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What is life cycle 
assessment (LCA)?

What can LCA
tell us about
agricultural 
sustainability?
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• Methodological 
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impacts and 
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industrial 
production systems
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Work to date: 
Almond
Walnut
Prune
Pistachio
Peach
Citrus
Beef
Dairy
Apiculture
Mushrooms
Cell Culture Products
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Orchard 
AgroecosystemPlanting

Establishment

Maturity

ClearingConsiderations for modeling:
• Productive lifespan and yield
• Biomass accumulation 
• Soil emissions and C storage
• Management practices
• Input demand and fuel use
• Location relative to pedo-climatic zones, infrastructure

Orchard 
Life Cycle
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Off-site
• Industrial production and 

transport impacts depend 
on points of origin

On-site
• Soil, climate, infrastructure and 

management determine input 
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Input 
Quantities X Chemical 

Flows X Emission 
Factors = Impact

Footprints

LCA Modeling Basics:



Operations Table

- Input reference quantity
- UC Davis Cost Studies

- Physiological and soil data
- Category tags for 

aggregation

Annual Flow 
Modifier Table

- Proportion of reference flow 

in each orchard year, for each 
input/activity item in the 

operations table

Geospatial Tables

- Orchard block area and 
location from LandIQ 2018

- Irrigation and biomass 
energy infrastructure, 

groundwater depth, etc.

Characterization 
Factors

- TRACI 3.1
- Annual agricultural 

marginal AWARE

Reference Flows

- Input reference quantity 
multiplied by 

environmental flows from 
LCI datasets

LCI Tables

- Obtained from GaBi ts v6
- Customized using existing 

LCI datasets
- Generated using SPARCS-

LCA model (e.g. alfalfa)

Reference 
Impacts

Output
- Reference impacts 

multiplied by annual 
flow modifier values
- Aggregated by 

category

Demographic Tables

- Model physiological 
factors variable over time 

and by tree population
- Affected by inputs and 

agronomic response 
models 

Other
Datasets

and 
Sub-Models



Input 
Quantities X Chemical 

Flows X Emission 
Factors = Impact

Footprints

LCA Modeling Basics

What about environmental benefits?



Benefits of orchard 
production systems:
• High nutritional yield
• Biomass co-product – displace fossil fuel-based 

production systems (e.g., energy, livestock feed)
• Ecosystem services: biodiversity, carbon storage, 

groundwater recharge, etc. 
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GWP100 (kg CO2eq kg-1 dry fruit) 
with displacement credits

credit



Walnut LCA
Results:
Categorical 
Breakdown



Business as Usual, 1.09

Conventional Max, 3.45

Conventional Min, -0.39

Combined Min, -1.56

Combined Max, 13.06

Organic Case Study, 2.07

Conventional Practice, 
Organic Case Study 

Location, 1.26

Conventional Practice, 
Organic Case Study 

Location and Biomass 
Utilization, 0.08
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Prune LCA 

Findings:

Comparison 

with other 

agricultural 

products at 

postharvest 

gate
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Greenhouse
Gas Footprint

kg CO2eq as TAWP100
*

*Time-Adjusted Warming Potential
over a 100 year time horizon

CA Prune LCA Results (per kg yield)

0.88

-0.44

1.03
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-0.39
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CA Almond kernel (1.51)

CA Walnut in-shell (1.22)
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Major Irrigation 
Infrastructure and Tree 
Crops

• Bimodal distributions 
• North – south: Delta 

region
• East – west: California 

Aqueduct
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Surface Water 
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Surface Water 
Energy

• 6 zones for energy 
embodied in surface 
water (MJ m-3 H2O)

• Aerial imagery and 
DWR GIS database 
used to relate crops 
and infrastructure
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Wheeler Ridge
Pumping Plant
88.5 MJ ac-1

191.7 MJ ac-1

Cumulative:
291.3 MJ ac-1

Cumulative:
483 MJ ac-1



















Hydrologic Regions 
and Groundwater 
Depth

• Mean groundwater pumping 
energy requirement (MJ m-3)

