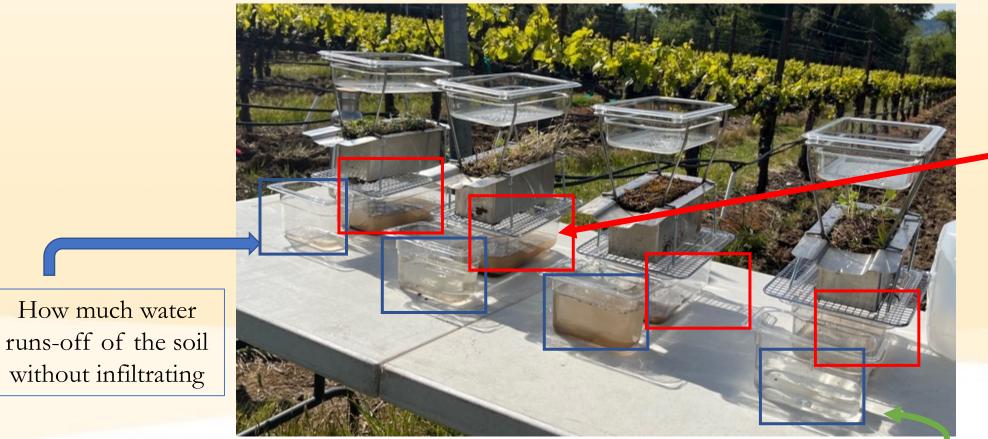


Water use of grapes – it depends

		Water Inputs for Plant Use				
Crop System	Location	Est. Effective Precipitation (ac-in)	Irrigation Applied (ac-in)	Total Plant Water Demand (ac-in)	Frost Protection (ac- in)	Total Water Use (ac-in)
Olives	Sacramento	12	36	48	n/a	48
Grapes (Wine)	Sacramento	12	18	30	n/a	30
Almonds	S. SJV	12	42	54	2	56
Grapes (Wine)	S. SJV	12	36	48	n/a	48
Pears	Lake	12	30	42	18	60
Grapes (Wine)	Lake	12	8	20	2	22
					RSITY OF CALIFORNIA ture and Natural Resources	

Source: UC Davis Cost Study Reports


Crop Water Demand


Water Costs per Ac-Ft

Location	\$ / ac-ft	Pumping \$ / ac-in	Year Assessed
North Coast	\$200-\$600	\$15-25	2022
S. SJV	\$150-\$400	\$10-\$20	2022
Sacramento	\$100-\$400	n/a	2020

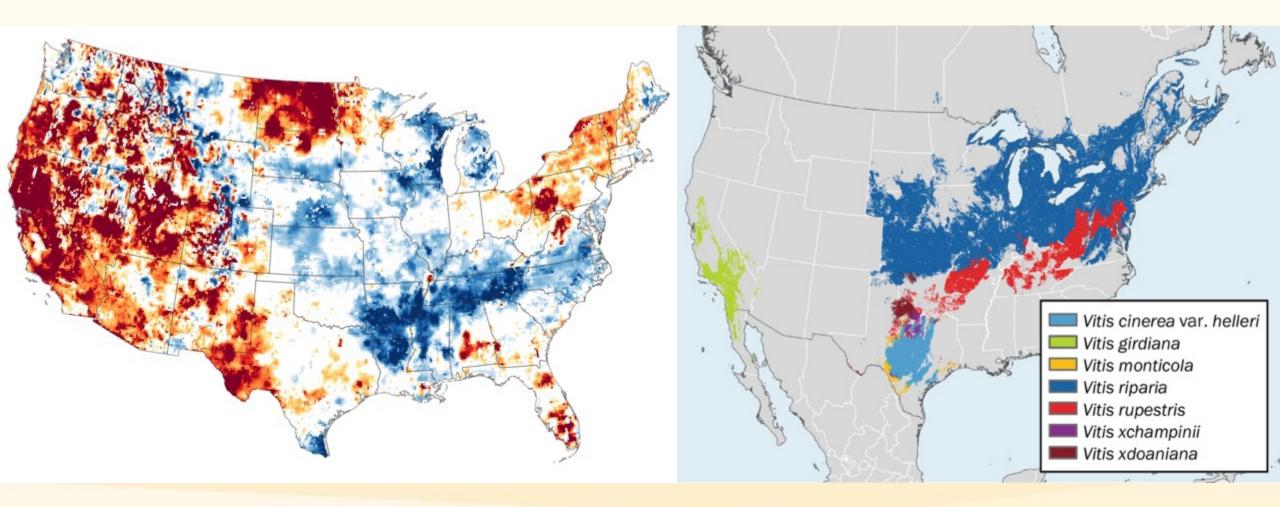
Testing Soils – Water Infiltration Rate

UC

How much water can get into the soil and can move down the soil profile?

How clean is the UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Testing Soils – Water Infiltration Rate



How much water can get into the soil and can move down the soil profile?

runs-off of the soil without infiltrating

How clean is the UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources runoff water?

