The traditional emphasis of integrated pest management (IPM) is to use strategies, tactics, and tools that maintain pest(s) at or below levels of economic concern, while minimizing risks to people and the environment. This emphasis is compatible with the primary thrust of U.S. farm bill conservation programs, which seek to improve natural resources (including water quality and biodiversity), and ensure that the United States has a safe and healthy food system (U.S. Congress 2002). We examine opportunities, experiences, and strategies used to increase adoption of IPM with joint agricultural and environmental protection value within U.S. Department of Agriculture (USDA) conservation programs for working farmlands.

Barriers to adopting IPM are prevalent and include learning how to use new technologies and decision-making tools, as well as absorbing the transition and possibly higher costs compared with conventional methods (Bird and Brewer 2007). Educational, research, and consulting services provided by the traditional IPM community of Cooperative Extension, private sector consultants, researchers, and grower representatives help break down the adoption barriers. Such activities, however, may not provide sufficient stimuli for growers to adopt IPM with joint agricultural and environmental protection value, at least not at the levels envisioned by the USDA, U.S. Environmental Protection Agency (EPA), and many constituent groups (Council for Agricultural Science and Technology 2003, National IPM Program 2004).

During the past 15 years as stimulated by U.S. farm policy (U.S. Congress 2002), the USDA Natural Resources Conservation Service (NRCS) has worked to include IPM in various financial incentives-based conservation programs that it administers. The opportunity for conservation-linked financial incentives for growers was justified through the recognition and expectation of IPM’s environmental protection value.

A close collaboration with the IPM community seems natural. It is appealing to consider linking the strengths of NRCS (i.e., resource assessment, risk mitigation planning, and financial sponsorship of conservation practices, including IPM) with the extension, research, and consulting strengths of a traditional IPM community (i.e., recognition of the dynamic interactions of pests and crops and use of multiple tactics and decision-support systems). Our focus is to consider such collaboration (i.e., its benefits in concept and practice), present an overview of using USDA conservation programs to increase IPM adoption, and highlight several collaborative models and outcomes among NRCS and the IPM community in several states. We look at leveraging and linking institutional and agency program mechanisms to deliver services that support IPM implementation in order to meet U.S. farm policy goals of robust agricultural production and natural resource conservation.

The Potential of USDA Conservation Programs to Support Growers’ Adoption of IPM

USDA conservation programs are designed to provide services to growers on a voluntary, flexible, and confidential basis (U.S. Congress 2002). In administering the programs, NRCS provides technical (i.e., natural resource risk assessment and risk mitigation planning) and financial (i.e., incentives to use practices that mitigate natural resource concerns) assistance to encourage growers to adopt techniques that achieve their conservation and production goals (Casey et al. 1999). We describe this opportunity by reviewing the Environmental Quality Incentives Program (EQIP), which is the largest USDA conservation program for lands in agricultural production.

Before 2002, EQIP was offered in selected U.S. counties, and support for IPM was typically targeted to offset the cost of pest monitoring services (Council for Agricultural Science and Technology 2003). The 2002 Farm Bill authorized the availability of EQIP in all counties in the United States and encouraged the use of a broader array of agricultural and structural techniques, including IPM, to support soil, water, air, plant, and animal conservation (NRCS 2003, U.S. Congress 2002).
To support NRCS’s expanded charge, the EQIP budget for financial assistance to growers grew from about $1.0 billion cumulatively from 1997 to 2002, to about $1.3 billion available in 2007. The intent was to give growers more access to USDA conservation funds and improve protection of natural resources on farms. Although other USDA conservation programs exist (e.g., the Conservation Security Program), EQIP has special appeal for adopting IPM because it is the largest conservation program for lands in production; it financially supports adopting techniques that are new to growers, including IPM tactics and strategies (Casey et al. 1999).