Sacramento River:  0.53
San Joaquin River:  0.67
Tulare Lake: 1.14

Burt et al. 2003. 
California Agricultural 
Water Electrical Energy 
Requirements
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Hydrologic Regions 
and Groundwater 
Depth
• Test well depths used 

to calculate static head 
and energy needed for 
extraction

• Thiessen polygons for 
groundwater zones



Irrigation Energy for 
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Harvest 

Pollination 
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Land Prep

b. Energy Use 
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Nut crops

Stonefruits

Citrus

Grapes

Other

Developed
Central 
Valley

The California
Perennial
Cropping
Landscape
4.46 million 
acres

Lifespans from 
12-100 years 
with minimal 
tillage

USDA NASS 2021



0 – 0.09

tons CO2
equiv. in

crop
standing
biomass

46 - 57

The California
Perennial
Cropping
Landscape
Up to 110 million
bone dry tons

Equivalent to 205
million tons CO2 from
the atmosphere
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Walnut orchards and California 
biomass energy infrastructure

Active
Idle
Proposed
Closed

• Recent and ongoing plant closure 
and idling are changing orchard 
EOL management options

• Alternative EOL biomass options 
are needed (orchard recycling, etc)

Scaled by 
MW capacity
(1 – 47)
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Walnut orchards and California 
biomass energy infrastructure

% within 
average 
transport 
range of a 
power plant:

24



Scenario 1: currently active power plants maintained through 2050

Scenario 2: Most currently active BMPPs closed by 2020, only new 
projects/ proposals active through 2050

Scenario 3: Current plants maintained through 2050, plus currently 
idled BMPPs returned to active status starting in 2020 (2 reactivated 
every 5 years)

Estimated Almond Biomass 
to Energy (Central Valley)



Alternative to Biomass-based Energy Production:
“Orchard Recycling”

Returning biomass 
directly to orchard soil
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Alternative to Biomass-based Energy Production:
“Orchard Recycling”
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Groundwater

Wood Chips

C Residence time: 10 - 20 years
C Residence time: ?

C Residence time: long-term

Atmosphere
C Residence time: long-term

RES
PIRATIO

N

C Residence time: 5 - 10 years

CARBON FLOW

Short-Term 
Carbon Storage

Long-Term 
Carbon Storage

Soil
Soil CarbonMINERALIZATION

LEACHIN
G
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N

Standing
Biomass

C Residence time: 
15 - 30 years

Biomass C

PHOTOSYNTHESIS (CO2 à Biomass C)



GHG Impacts under Various Management Scenarios
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GHG Impacts under Various Management Scenarios



Climate Smart Practices for California Perennial Crops
Stand 

Management

Planting

Establishment

Maturity

Removal

Cover Cropping

Co-product 
Utilization

Wood Decay Mitigation

Surface Mulch Whole Orchard Recycling

Precision 
Management

Composting

Nutrient Management

Irrigation Management

Aquifer Recharge

Other Beneficial Uses

Orchard Life Cycle

Major “flagship” practices 
to promote and support, 
with subsidiary or 
synergistic “supporting” 
practices rolled into the 
larger categories. Broad 
overlap may exist between 
major focus areas.

Hedgerow Planting
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Assumptions:
- Phellinus decay in scaffolds is 

widespread if not ubiquitous

- Therefore, carbon storage reduction is 
has been ‘baked into’ prior estimates 

of prune orchard biomass 
accumulation

- Quantification of this pre-existing C 
loss allows quantification of the 

climate benefit of addressing Phellinus
in the orchard
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Ongoing work: 
Density loss and affected volume over time

Density
(g cm-3)

0.894

0.065



Ongoing work: 
Hypothetical wood decay mitigation effect on biomass
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Thank You!

Elias Marvinney, PhD.
emarvinney@ucdavis.edu