Drought conditions – 2021 (NASA)

Heinitz et al. 2019

140 Ru

140 Ru – deep rooted

101-14 mgt

 101-14 mgt – shallow rooted

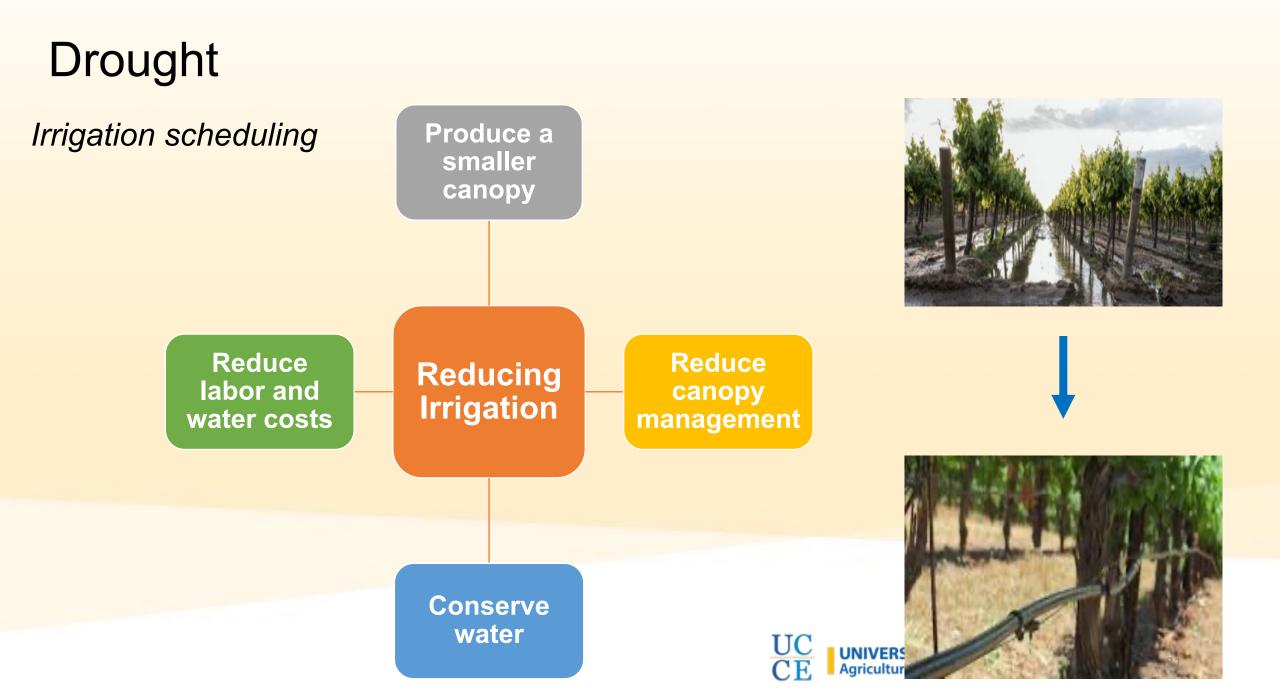
 UC

 VNIVERSITY OF CALIFORNIA

 Agriculture and Natural Resources

 Cooperative Extension

Drought Kaolin – Clay particle film


Improves vine **WUE** by **+26%** in water-stressed vines ^[3]

Can improve final wine ratings

No negative effects on berry quality

Kaolin particle film applied to Cabernet Sauvignon clusters pre-version; Oakville, CA 2016 $^{\rm 20}$

Improving Soil-Water Dynamics

Tools for Agriculture:

- 1. Cover Crops
 - Imitates natural systems (e.g., riparian river/stream banks)
- 2. Decreasing Compaction
 - Leads to less 'hardpan' soils
- 3. Adding Soil Organic Matter
 - Acts like a sponge for water and nutrients
- 4. Maintaining Soil Structure
 - Dirt-clods help maintain air/water pockets in the soil

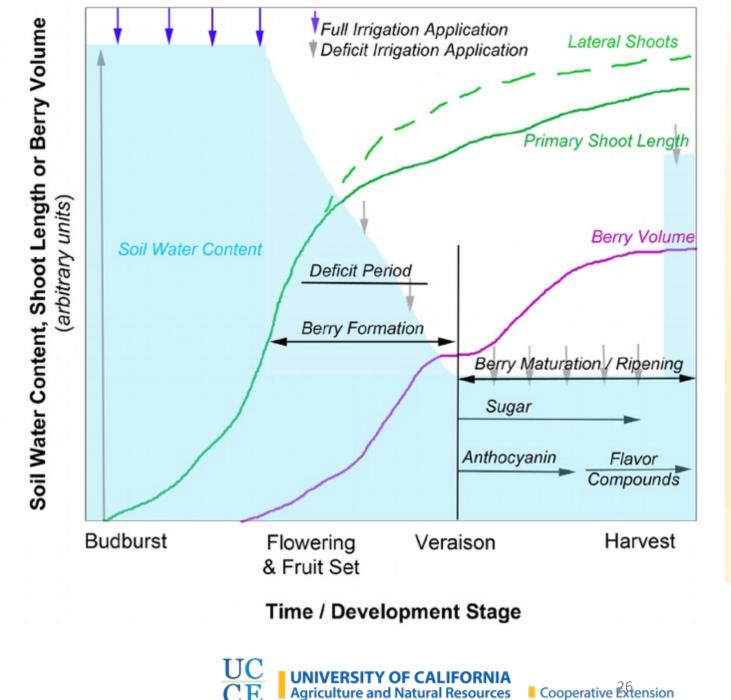
Conserving Water in the Vineyard

1. Irrigation design and maintenance

- Flood vs. Drip vs. Microsprinklers
- Patching leaks and breaks
- Frost protection 2.
 - Overhead irrigation vs Vineyard fans
- Canopy management 3.
 - Smaller canopy = less water transpired
 - Smaller canopy = higher evaporation
 - It's a tradeoff

Selecting droughttolerant cultivars

- 1. Planting drought-tolerant varieties helps
- 2. This depends on the 'Rootstock-Scion' combination effects
 - Rootstocks act as the roots; the deeper they are the more resilient to drought
 - Scions transpire water; the more efficient they are, the less water is needed
- 3. See UC Davis's Rootstock Guide for info: <u>https://iv.ucdavis.edu/files/24347.pdf</u>