An IPM Assessment of Using EQIP to Support IPM Adoption

From a programmatic and institutional culture viewpoint, challenges have been encountered when linking the NRCS focus on conservation with the IPM community’s focus on farm profitability while conserving and protecting environmental quality and human health. A survey at a symposium on this topic during the 2007 Annual Meeting of the Entomological Society of America indicated the need for more awareness of NRCS and EQIP and for more connectivity among NRCS and Cooperative Extension IPM personnel in encouraging IPM implementation. Thirty-five percent of the audience (n = 20) composed of private consultants, NRCS, and Cooperative Extension and research professionals did not know that growers could receive financial incentives for adopting IPM through EQIP. More than half (55%) did not know how EQIP local guidance and IPM policy is set; 40% did not know who to contact to get involved in the EQIP local guidance process. When asked to identify the perceived barriers keeping growers from participating in EQIP to implement IPM, 45% of the respondents identified lack of awareness. The second and third identified barriers (each selected by 30% of respondents) were complexity of the process and lack of IPM guidance and credibility as offered in EQIP. Finally, 45% reported that they did not know any growers who had used EQIP. Surveys of specialty crop growers showed similar lack of awareness, and historically low participation in EQIP to implement IPM (Brewer et al. 2004).

A Conservation Assessment of Using EQIP to Support IPM Adoption

IPM may not be the cure-all for all of our environmental challenges, but it has tremendous potential to alleviate chronic degradation of air and water resources that result from agricultural operations. As the largest USDA conservation program, EQIP should play an expanded role in increasing adoption of IPM with strong natural resource benefits (Hamserschlag 2007). Guidance of a few locally administered EQIP projects resulted in robust pest management assistance to growers. Zero to minimal dollars obligated to growers as pest management incentives, however, were the norm, even in many states hit hard by pesticide environmental concerns. For example, in the upper Midwest and parts of the lower Mississippi River Valley (e.g., Minnesota, Wisconsin, Illinois, Arkansas, and Alabama; where the degradation of water quality from atrazine and other pesticides is widespread (Gillom et al. 2006), NRCS commonly spent <1% of its EQIP financial assistance budget to help growers adopt IPM tactics (Fig. 1 top graph).

More broadly, only a few states offered sufficient incentives to support higher performing, conservation- and ecologically-based IPM tactics, such as pesticide alternatives like pheromone mating disruption and biological control (Hamserschlag 2007). For example, NRCS pest management incentive rates are often far below actual costs, particularly for fruit, nut, vegetable, and nursery commodities, and they do not support multitactic implementation. Grower interest also is deterred by a lack of guidance of what IPM tactics can be implemented and what documentation is required. The need for technical expertise for IPM planning and supporting documentation has been a major barrier for most state NRCS units that have shown interest in offering pest management assistance. The arguably slow gains in using EQIP to encourage grower adoption of IPM reflect scattered progress, unrealized potential, and continuing need to make this support available to growers with air and water resource concerns related to pesticide use (Hamserschlag 2007). The IPM community, however, has also been remiss in documenting the environmental benefits of various IPM strategies. NRCS could use environmental benefit information to prioritize funding for IPM in USDA conservation programs. Although still the exception, the good news as examined below is that a few states have offered more attractive EQIP guidance to growers who implement an array of IPM tactics with strong natural resource benefits.

Getting IPM Integrated into the USDA Conservation Program Process

Natural resource (risk) assessment, resource conservation (environmental risk mitigation) planning, and financial incentives to
help growers manage site-specific natural resource concerns are fundamental to the NRCS philosophy of assisting growers to protect degradable natural resources and simultaneously achieve production goals. The IPM community’s desire to use EQIP and other USDA conservation programs to help growers adopt IPM must be approached within this NRCS framework if IPM support is to become a regular feature. Resource assessment (risk to soil, water, air, plant, and animal conservation) is a strength of NRCS; IPM specialists commonly assess resources through their pesticide environmental risk screening tool, WIN-PST (NRCS 2006).

Planning resource conservation is encouraged to identify activities (called conservation practices by NRCS) that growers can adopt or modify to address identified resource concerns. A grower may develop a plan in collaboration with NRCS or other recognized planners (called a conservation plan by NRCS) as guidance to implement conservation practices, such as IPM techniques with conservation value. The plan may be implemented either with a grower’s own financial resources or partially matched with financial incentives such as those available in EQIP. In the 2002 Farm Bill, pesticide-related risks to natural resources were specifically noted as appropriate issues to address in EQIP by providing financial assistance to growers (U.S. Congress 2002).

