### **Gardening in a Changing Climate**

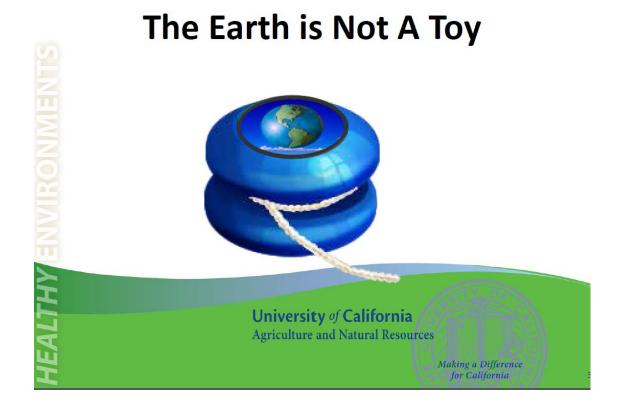
### Instructor: Steve Savage, UCCE Master Gardener of El Dorado County **Technical Support: Nancy Starr**



University of California Agriculture and Natural Resources UCCE Master Gardener Program

#### "Advice to Grow By ... Ask Us!"

Master Gardeners are trained volunteers who share knowledge and skills with the public.


Master Gardeners teach research-based information on home horticulture, pest management, and sustainable landscape practices.





University of California

Agriculture and Natural Resources 🛛 📕 UCCE Master Gardener Program





University of California

Agriculture and Natural Resources 📕 UCCE Master Gardener Program





University of California

Agriculture and Natural Resources 📕 UCCE Master Gardener Program





University of California

Agriculture and Natural Resources UCCE Master Gardener Program

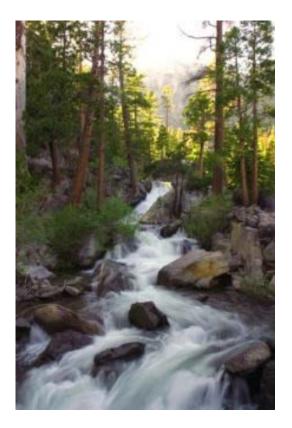
### Outline

- I. Introduction
- II. Climate Controlling Processes
- **III. Mass Extinctions**
- IV. Comparing Mass Extinctions to Today
- V. Human Influences
- VI. The Consequences of Proceeding as Usual
- VII. What Can Be Done



### I. Introduction

- Comments on where we are going
- •Life's essentials




University of California Agriculture and Natural Resources UCCE Master Gardener Program

### Introduction

Life's Essentials (1) Elements critical to life on earth

- Energy
- Water
- Certain Chemical Elements
- Critical Temperature
- Atmospheric Composition





University of California

Agriculture and Natural Resources 🔰 UCCE Master Gardener Program

# Introduction Life's Essentials

#### Energy

- Sun
- Chemical Reactions

#### Water

- Dissolves
- Transports
- Formation of Cell Walls

#### Elements

- Carbon
- Oxygen
- Hydrogen
- Phosphorous
- Sulfur



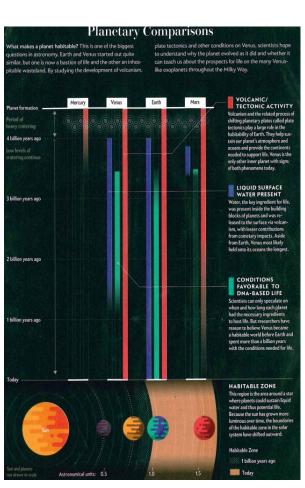


University of California

Agriculture and Natural Resources 🛛 📕 UCCE Master Gardener Program

### Introduction

### Life's Essentials


### **Critical temperature**

- Liquid water
- Habitable Zone

### Atmosphere

- Green House effect (CO<sub>2</sub>)
- Albedo

(Earth's reflectance of sunlight)



University of California

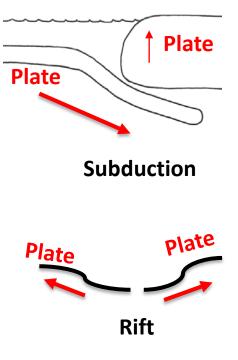
Agriculture and Natural Resources UCCE Master Gardener Program

Earths climate is primarily controlled by the amount of carbon dioxide in the atmosphere.