Irrigation Scheduling

Deficit Irrigation

Deficit Irrigation Methods:

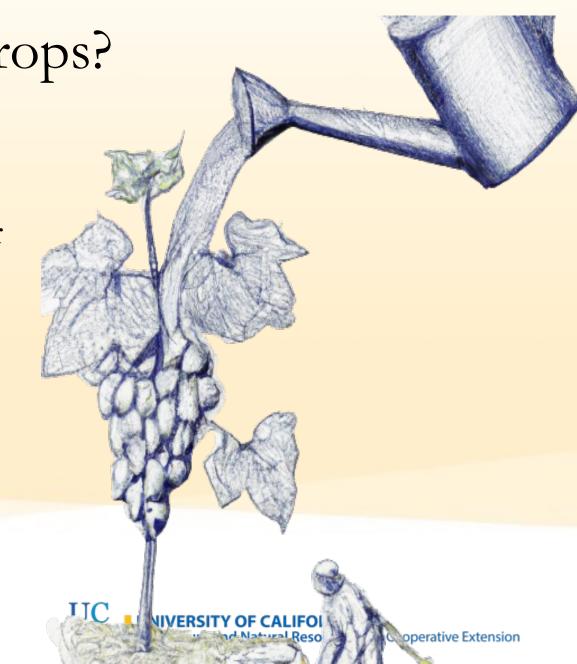
- 1. Sustained Deficit Irrigation
- 2. Regulated Deficit Irrigation
- 3. Partial Rootzone Drying

Three main questions

1. When do we irrigate our crops?

2. How much water do we need for each irrigation event?

3. How do we best apply the necessary amount of water?

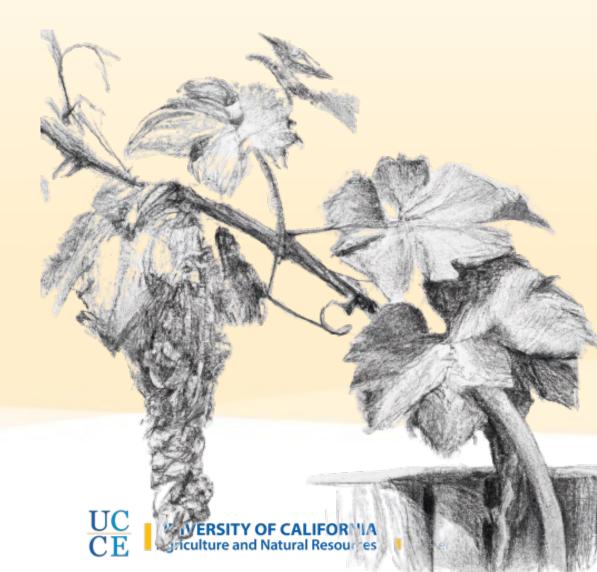

When do we irrigate our crops?

Two options for **when** we irrigate:

1. Before plants face a water deficit or become water stressed

or

2. At specific deficit/stress levels that benefit yield and quality



How can we tell our vines need water?

We need to monitor water stress

Main methods of measuring vine water stress:

- 1. Pressure chamber/bomb readings
- 2. Plant moisture probes
- 3. Soil moisture probes
- 4. Weather-based decisions

Pressure Chamber/Bomb

Used to quantify the *tension* in the grapevine

Measured in Bars or Megapascals (MPa)

Two ways to do this:

- 1. Stem water potential (SWP)
 - More accurate and less variation in measurements
- 2. Leaf water potential (LWP)
 - Easier than SWP, but less accurate and more variable

Pressure Chamber Thresholds (Grapes)

Stem Water Potential Measurement (Negative Bars)	Leaf Water Potential Measurement (Negative Bars)	Status of the Vine
-8.0 to 0 bars	-10.0 to 0 bars	Not water stressed
-12.0 to -8.1 bars	-14.0 to -10.1 bars	Some water stress
-16.0 to -12.1 bars	-18.0 to -14.1 bars	Extremely water stressed
	UC	UNIVERSITY OF CALIFORNIA

Plant-Based Moisture Probes

Useful, but can be unreliable

If installed incorrectly you will get incorrect readings

Can only use on one vine at a time

Required to stay installed for the life of a vine

Also called sap-flow meters or **Dendrometers**

Soil-Based Irrigation Decisions

Requires continuous monitoring

Start irrigation at a **target level** of soil moisture

Stop irrigation when soil moisture reaches a target level

Doesn't account for differences in water-uptake by different grape cultivars (rootstocks or scions)

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources Cooperative Extension

Weather-Based Irrigation Scheduling

Based on ET_c and k_c

k_c values are often **estimated** and do not give the most accurate representation of vine-water status

Often leads to under-irrigation if not complimented/verified by one of the other methods mentioned prior

Works better with a private-local weather station installed

How much water do we need to apply?

Depends on your irrigation strategy and the time of year

RDI should apply water based on the ET_c equation and the k_c during that time of year

Should apply the all or a portion of water used by the crop for evapotranspiration since the last irrigation or precipitation

How do we best apply the water?