Connections with Cooperative Extension and the broader IPM community are desirable when pest management is included in this process. Currently, some declarations in NRCS pest management guidance require USDA conservation program participants to follow all legal requirements and consider following pest management guidance from Cooperative Extension (NRCS 2007). Some EQP specific educational tools (e.g., a year-round IPM scheduler that can be incorporated into a pest management component of a conservation plan) have been partially funded by NRCS through various mechanisms such as shown in the California experience described below.

NRCS also financially supports external consultants to conduct EQP-related activities (e.g., technical service provider mechanism, NRCS 2008a). Although it is not widely used for this purpose, this provision can support pest management consultants to develop a pest management component of a conservation plan (Hamerschlag 2007). In the public sector, there are a few agreements between NRCS and other agencies including Cooperative Extension to obtain pest management expertise to assist in planning such as shown in the Pennsylvania experience below. Ideally, facilitated planning with IPM professionals is valuable to identify optimal IPM choices for a given situation and should be more broadly encouraged and supported by NRCS.

Programmatically, growers obtain financial support through EQP to help implement NRCS conservation practices, such as the pest management conservation practice and other allied practices (Hoard and Brewer 2006, NRCS 2007). The ability to implement specific IPM tactics through this mechanism may vary by how locally administrated NRCS units (i.e., either statewide or more local level) interpret national guidance, but broadly IPM tactics that have conservation value and pest management benefits can be supported through the NRCS pest management conservation practice (NRCS 2007) (Fig. 2).

Although overall investment in IPM through EQP in many states remains very low, modest gains over the past 10 years have occurred as measured by EQP financial assistance to growers to adopt IPM (Fig. 1). Program funding levels vary by state, with generally low EQP financial distributions for pest management in most states, considerably higher allocations in some states, and a modest upward trend. Other land management conservation practices may also have pest management benefits (e.g., use of cover crops, contour plantings, and enhanced field border habitat for beneficial organisms; Fig. 2C),
but these also were not funded well over the past 10 years (Hoard and Brewer 2006).

Reviews of EQIP financial distributions and program guidance presented here and elsewhere (Hoard and Brewer 2006, Hamerschlag 2007) conclude that relationships being forged in some states between NRCS and the IPM community are key to making EQIP and other USDA conservation programs attractive to growers who want to use it for IPM adoption. The financial incentive rates assigned to conservation practices and the process to align such practices with resource concern priorities are important features that affect grower interest and subsequent funding to growers to adopt IPM. Some states set one incentive rate for IPM regardless of what a grower may implement. Other states have tiered payment schedules that consider variable costs based on crop categories and IPM techniques. In the Midwest states, for example, EQIP financial incentives for pest management ranged from $2/acre (Minnesota) to $5/acre (Missouri and Ohio) for states that set one pest management incentive rate in 2007. Two other states (Michigan and Wisconsin) partitioned the pest management practice into cropping system categories and a few selected IPM tactics in recognition of the differences in input costs (Northcentral Region NRCS/IPM workgroup 2007).

An important EQIP feature that may be overlooked is the NRCS use of ranking. Conservation practices must specifically address resource concerns at the local administrative level, and any one conservation practice may address one or more conservation concerns. IPM conservation techniques can benefit air, water, soil, and animal conservation. These benefits have improved ranking of EQIP applications with an IPM component when they are recognized in the EQIP ranking process (Brewer et al. 2004, Hirsch and Miller 2008).

In addition, comprehensive applications are more competitive when there are fewer program funds available than requested, and it is desirable to include IPM as part of a comprehensive plan to address all resource conservation concerns.

Interactions among NRCS staff and the IPM community are crucial to ensure that EQIP is designed to attract growers and obtain effective program results. Building relationships between NRCS, Cooperative Extension staff, and other organizations can be stimulated by IPM training opportunities for NRCS staff and other affiliates (e.g., technical service providers). Likewise, conservation training is beneficial to familiarize Cooperative Extension staff and others with resource assessment, risk mitigation planning, and financial sponsorship of conservation practices through USDA conservation programs. In addition to training, participation in the NRCS advisory process by the IPM community (both Cooperative Extension and commodity-based IPM representation) is advised to obtain program modifications, including the recognition of appropriate IPM strategies and setting appropriate incentive rates. When working with growers to encourage their participation in EQIP, a team involving NRCS, Cooperative Extension, and grower representatives is advised, particularly when introducing the opportunity to growers who likely have limited experience with USDA programs.