These natural processes control the CO<sub>2</sub> concentration.

- Plate tectonics
- Volcanism
- Rock Cycle
- Formation and break up of continents
- Photosynthesis
- Earths orbit is also a contributing factor

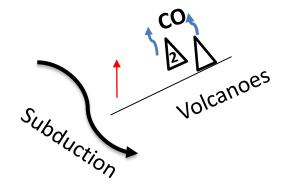


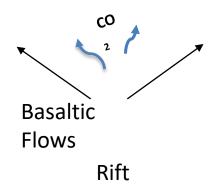

### **Plate tectonics**

- Initial molten Surface
- Cooling forms crust
- Crust cracks into large slabs as it cools
- Think sea ice

Pressure ridges = Mountain ranges

Open leads = Rift Valleys


- Molten mantel moves crustal plates around
- Subduction and rifts






#### Volcanism

- Subduction yields strato-volcanoes
- Rifts yield shield volcanoes or continental basaltic flows
- Lava released contains dissolved CO<sub>2</sub> under pressure
- Released lava reduces pressure and releases CO2 into the atmosphere
- Volcanism primary natural source of CO<sub>2</sub> in atmosphere







University of California

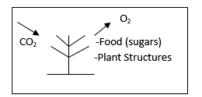
Rock Cycle: Earth's natural thermostat (weathering)

Heat in the deep earth melts the rock releasing  $CO_2$ . Sedimentary rock containing carbonate is subducted by plate tectonics. Plate Tectonics create volcanoes and hydrothermal vents.



Volcanoes and hydro-thermal vents release  $CO_2$  into the atmosphere.

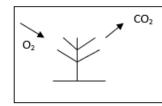
 $CO_2$  and rainwater combine to break down rock, create carbonate and store  $CO_2$  in sediment that is washed into the ocean. Called Weathering.


Weathering reaction is faster with

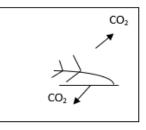
higher atmospheric temperatures and slower with colder temperatures.



#### Short Term Carbon Cycle


Photosynthesis (Day only)




Food (sugars)Releases oxygento atmosphere

Respiration

(Day & Night)



-Combine sugars and oxygen -Produce every plant material -Release CO<sub>2</sub> to atmosphere Decomposition



-Decomposition
releases CO2 to
atmosphere
-Some carbon in soil
-Some carbon
sequestered in rock,
as coal



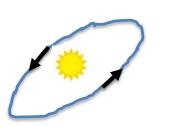
University of California

Agriculture and Natural Resources 
 UCCE Master Gardener Program

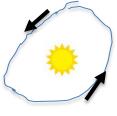
Human Interactions

What about human CO<sub>2</sub> additions to the atmosphere?

- Increasing CO<sub>2</sub> levels will/ are causing warming
- Warming will cause more rain and more weathering
- CO<sub>2</sub> levels will fall
- Temperatures will remain constant or fall
- What's the problem?
- Yes BUT not so fast...!







University of California

### Earth's Orbit

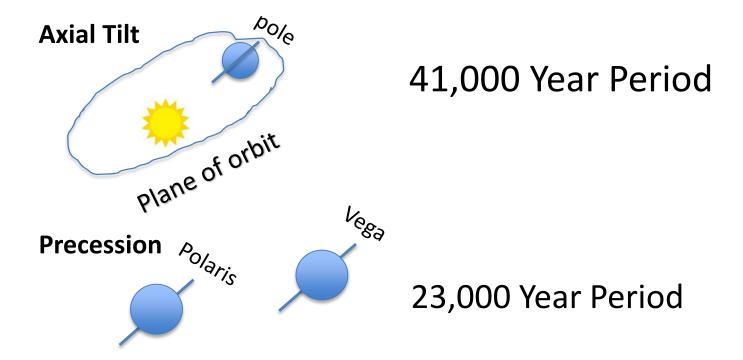
- Orbital impact on climate (Milankovitch cycles)
- Eccentricity