Either with temporal-uniformity (i.e., SDI or PRD) or with variable rates over time (RDI)

Water should be applied either:

- 1. Frequently in smaller quantities
- 2. Infrequently in larger quantities

This will depend on your deficit irrigation strategy for your site

Methods and Technology for Irrigation Scheduling

Key Components of an Irrigation System

Design

- Accurate
- Flexible Operation

Maintenance

- Properly Installed
- Regularly Inspected

- Tested
- Easily Reparable/Modular
- Maintained Regularly
- Accessible Repair Components

(Flow rate meters)

UNIVERSITY OF CALIFORNIA

Iture and Natural Resources 📒 Cooperative Extension

Operation

- Defined Irrigation Regime/Strategy (Full irrigation / RDI / SDI / etc.)
- Consistent Irrigation Scheduling (One method to schedule)
- Accurate Irrigation Control Systems (Easy-to-use control box)
- System Feedback

Source: Daniele Zaccaria

Irrigation Design

Low volume, micro-irrigation systems are mostly used in vineyards

- Allows for careful management of timing and amount of water applied
- Allows for fertigation or injecting fertilizers into the irrigation system
- Often the systems are drip or micro-sprinklers

Preliminary site evaluations are necessary before installing irrigation

- Water supply
- Projected water need
- Water infiltration rate
- Soil properties
- Pump limitations
- Water holding cap.
- Soil-water dynamics
- Elevation gain (source $\sim sink$)
- Site slopes and aspect

Rule of Thumb

Apply the **peak daily ET** (in./day) in a maximum of a 16-20 hour set time

Irrigation System Components

Size the different system's components from downstream (end point) to upstream (source of the water)

downstream pipe size \geq upstream pipe size

Ensures your materials have the best flow rate and minimal friction losses; also try to make the system flexible when problems arise (e.g., easily replaceable sections or components; not a 1000ft pipe)

Select components to ensure the system can handle flow rate & pressure at **routine** levels and **maximum** levels (material quality)

Irrigation System Flexibility

Vines need different water amounts at different life stages and times of year:

- Young vines are small and require less water than older vines
- Vines early in the growing season require less water due to small canopy

Account for the demands of the vine at every life stage and time of year when designing your vineyard irrigation system

- This is a function of average/routine and maximum water demands
- Also account for changes in annual precipitation and groundwater levels

Rule of Thumb

Application rate **should be less than** the basic soil-water infiltration (or intake) rate (in./hr.)

Otherwise, you will just have water runoff the soil

Rule of Thumb

Total or maximum volume of water applied should be less than the water holding capacity of your soil (in.)

Otherwise, the water applied will drain below the root zone

Irrigation Scheduling

UCANR.edu/sites/ChenLab/

Go to Resources Page

- Iraining Types:
 - Spur-Pruned (Head Trained)
 - Spur-Pruned (Cordon-Trained)
 - Cane Pruned

Local Resources and Contacts

 Selected Plant and Soil Laboratories in Northern and Central California

Irrigation Scheduling

- Vineyard Irrigation Scheduling Worksheet
- Alternative Irrigation Scheduling Worksheet

Climate Tools

- Cal-Adapt.org
- IrriSAT Weather Based irrigation tool
- CIMIS Climate data for California
 - Instructions for CIMIS website
- Western Weather Lake County
- CalAgroClimate Weather-based decision tool
- OpenET Crop evapotranspiration in your region

Sample Irrigation Scheduling Worksheet - Davis, CA

							J		J	H=	,,						
Date	A (in) = Eto	A (mm)= ETo ^a	B = Crop Coefficient ^b	C = canopy coefficient (for fine-tuning by site)	Etc (mm/week)	D = A x (B x C): Potential Water Use	E = RDI coefficient	F = Soil TAW (total available water)	G = Effective Rainfall ^c	[(D x E) - F - G]: Net Irrigation Requiremen t	l = Emission Uniformity ^d	J = H/I:Gross Irrigation Amount	K = Vine Spacing	L = (J x K x .623): Gallons per Vine/Period	L = Average Application Rate	M = (K/L): Hours of PREDICTED Irrigation Time	Predicted Irrigation Time (Corrected)
Week	Inches/Week	Inches/Week	Kcrop	Kcanopy	Eto * Kcrop	(in)	Krdi	(in)	(in)	(in)	(%)	(in)	(sq feet)	(gal/week)	(gph/vine)	(hours)	
Week																	
Apr Week 1	0.904	22.60	0.20	0.10	4.52	0.18	0.00	0.09	0.00		92.0	0.10	48		0.5	6.0	6.0
Apr Week 2	1.12	28.00		0.10	6.44	0.26	0.00	0.09	0.00		92.0	0.10	48		0.5	6.0	6.0
Apr Week 3	1.08	27.00	0.25	0.10	6.75	0.27	0.00	0.09	0.00	-0.09	92.0	0.10	48	3.0	0.5	6.0	6.0
Apr Week 4	1.5672	39.18	0.27	0.10	10.58	0.42	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
May W 1	1.3792	34.48	0.29	0.10	10.00	0.40	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
May W 2	1.6192	40.48	0.31	0.10	12.55	0.50	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
May W3	0.75	18.75	0.33	0.10	6.19	0.25	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
May W4	1.5068	37.67	0.35	0.10	13.18	0.53	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
June W1	1.4852	37.13	0.40	0.10	14.85	0.59	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
June W2	1.7148	42.87	0.45	0.10	19.29	0.77	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
June W3	1.4924	37.31	0.50	0.10	18.66	0.75	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
June W4	1.9572	48.93	0.55	0.10	26.91	1.08	0.00	0.09	0.00	-0.09	92.0	-0.10	48	-2.9	0.5	-5.8	0.0
July W1	1.9164	47.91	0.60	0.10	28.75	1.15	0.65	0.09	0.00	0.66	92.0	0.72	48	21.4	0.5	42.8	42.8
July W2	2.0284	50.71	0.65	0.10	32.96	1.32	0.65	0.09	0.00	0.77	92.0	0.83	48	25.0	0.5	49.9	49.9
July W3	1.7968	44.92	0.70	0.10	31.44	1.26	0.65	0.09	0.00	0.73	92.0	0.79	48	23.7	0.5	47.4	47.4
July W4	1.8564	46.41	0.75	0.10	34.81	1.39	0.65	0.09	0.00	0.82	92.0	0.89	48	26.5	0.5	53.1	53.1
Aug W1	1.7568	43.92	0.80	0.10	35.14	1.41	0.65	0.09	0.00	0.82	92.0	0.90	48	26.8	0.5	53.6	53.6
Aug W2	1.7972	44.93	0.85	0.10	38.19	1.53	0.65	0.09	0.00	0.90	92.0	0.98	48	29.4	0.5	58.8	58.8
Aug W3	1.7176	42.94	0.75	0.10	32.21	1.29	0.50	0.09	0.00	0.56	92.0	0.60	48	18.0	0.5	36.1	36.1
Aug W4	1.828	45.70	0.65	0.10	29.71	1.19	0.50	0.09	0.00	0.51	92.0	0.55	48	16.4	0.5	32.8	32.8
Sept W1	1.6864	42.16	0.55	0.10	23.19	0.93	0.50	0.09	0.00	0.37	92.0	0.41	48	12.2	0.5	24.4	24.4
Sept W2	1.6196	40.49	0.50	0.10	20.25	0.81	0.50	0.09	0.00	0.32	92.0	0.34	48	10.3	0.5	20.5	20.5
Sept W3	1.4752	36.88	0.45	0.10	16.60	0.66	0.50	0.09	0.00	0.24	92.0	0.26	48	7.9	0.5	15.8	15.8
Sept W4	1.4224	35.56	0.40	0.10	14.22	0.57	1.00	0.09	0.00	0.48	92.0	0.52	48	15.6	0.5	31.2	31.2
Oct W1	1.294	32.35	0.30	0.10	9.71	0.39	1.00	0.09	0.00	0.30	92.0	0.33	48	9.7	0.5	19.5	19.5
Oct W2	0.914	22.85	0.30	0.10	6.86	0.27	1.00	0.09	0.00	0.19	92.0	0.20	48	6.0	0.5	12.0	12.0
Oct W3	0.8488	21.22	0.25	0.10	5.31	0.21	1.00	0.09	0.00	0.12	92.0	0.13	48	4.0	0.5	8.0	8.0
Harvest!	1.3192	32.98	0.00	0.10	0.00	0.00	1.00	0.09	0.00		92.0	-0.10	48		0.5	-5.8	0.0
Total	41.8532	1046.33			509.23	0.00		2.40		6.63		7.69		233.0			523.9
a Get from C								^ =in soil * W	HC		Gallons per vi		ough harvest		76.6		
^b Crop Coefficient calculated based on midday land surface shaded area.									153.1								