Michigan Experiences in Connecting IPM to Conservation Programs

Beginning in 2002, our broad goal was to heighten grower use of EQIP as part of Michigan State University’s (MSU) and its commodity partners’ efforts to increase growers’ use of IPM. Initial efforts focused on fruit, vegetable, and nursery production systems, where growers traditionally have little experience in USDA programs and have pesticide and pest management challenges linked to natural resource concerns of the Great Lakes water system. To work toward this goal, we reviewed the local guidance of EQIP, participated in the NRCS advisory process to make EQIP recommendations, and promoted grower interest in EQIP.

Based on our analysis of EQIP as offered in Michigan, modifications to the pest management financial incentive rate and the state priority resource concerns that can be addressed with the NRCS pest management practice were recommended, approved, and applied statewide over a three-year period (Brewer et al. 2004, Hoard and Brewer 2006). Michigan’s EQIP financial incentives for adopting IPM increased at least 12-fold from 2002 to 2007, now varying from $30 to $60 per acre for specialty crops and $250 per acre for a special category of removing neglected apple orchards that harbor pests (MSU IPM Program 2003). The financial incentives can be used to offset the cost of a variety of IPM activities if they are identified in a resource conservation plan to address state priority resource concerns. In 2006, the NRCS pest management conservation practice was recognized to address four Michigan priorities (riparian corridor management systems, groundwater protection systems, air quality protection systems, and integrated conservation cropping systems); only two were recognized in 2002.

While these actions were being phased into EQIP, we designed an awareness campaign to improve the knowledge of EQIP participation procedures and benefits for growers who were interested in IPM. Several print and Web-based resources linking IPM to EQIP were developed (MSU IPM Program 2003). Our materials also included articles about growers and their IPM successes partly supported by participating in EQIP. In addition, we developed a pest management course cosponsored by the MSU IPM Program and Michigan Department of Agriculture to increase the agency staff’s understanding of IPM (about 60 NRCS staff trained in 2005 and 2006). To increase awareness of Cooperative Extension staff in EQIP and other USDA conservation programs, presentations were given at Cooperative Extension in-service training events. Local teams of Cooperative Extension and NRCS staff, pest management consultants, and commodity leaders encouraged growers to apply to EQIP. These activities were partially sponsored with grants from Michigan’s Project GREEEN, Center for Agricultural Partnerships, U.S. EPA, American Farmland Trust, and Joyce Foundation, and base support from MSU and Cooperative State Research, Education, and Extension Service (CSREES). A cooperative agreement was established between NRCS and the Michigan Department of Agriculture to support technical services associated with EQIP contract planning and adherence, but this agreement did not include Cooperative Extension.

As a result of these efforts, vegetable and fruit growers and, to a lesser extent, nursery growers have increased their participation in EQIP with a special focus on adopting IPM. Overall, there was a 15-fold increase in EQIP financial assistance obligated to IPM implementation from 2002 ($75,000) to 2007 ($1,151,000). Grower requests for IPM support represented about 15% of financial requests in EQIP contracts in western Michigan in 2005, where our activities were focused, compared with about 1% statewide in 2002. Growers adopted a variety of IPM tactics using the financial incentives, including adding electronic sensing technology and shields to sprayers, converting to flame/steamer weed control, removing wild host plants of pests, converting to pesticides with low risk potential, using disease inoculum reduction strategies, providing nesting structures for predators, implementing pesticide resistance management, using...
organic mulches to suppress weeds and reduce herbicide use, using pesticide alternatives such as mating disruption, and deploying pest monitoring and forecasting systems.