#### Less Elliptical


100,000 Year Period

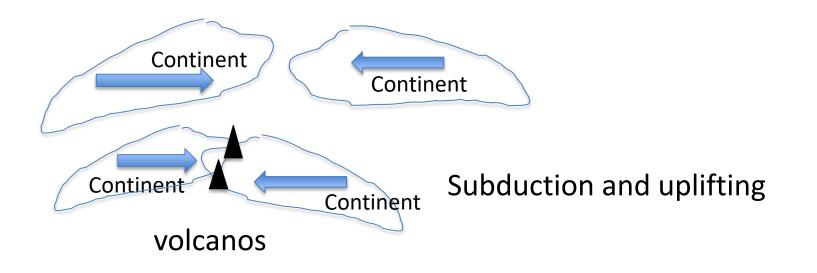


University of California

Agriculture and Natural Resources UCCE Master Gardener Program

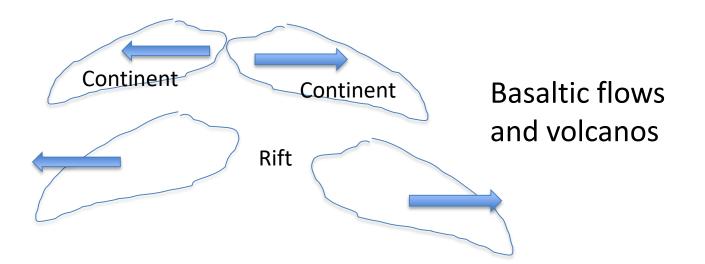
#### Earths Orbit cont.