^c Effective rainfall is calculated from actual rainfall and assumed to be 80%.

Blue columns are excessive but good to know

^d Under deficit irrigation, Irrigation Efficiency is assumed equal to Emission Uniformity.

Information N	eeded for this Spreadsheet:			Location			
1		133					
2	Soil Total available	133					
3		Col A & B					
4		Col N					
5		Col J					
6		Column H					
7	Emitter Rates	Col P					
8	8 Kc						

Assumptions:

1. Bud break occurred on May 14.

2. Last Rain was on May 6 and left TAW full.

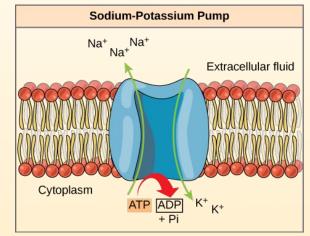
3. Harvest Date was October 31st.

Salinity in Vineyards

Sodium and Potassium

Grapevine HKT 1;1

- The *High-affinity Potassium Transporter* protein in grapevines selects only for potassium.
- But it can be fooled by Sodium
 > (Henderson et al. 2014)


What's the problem?

• Sodium = "Imposter" for entry into plant Cl⁻ becomes toxic before Na⁺ in grapevines and a few other perennial crops

Similar for

nitrate

chlorine and

Malignant hyperthermia: A runaway thermogenic futile cycle at the sodium channel level. *Advances in Bioscience and Biotechnology*, *05*, 197–200.

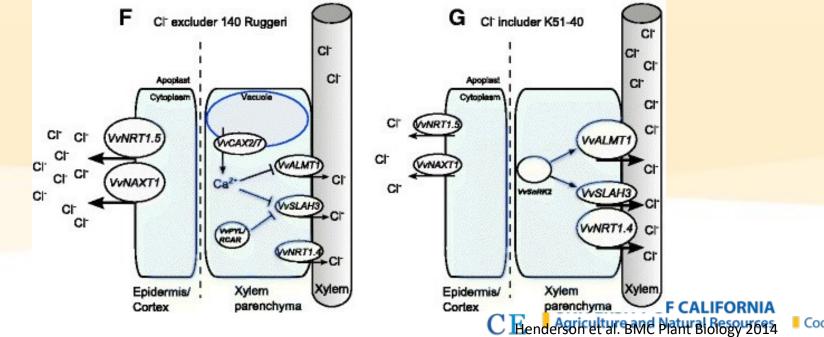
Sodium toxicity in Grapevine

٠

Chloride toxicity in grapevine

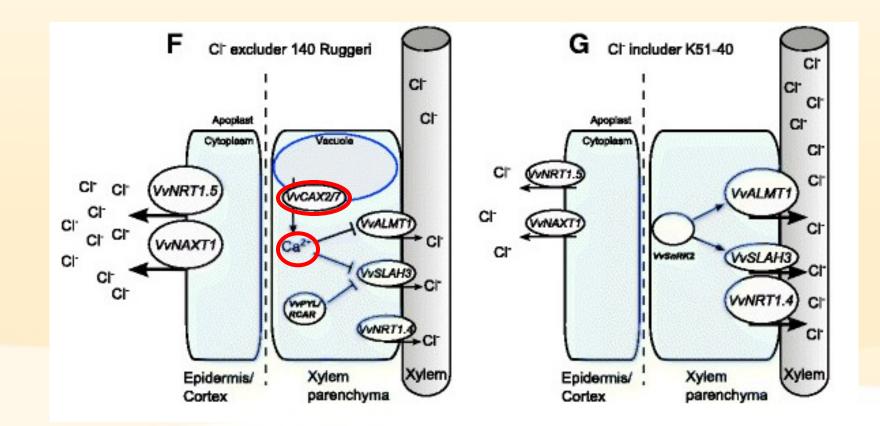
Potassium deficiency symptoms: Photo by ORNIA Mardi L. Longbottom; AWRI (Australia)

Cooperative Extension


What about Chlorine?