California Experiences in Connecting IPM to Conservation Programs

Since 2002, NRCS and IPM community interaction has increased, as has subsequent grower interest in EQIP at least in selected counties. In 2003, an NRCS stakeholder committee updated the NRCS pest management standard by adding specific California information. The committee had representation from NRCS, California Department of Pesticide Regulation, Natural Resources Defense Council, University of California (UC) Cooperative Extension (represented by the UCIPM Program), EPA, and commodity groups. Subsequently, a formal relationship developed between NRCS and the UC IPM Program to share technical information and develop tools to support EQIP, including pest monitoring protocols and a water quality risk assessment model based on NRCS’s WIN-PST pesticide environmental risk screening tool (NRCS 2006).

In California, EQIP is administered within the boundaries of individual counties and USDA service center areas; therefore, local NRCS offices were encouraged to develop partnerships with the local IPM community. For example, in Lake County, EQIP pest management incentives were used to help growers adopt alternatives to high-risk pesticides, such as mating disruption of codling moth in pear orchards. Pest management incentives also were used to partially support costs of sensor technology for precision pesticide applications with air blast sprayers to minimize off-site pesticide drift and reduce pesticide use. Resources of other agencies represented on the stakeholder committee were also leveraged, allowing more growers to convert to this technology. In 2007, state-level tiers of financial incentives for pest management were approved, varying from $30 per acre for use of pesticides with lower risk to degradable resources to $125 per acre for more comprehensive IPM approaches on 1,000 acres or less per farm (California NRCS 2008).

To qualify for these improved financial incentives, a farmer must follow guidelines developed by the UC IPM Program. Existing crop-specific pest management guidelines for 16 cropping systems have been modified into a year-round schedule that can be used as supporting documentation in EQIP applications (UC IPM Program 2008). This effort was supported by NRCS and included support for IPM training and technical assistance for NRCS staff. During 2006 and 2007, more than 120 staff members were trained in IPM fundamentals.

Some locally administered NRCS service centers adopted pest management as a practice to address priority resource concerns in the early 2000s and have been supporting IPM adoption. Statewide, the EQIP financial assistance for growers to adopt IPM remained low through 2006 (Fig. 1). Pest management became a practice approved statewide in 2006, due in part to the collaboration between NRCS and the UC IPM Program. As a result, EQIP funding allocations for IPM statewide have increased from about $500,000 statewide in 2006 to almost $1 million in 2008.

Pennsylvania Experiences in Connecting IPM to Conservation Programs

Funds allocated to IPM through EQIP in Pennsylvania were among the lowest of all states with an average of only 0.04% in 1997–2002 and 0.14% averaged across 2005 and 2006 (Fig. 1). In 2003, representatives of Pennsylvania fruit growers attended an NRCS State Technical Advisory Committee meeting to voice their interest in using USDA conservation programs to adopt IPM techniques. EQIP funds at that time were prioritized for other uses, but NRCS initiated a special IPM conservation effort through the Agricultural Management Assistance (AMA) Program. It was authorized by the Agricultural Risk Protection Act of 2000 until 2007 for 15 primarily eastern states that had historically low participation in the Federal Crop Insurance program. It targets many of the same resource concerns and environmental risks as EQIP, although it was somewhat more flexible in that it explicitly allowed addressing financial risks to growers, such as losses from pests (Pennsylvania NRCS 2008).

The AMA Program in Pennsylvania allowed for a broad array of IPM options, each with an incentive rate and priority ranking form, categorized by commodity (Table 1, Pennsylvania NRCS 2008). NRCS connections with Pennsylvania State University (PSU) IPM Program expertise for staff training and updating technical specifications were crucial in maintaining and delivering a detailed menu of IPM options and support for documenting the environmental benefit of IPM tactics implemented as supported by the program. For example, an investment of $30,000 by NRCS on 3,000 acres to help growers adopt biological mite control in Adams County reduced miticide use by almost 13,000 gallons of spray oil, valued at $300,000 per year (Biddinger et al. 2008). This framework was supported through a state-level NRCS Conservation Innovation grant to PSU in 2006 (NRCS 2006b) and then in 2007–2008 through a cooperative agreement to maintain a conservation program Web site (PSU IPM Program 2008).