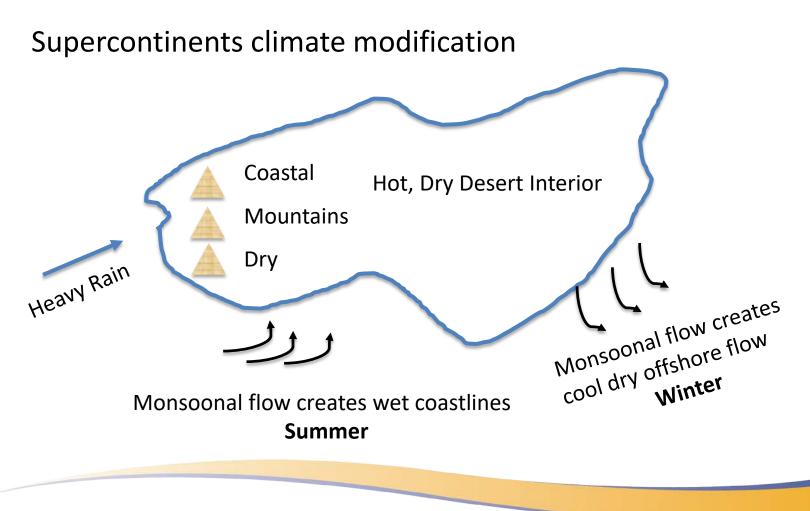



University of California

Agriculture and Natural Resources UCCE Master Gardener Program


Supercontinents

- Similar to Plate Tectonics
- Continents collide to form supercontinents

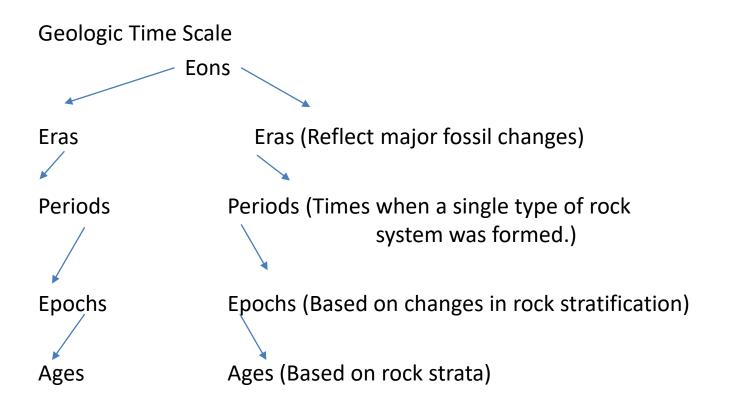





#### Supercontinents break up










University of California

Agriculture and Natural Resources UCCE Master Gardener Program

### **III. Mass Extinctions**





University of California

Agriculture and Natural Resources 📕 UCCE Master Gardener Program

## Mass Extinctions Phanerozoic Eon to Present Day

| Paleozoic Era<br>542-252 MYA                                                                                                                                                            | Mesozoic Era<br>252- 66 MYA                                                                                           | Cenazoic Era<br>66 MYA to present                                                                                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Cambrian Period<br>542-486<br>Ordovcian Period *<br>486- 443<br>Sillarian Period<br>443-419<br>Devonian Period *<br>419- 359<br>Carboniferous<br>Period<br>359- 299<br>Permian Period * | Triassic period *<br>252- 199<br>Jurassic Period<br>199- 145<br>Cretaceous Period *<br>145-66<br>*Denotes mass extinc | Paleogene Period<br>66-23<br>Neogene Period<br>23-1.8<br>Quartenary Period<br>1.8 to present day<br>Anthropocene? |  |  |  |  |
| 299- 252                                                                                                                                                                                |                                                                                                                       |                                                                                                                   |  |  |  |  |



# Mass Extinctions (7)

- Definition- When more than half of the earth's species go extinct in fewer than one million years.
- Most happen much more quickly.
- Some occur in only a few thousand years.
- Five extinctions in earth's 500-million-year history of life
  - Late Ordovcian Period 445 million years ago
  - Late Devonian Period 374 million years ago
  - End Permian Period 252 million years ago
  - End Triassic Period 201 million years ago
  - End Cretaceous Period 66 million years ago



University of California Agriculture and Natural Resources | UCCE Master Gardener Program

#### Causes

- CO<sub>2</sub> is the driver of mass extinctions
  - Large CO<sub>2</sub> fluxuations disrupt rock cycle
  - Rock cycle disruption impairs CO<sub>2</sub> balance
- Causal Factors
  - One from asteroid impact (cretaceous)
  - Remaining four from climate and ocean changes driven by geologic forces
  - Earliest two (Ordovician & Devonian) may have been due to lack of CO<sub>2</sub> locking earth in ice
  - Biggest three in last 300 million years (Permian, Triassic, Cretaceous) from high CO<sub>2</sub>

#### The earth has run the CO<sub>2</sub> experiment many times in the past. It has <u>always</u> ended badly.


Two other extinctions (7)

- 490 MYA in the Cambrian period
- 55 MYA in the Paleogene period
- The first resulted from biological processes.
- The second from warming and acid/ anoxic seas.
- Neither rose to the level of mass extinction.



Late Ordovician Extinction – 445 MYA (7)

- Period known as the "Great Ordovician Biodiversification Event"
- Period ended with almost all species wiped out (85%)
  - Second worst extinction event in last 500 MYA
  - Little life left on land or sea
- Caused by onset of an ice age
- What went wrong?
- Consequences
- Parallels for today





University of California

#### Late Devonian Extinction – 374 MYA (7)

- Period known as the age of fish
- Extinction occurred in two phases
  - Phase I 374 MYA
    - Reefs destroyed
    - Huge plankton blooms
    - Seas anoxic
    - Mass die offs
  - Phase II 359 MYA
    - Anoxic seas increase
    - Top predators killed off
- 99% of reef systems destroyed
- Worst extinction for vertebrates ever 96%
- What went wrong?
- Consequences
- Parallels for today





End of Permian Extinction – 252 MYA (7)

- Greatest mass extinction in earth's history
- 95% of marine species extinct
- 70% land species extinct
- Prior to the extinction
- Post extinction
- What Caused it
- What went wrong
- Consequences
- Parallels for today





University of California

#### Some points to ponder

"CO2 emissions appear to be the driver of extinctions throughout earth's history. CO2 driven global warming is not just being simulated in computer driven models, but it is an experiment the earth has run many times before, including the Permian Extinction. Is it happening again? Many scientists think so." Peter Ward, "Under a Green Sky"

"Basically, the entire modern global economy rests on how quickly we can get carbon out of the ground and put it in the atmosphere. That's basically the global enterprise. There are a lot of people doing it. Geologically, it's a really impressive effort." Andy Ridgewell

So were the Siberian eruptions.