Cl⁻ and NO₃-

- Similar radius
 - ≻ Cl⁻ = 175 pm
 - > NO₃⁻ = 179 pm
- Similar charge and similar problems as K⁺ and Na⁺

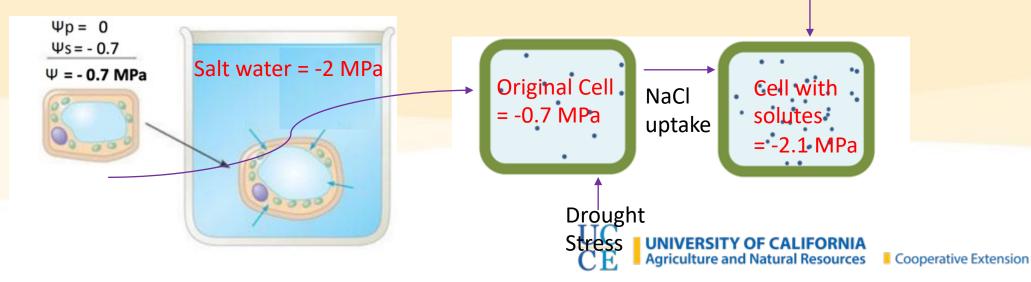

A difference in action

- Salt tolerance in grapevine is. associated with chloride exclusion from shoots.
- Differences between varieties partially arise in the limiting of Clpassage between root symplast and xylem apoplast.

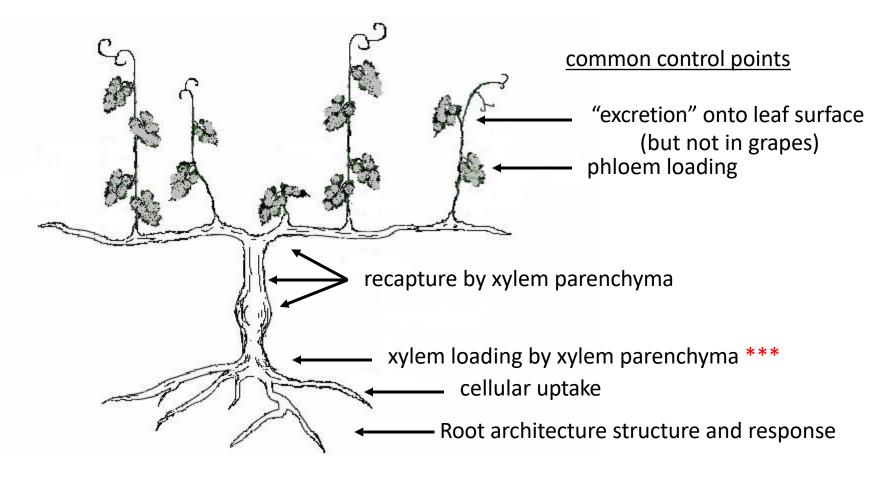
Cooperative Extension

The *(partial)* model for complex control of salt tolerance

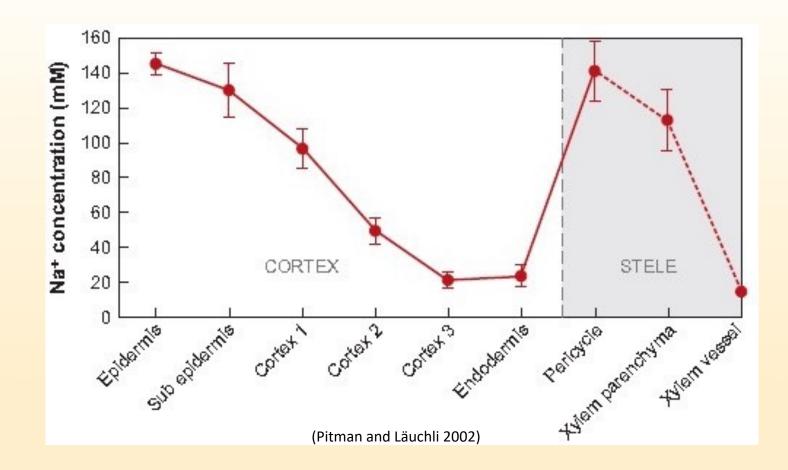
UC UNIVERSITY OF CALIFORNIA C Henderson et al. BMC Plant Biology 2014