AMA Program funding from 2004 to 2006 was about $1.8 million per year. Following these IPM-related initiatives, about 31% of the funds were allocated to support tree fruit grower adoption of conservation practices, including about 12% supporting adoption of IPM tactics (Biddinger et al. 2008). However, the process has not been without challenges. The most recent challenge has been the uncertain funding of NRCS programs; a delayed Farm Bill in 2008 caused the temporary withdrawal of funding for the cooperative agreement between NRCS and PSU IPM Program. Another challenge has been the transition to EQIP funding started in 2007, which has resulted in considerably lower allocations to growers than through AMA, partly because of the lower IPM priority under EQIP.

Table 1. Financial incentives ($ per acre) for specific IPM options have increased and become more comprehensive as a result of NRCS and PSU IPM Program interaction in the Agricultural Management Assistance Program in Pennsylvania.

<table>
<thead>
<tr>
<th>Tree Fruit IPM Practice</th>
<th>2004</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation biological control</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>IPM scouting</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>IPM advanced disease & insect monitoring</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>Reduced-risk IPM</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>Pheromone mating disruption, 1 species</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>Pheromone mating disruption, 2 species</td>
<td>—</td>
<td>76</td>
</tr>
<tr>
<td>Remote weather monitoring</td>
<td>395</td>
<td>375</td>
</tr>
<tr>
<td>& pest phenology models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision agriculture</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Christmas Trees/Grapes/Sweet Corn</td>
<td>—</td>
<td>25</td>
</tr>
<tr>
<td>IPM scouting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMS 2017-00008-06071
IPM Connections to NRCS Conservation Programs on the National Front

NRCS and IPM community interactions at the national level have focused on how IPM planning, implementation, and evaluation interests of CSREES can be linked to the conservation focus of NRCS. At the 2006 annual National IPM Committee meeting, representatives of NRCS, CSREES, EPA, and the Land Grant Universities agreed that more interaction was needed to coordinate plant protection and conservation outreach, facilitate IPM-related activities that support conservation programs, and measure IPM adoption outcomes, including estimates of environmental benefits.

Establishing a specific administrative mechanism to support these interagency activities has been challenged by the cultural differences in the agencies. Through the stakeholder input process, some CSREES national and regional competitive IPM grant programs have been modified to solicit proposals that address IPM-oriented conservation needs, encourage IPM personnel to work with NRCS professionals, and increase the adoption and implementation of IPM tactics in conservation programs. Additionally, the NRCS Conservation Innovation Grants Program now allows consideration of IPM-related proposals (NRCS 2008b). To further align CSREES and NRCS program goals in support of IPM to advance farm production and natural resource conservation, a conceptual model that includes an IPM Advisory Committee (to advise NRCS and CSREES on IPM issues) and a link with the federal IPM Coordinating Committee (to coordinate IPM evaluation and training activities) has been proposed, but it awaits approval by CSREES and NRCS.

Strategies to Move Forward

The IPM community welcomes the addition of NRCS and its conservation programs to help growers adopt IPM to optimize pest management for farm profitability, resource conservation, environmental assessment, and biodiversity restoration. After a review of EQIP guidance, past financial distributions, and existing NRCS interactions with the IPM community, we conclude that IPM adoption sponsored by USDA conservation programs, specifically EQIP, has made slow gains over the past 10 years and has unrealized potential for growth. Although still the exception, a few states, including those profiled here, have offered conservation program guidelines that are more attractive to growers who want to adopt IPM tactics, resulting from alliances with Cooperative Extension of Land Grant universities, other agencies, IPM consultants, growers, and their representatives.

It is apparent that the IPM community and NRCS have had successful collaborations in a few states, but even these collaborations have their challenges. We should learn and build from these examples to make adoption of IPM techniques with joint agricultural and environmental protection value a common part of grower participation in EQIP and other USDA conservation programs. The leadership of CSREES and NRCS needs to institutionalize this budding cooperative spirit by providing guidance to the states on the significance of IPM adoption to the goals of both agencies and methods to establish long-lived partnerships with the IPM community. Deploying IPM tactics with joint agricultural and environmental protection value is well in keeping with the CSREES goal to optimize farm profitability while conserving and protecting environmental quality and human health (National IPM Program 2004), the NRCS goal to address natural resource conservation concerns related to agricultural production (U.S. Congress 2002), and the EPA goal to reduce risks associated with pesticide use while assuring that growers have the pest control tools they need to produce an abundant and safe food supply (U.S. EPA 2008).