No one knows where our modern actions of injecting green house gases into the atmosphere will lead, but in the end – Permian, it led straight to the cemetery. (7)



#### End of Triassic Extinction – 201 MYA

- Prior to extinction
- Crocodiles reign supreme
- Post extinction
  - 75% of all plants & animals become extinct
  - Coral reefs almost completely extinct for over 300,000 years
  - End of reign of crocodiles
  - Rise of dinosaurs
- What Caused it
- What went wrong
- Consequences
- Parallels for today



### End of Cretaceous Extinction – 66 MYA

- Prior to extinction
  - Dinosaurs ruled
- Post extinction
  - 75% of all land and sea species go extinct
  - plankton nearly vanished from fossil record
  - Mammals arise
- What caused it
- What went wrong
- Consequences
- Parallels for today



#### University of California

Oops

### IV. Comparing Mass Extinctions to Today The Deadly Chain of Events

- Rising atmosphere CO<sub>2</sub> overwhelms the rock cycle
- Atmosphere warms
- Ocean warms
- Rising ocean temperature kills some species and reduces dissolve oxygen killing more
- Ocean absorbs CO<sub>2</sub> and acidifies
- Acid rain dissolves rock washing nutrients into the ocean
- Decaying algae/ phytoplankton removes oxygen from the ocean
- Oceans become anoxic
- Melting glaciers stratify ocean worsen anoxic conditions



University of California Agriculture and Natural Resources **I** UCCE Master Gardener Program

### **Comparing Mass Extinctions to Today**

|                   | High CO2 | Low Co2 | Global Warming | lce Age | Ocean warming | Ocean<br>Acidification | Anoxic ocean | Reef die off | Ozone depletion | Loss of speciation | Nutrient flows in<br>seas | Ocean Stagnation | Destruction of<br>food chain |
|-------------------|----------|---------|----------------|---------|---------------|------------------------|--------------|--------------|-----------------|--------------------|---------------------------|------------------|------------------------------|
| End<br>Ordovician |          | Х       |                | Х       |               |                        | Х            |              |                 |                    |                           | Х                |                              |
| Late Devonian     |          | Х       |                | Х       |               |                        | Х            | Х            |                 | Х                  | Х                         |                  | Х                            |
| End Permian       | Х        |         | Х              |         | Х             | Х                      | Х            | Х            | Х               | Х                  | Х                         |                  | Х                            |
| End Triassic      | Х        |         | Х              |         | Х             | Х                      | Х            | Х            |                 | Х                  | Х                         |                  | Х                            |
| End<br>Cretaceous | Х        |         | Х              |         | Х             | Х                      |              |              |                 |                    |                           |                  | Х                            |
| Today             | Х        |         | Х              |         | Х             | Х                      | Some         | Х            | Х               | Х                  | Х                         | Some             | Some                         |

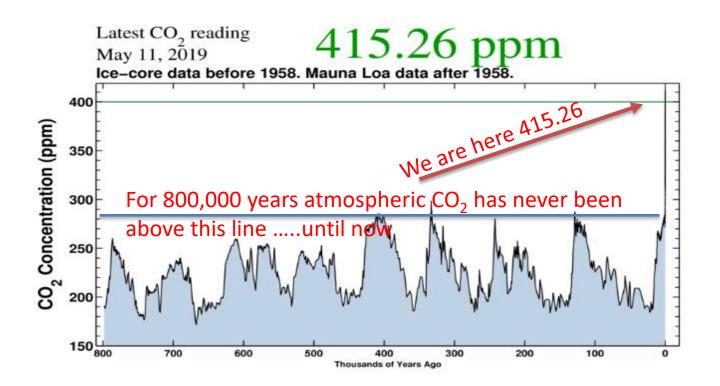


#### University of California

Agriculture and Natural Resources UCCE Master Gardener Program

# **Comparing Mass Extinctions to Today**

What about today?


- Earth undergoing massive changes
- CO<sub>2</sub> levels rising
- Atmospheric temperature rising
- Sea levels rising
- Oceanic & atmospheric circulation patterns changing
- Ocean temperatures rising
- Ocean acidifying
- Ice is melting
- Loss of species

I don't think you are going to like this pattern...