Cooperative Extension

Water Potentials and Solutes

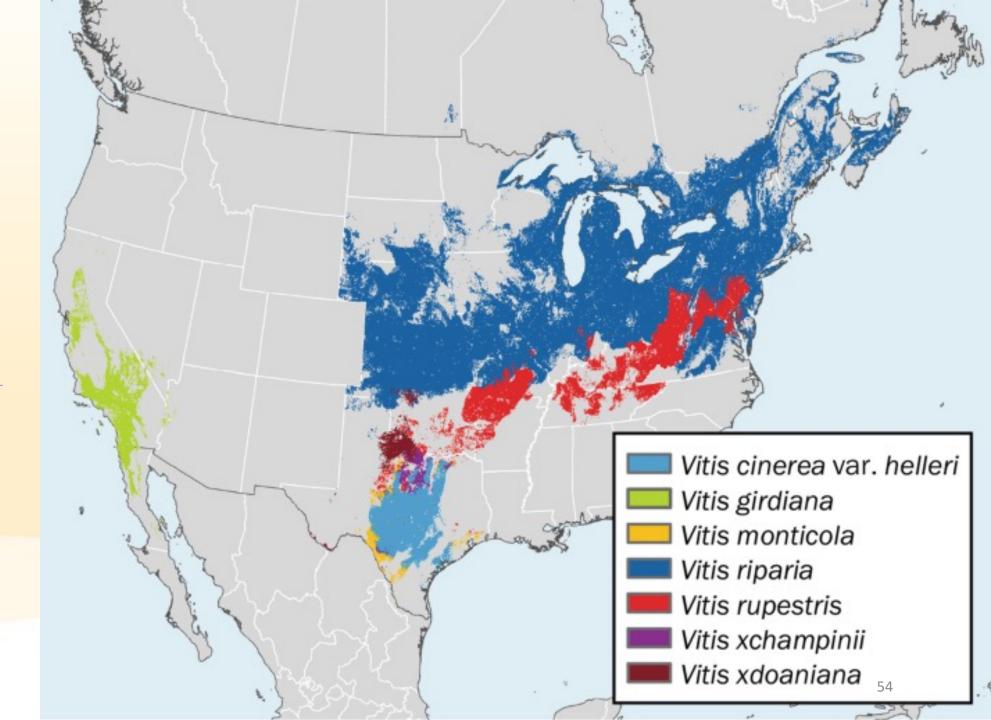

Osmotic potential

- Cells are filled with dissolved solutes
 - Creates a concentration gradient that attracts water molecules
- A higher concentration = a stronger pulling force for water


Water uptake possible, but salt toxicity now

What exactly is salt tolerance?

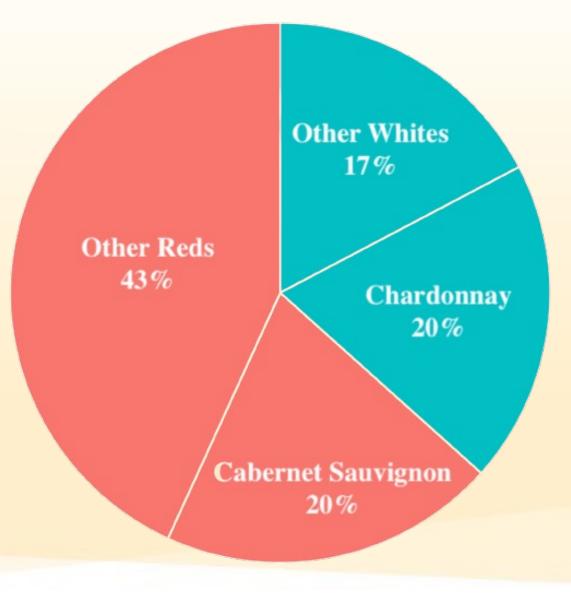
Answer: A complex trait, composed of exclusion, recapture, excretion, and avoidance



UC CE

Trait sourcing

Wild vines

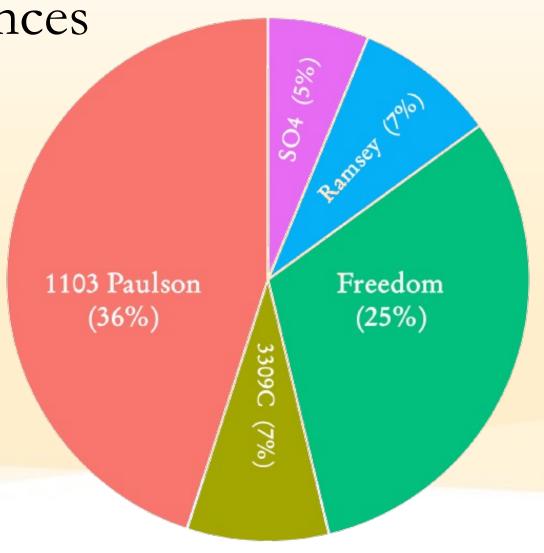


Scion Variety Bottleneck

- Market limitations on profitable cultivars •
- Bottleneck down to two scions ullet
- Wide range of climate adaptation in scions •

Examples of desirable characteristics:

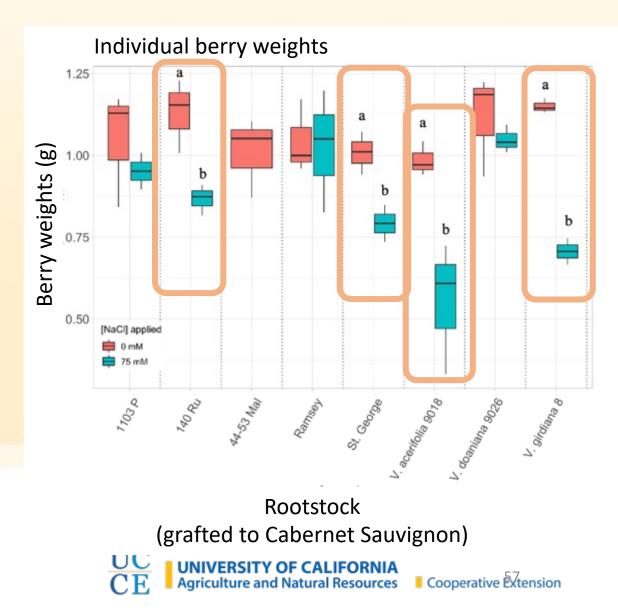
- Late budbreak (avoid frost) . 1.
- Moderate vigor (less water demand) ... 11.
- Early fruit maturity (maybe) ... 111. e.g., Sémillon; Tempranillo