For those in the IPM community who are considering how to begin to establish a productive interaction with NRCS, we advocate beginning with a review of the current status of national and local guidelines as related to IPM in EQIP and other USDA conservation programs offered in your area. The next step is to participate in NRCS’s advisory process (e.g., possibly joining the NRCS State Technical Committee or local working groups depending upon the local administrative structure) and offer input about appropriate technical and financial recommendations to improve the local program’s appeal to growers. This and other forms of participation, such as IPM training, should be reinforced by building stronger links to the IPM community’s strengths in IPM education and planning with the NRCS strengths in resource assessment, risk mitigation, and financial sponsorship of conservation practices. For those currently working with NRCS, maintaining and growing a partnership through cooperative agreements is advised to further align programmatic goals.

There is broad benefit to linking the assets of NRCS with those of the traditional IPM community of Cooperative Extension, private sector consultants, researchers, and grower representatives. Indeed, it is our view that NRCS would be a valuable addition to this community. Agricultural and environmental interests will benefit greatly from these expanded linkages, leading to increased grower adoption of IPM as a joint agricultural and environmental protection tool that is consistent with contemporary IPM goals and U.S. farm policy (U.S. Congress 2002, National IPM Program 2004).

Acknowledgments

This paper was stimulated in part from a symposium presented at the 2007 Annual Meeting of the Entomological Society of America in San Diego. We thank the national NRCS EQIP office for providing data on financial incentive obligations; Patricia Cimino, EPA, for her review comments; and Lawrence Elworth, Center for Agricultural Partnerships, for participating in the symposium. We also thank the many agencies, commodity groups, and growers who have participated in the activities profiled here. Support in the form of grants, cooperative agreements, and in-kind contributions from agencies and organizations listed in this article were essential in moving this work forward.

References Cited

Northcentral Region NRCS/IPM workgroup. 2007. Grower incentives for IPM, a North Central Region work group. Michigan State University, East Lansing. <www.ipm.msu.edu/work-group/resources.htm>

Michael J. Brewer is Field Crops Entomologist at the Texas AgriLife Research and Extension Center at Corpus Christi. He focuses on research of IPM tactics in field crops, and how land- and farm-scape features affect their effective deployment. He was previously coordinator of the Michigan State University IPM Program and Extension Entomologist at the University of Wyoming. Edwin G. Rajotte is professor of entomology at Penn State University and Pennsylvania IPM Coordinator. He teaches IPM and maintains research and extension programs in the United States and abroad. Jonathan R. Kaplan is the Director of the Sustainable Agriculture Project at the Natural Resources Defense Council. He works to promote policy and market-based solutions to address environmental challenges in agriculture. Peter B. Goodell is a University of California IPM Advisor and currently Interim Director for the UC Statewide IPM Program. Goodell’s focus is on implementing IPM in field crops with an emphasis on management of insect pests at the landscape scale. David J. Biddinger is a Research Associate Professor in tree fruit entomology based at the Penn State University Tree Fruit Research & Extension Center at Biglerville. Biddinger directs a laboratory developing reduced risk insecticides and biological control alternatives. Joy N. Landis is assistant coordinator of the Michigan State University IPM Program and manager of IPM communications. Landis oversees production of IPM publications and Web sites within an ecological context. Robert M. Nowierski is the CSREES National Program Leader for Bio-Based Pest Management with the USDA Cooperative State Research, Education and Extension Service in Washington, D.C. Nowierski provides national leadership for research and extension programs concerning applied ecology, biological control, and invasive species. Benjamin F. Smallwood is the NRCS National Pest Management Specialist responsible for developing, implementing, and evaluating NRCS pest management policy and procedures. Smallwood collaborates with other federal agencies, land grant universities, and state agencies on the transfer of new pest management technologies. Mark E. Whalon is a professor in the Department of Entomology and director of the Pesticide Alternatives Laboratory at Michigan State University. A portion of his assignment is to address a range of environmental, ecological, and conservation issues where pesticides and IPM intersect.