University of California

### Comparing Mass Extinctions to Today What about Today?





University of California

Agriculture and Natural Resources 🔰 UCCE Master Gardener Program

## Comparing Mass Extinctions to Today Temperature vs. CO<sub>2</sub>

Earth avg. temp in 2017 was 14.9°C and rising
Avg. temp was 13°C prior to industrial revolution
It was 27°C in Pliocene and falling, & 26°C in eocene when CO<sub>2</sub> levels were 500 & 2100 ppm respectively
May 2019 CO<sub>2</sub> concentration was 415 ppm up 3.75 ppm from May 2018
At current rate of increase, CO<sub>2</sub> will

-At current rate of increase, CO<sub>2</sub> wi double from pre-industrial revolution level to 540 ppm by 2054



# **Comparing Mass Extinctions to Today**

Relationship of Temperature, CO<sub>2</sub> & Sea level

The relative changes in global average temperature,  $CO_2$  & sea level over the past 420,000 years

www.johnenglander.net



University of California Agriculture and Natural Resources UCCE Master Gardener Program

# **Comparing Mass Extinctions to Today** What about Today

#### Ocean warming & acidification

- Ocean warming
- Much of atmospheric heat absorbed by ocean
   The 10°C conundrum
   Coral bleaching
- End of ocean absorption may be near Ocean acidification

• Consequences

- Reef decreased 30% since early 1980'sDisruption of food chain
- - Extinctions



University of California Agriculture and Natural Resources UCCE Master Gardener Program

# V. Human Influences

Mid-latitude deforestation Rain forest destruction Industrial revolution Rise in modern transportation Burning of hydrocarbons Disruption of nitrogen cycle Agricultural run off Inverting vertebrate life Loss of speciation caused by humans





## Human Influences Are we in a Mass Extinction?

- Are we in a mass extinction now?
- All is not lost
- So... What's to worry about?
- Or is it? Tipping points & such
- Everything is fine until it isn't
- We have time, but not much





University of California

Agriculture and Natural Resources UCCE Master Gardener Program

# VI. The Consequences of proceeding as Usual

- The problem (7)
- Human development & the future
- Increasing atmospheric CO2 & warming
- Ocean warming
- Ocean acidification (16)
- Destruction of reef ecosystem (17)
- Deglaciation (8, 9, 10)
- Melting permafrost
- Rivers running dry due to loss of glaciers

- Increased desertification
- Rise of sea level
- Changes in global atmospheric circulation (15)
- Changes in ocean currents (13)
- Changes in cloud distribution (12)
- Wet bulb conundrum
- Species extinction (14)
- Local consequences (11)



# The Consequences of Proceeding as Usual

2015 Paris climate accords (7) (23)

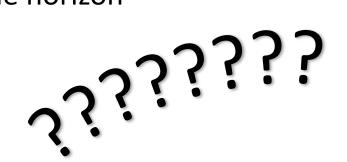
- Provisions
  - -Attempts to limit global temperature increase
  - -Non-Binding
  - -Won't prevent 2°C temperature increase
  - -Only about 5 years of CO<sub>2</sub> emissions left
  - -Doesn't stop warming post 2100
  - -Is there political will
  - -Steps needed to limit temperature increase
  - -What happens if we don't fix it



The Consequences of Proceeding as Usual

(How Climate Change can Affect Life, an Object Lesson)

The Viking settlement of Greenland


- Settlement began about 1000
- Two colonies
- Settled during Medieval warming period (950 1250AD)
- Colonies disappeared in mid-1400's
- Little Ice Age about 1250-1850
- Settlement lasted (though declining) about 200 years after start of little ice age
- Little Ice Age only one factor in collapse, others
  - --- Ivory trade collapse
  - --- Fur trade collapse
  - --- Black plaque occurred in Europe
  - --- Invasion of Native Peoples



University of California

## VII. What Can Be Done

- Governmental Actions
- Individual Actions
- Technology on the horizon





University of California

Agriculture and Natural Resources UCCE Master Gardener Program

**Governmental Actions** 

-Let nature solve the problem \* -Move from fossil fuels to renewable energy -Responsible forestry & water use practices -Preserve/create wetlands -Increase electrification of transportation -Cap & trade

\*The Nature Conservancy Magazine. Fall 2018 The Green Path to a Stable Climate.