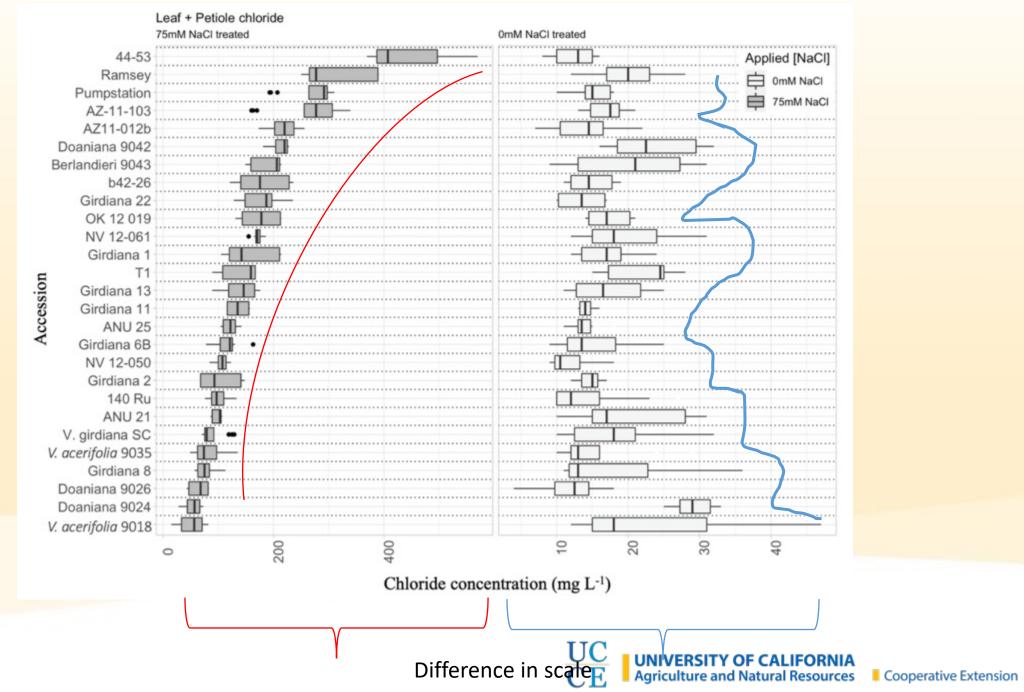

CA Grape Acreage Report (2020)

Agriculture and Natural Resources Cooperative Extension

Limited Rootstock Preferences

- The trend observed in scions appears to hold true for rootstock varieties as well
- Data is more sparce for rootstocks
- In 2022, we identified the most planted rootstocks across California

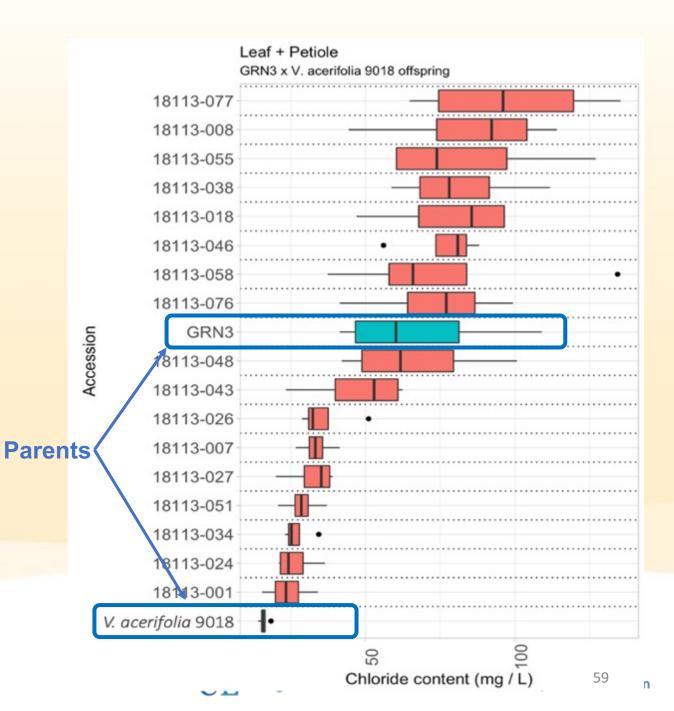




New Agronomic Traits

In some of the promising candidates we found that some agronomic traits were missing

- Up to 40% Smaller berries
- Poor vigor
- Low graft success rates



Salinity

Breeding new cultivars

- Long term solution
 - Can take decades
- Utilize wild grapevines
 - Huge gene pool
 - Potential for high salinity tolerance
 - Largely unexplored
- "Breed in" existing traits
 - Preserve other traits of existing rootstocks
 - Rootability, drought tolerance, vigor

Summary

- Water use efficiency in vineyards can be increased with **proper cultural management strategies** and **cultivar selection**
- Good irrigation starts with good system design
- Understand your **irrigation regime** and **site conditions** when designing
- Irrigation design should be **flexible**, **modular**, and/or **easily reparable**
- Irrigation scheduling should be completed based on a set of consistent parameters and may be done with a spreadsheet
- Salinity in vineyards is a function of water availability, water source options, water quality, and vine tolerance to salt damage

Thank you

Contact me: codchen@ucanr.edu

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources Cooperative Extension

Sources

You can find this presentation at:

- 1. <u>https://ucanr.edu/sites/chenlab</u>
- 2. Speaker Presentations

Some original images created by OpenAI Labs Dall-E Program