University of California Agriculture and Natural Resources | UCCE Master Gardener Program

### **Governmental Actions**

-Cap and Trade (The California Model) \*

-What is it

--Limits overall greenhouse gas emissions

--Credits given to industry

--Credits can be sold

--Credits reduced each year

-What is its impact

--Not limited to California

- --Catalyzing Forest Conservation Programs
- --Encourages better forest management
- --Results so far

-Is There a Better Way

--The problem with Cap & Trade and Carbon Tax

\*The Nature Conservancy Magazine. Winter 2017 Brandon Borrell. The California Effect.



University of California

Agriculture and Natural Resources 🛛 📕 UCCE Master Gardener Program

Individual Actions

- Facing the coming changes
- Changes in frost free season lengths
- Dryland Farming
- Regenerative Agriculture
- Conservation Agriculture
- Tree intercropping and wind breaks
- Plant an urban forest

- Sustainable intensification
- Responsible use of fertilizer
- Rain gardening, basins, drywells
- Plant deep rooted or woody plants
- Irrigation techniques
- Composting vs. landfill



University of California

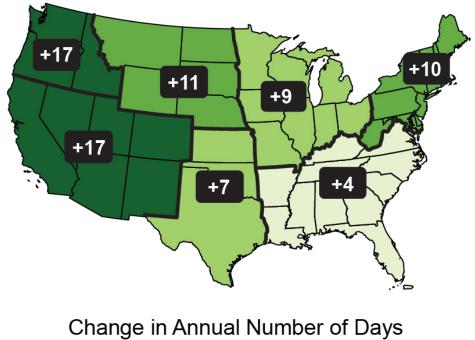
**Individual Actions** 

- Managed grazing
- Reduce food waste
- Adopt plant rich diet
- Source food locally
- Solar energy
- Electric vehicles
- Building insulation

- LED lights in household
- Solar hot water
- Smart thermostats
- Smart window glass
- Switch detergents
- Call/meet your representative
- Get involved in dialogue
- Find common ground
- Volunteer in your community

https://www.drawdown.org/solutions-summary-by-rank




**Individual Actions** 

Facing the Coming Changes

- Climate zones moving north to higher elevations
- Lengthening of growing season
- Animals moving north or higher
- Earlier migrations
- Impact in our area
  - Climate similar to Tucson or Phoenix (13)
  - Hotter and drier
  - Rainfall variable
  - Chilling Hours Changes



Observed Increase in Frost-Free Season Length



| 0–4 | 5–9 | 10–14 | 15+ |
|-----|-----|-------|-----|

Source: <u>Climate Science Special Report: Fourth National Climate Assessment,</u> <u>Volume 1</u>



## What Can Be Done Individual Actions

Dry land farming \*

- What is it
- What can I grow
- Techniques
  - Conserve and use water effectively
  - Reduce Evapotranspiration
  - Improve soils ability to hold and absorb water
  - Reduce or prevent run off
  - Maximize rainfall storage
  - Plant quick maturing trees (or dwarf varieties)
  - Control wind and heat
  - Reduce weeds
  - Select dry land crops
  - Plant fewer plants farther apart
  - Alternate fallow beds

 Dryland farming: crops & techniques for arid regions.
 Randy Creswell & Dr. Franklin
 W. Martin. 1993 Wikipedia.
 Calif. Ag Water Stewardship Initiative.



#### University of California

#### **Individual Actions**

**Regenerative Agriculture** 

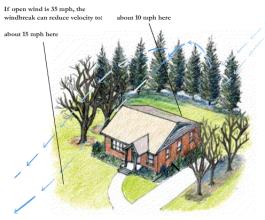
- What are healthy soils?
- What do they do?
- What practices create healthy soil?
- What can you do?
- What is the Climate effect?

**Conservation Agriculture** 

- Basically it's no-till agriculture
- Three principals
- Climate effect
  - If used- it could sequester ½ ton carbon per acre per year.

Nature conservancy magazine. Spring 2018. Amy Crawford and Larry Clemens. Seeds of Change.




University of California



#### **Individual Actions**

Tree intercropping and wind breaks \*

- What is it?
- Benefits of intercropping
- Benefits of homestead windbreak
- Climate effect
   Plant an urban forest
   Sustainable Intensification \*\*
- What is it?
- What does it do?
- What are the requirements?
- Climate connection?



\* Drawdown.org

\*\* Nature conservancy Magazine. Spring 2018. Matt Jenkins. Smart Growth.



#### University of California

Agriculture and Natural Resources 🛛 📕 UCCE Master Gardener Program

#### **Individual Actions**

#### Responsible use of fertilizer

- Apply responsibly
- Consequences of over application

#### Rain Gardening, basins & dry wells

- Slow run off
- Increase soak in
- Recharge aquifers

#### Plant deep-rooted plants \*

- Removes more CO2 from the atmosphere
- Stores carbon deeper in soil
- \* Drawdown.org

#### Irrigation Techniques

- Drip
- Irrigation scheduling
- Deficit irrigation





University of California

Agriculture and Natural Resources UCCE Master Gardener Program

#### Individual Actions

Irrigation Techniques

Composting vs Landfill

- A rich source of soil amendments
- Reduces methane emissions

Managed grazing

- Managed grazing techniques
- Climate benefits (\*sequesters .5 3 tons carbon per acre)

#### Reduce food waste

- Magnitude of the problem
- Consequences
- Climate benefits of reducing waste (\*reducing food waste 50% by  $2050 = CO_2$  reduction of 26.2 gigatons)

\* Drawdown.org



## What Can Be Done Individual Actions

Adopt a plant rich diet

- Beef production produces a lot of greenhouse gasses
- Benefits of switching

Sourcing food locally

- Less fossil fuel used for transportation
- Plant less water intensive foods in home garden



University of CaliforniaAgriculture and Natural ResourcesUCCE Master Gardener Program

#### **Individual Actions**

Roof top solar (Photovoltaics)

- Falling prices
- Becoming competitive with conventional power
- Climate benefits

Electric vehicles

- Emission reduction
- Climate benefits

**Building insulation** 

- The problem
- Impact of improved insulation





University of California

## What Can Be Done Individual Actions

- Household LED lights
  - Energy savings of household LED's (90% less energy)
  - Emission reduction
- Solar hot water
  - Solar hot water reduces fuel consumption by 50%-70%
- Smart thermostats
- Smart window glass
- Switch detergent choice to cold water types
- Stop using one use bottles and straws



## What Can Be Done Individual Actions

- Call or meet with representatives
- Open dialogue / seek common ground
- Volunteer in your community





University of California

Agriculture and Natural Resources 📕 UCCE Master Gardener Program

## What Can Be Done Technology

- Drawing water from the air
- Fuel and fertilizer from leaves
- Sustainable communities



University of California Agriculture and Natural Resources UCCE Master Gardener Program

### Technology \*

Drawing water from the air

- Works even in low humidity
- Uses sun to operate
- Efficient

Fuel and fertilizer from leaves

- Artificial photosynthesis
- More efficient than natural leaves
- Splits water into hydrogen and oxygen

Sustainable communities

- Solar power production near area of use
- Concentrate solar panels
- Store excess power and use as needed
- Reduce CO2 emissions

\* Scientific American. Dec. 2017. Top 10 Engineering Technologies.



# **CLOSING**

- The earth has run the CO<sub>2</sub> experiment many times. It has never ended well.
- Everything is fine. Until it isn't.
- Are we there?
- Three choices
  - Suffer
  - Adapt
  - Mitigate
- OR...
- It's our choice



# CLOSING AND A LAST THOUGHT

The difference between a sustainable future & a deadly collapse is largely dependent on a population's forethought – How soon they realize they are destroying their planet, and how quickly they take action.

<u>Winners</u> - Manage to see what is going on and figure out a path through it.

<u>Losers</u> - Just can't get their act together, and their civilization falls by the wayside.

The Question is, which category do we want to be in....

Adam Frank, Professor of Physics & Astronomy, University of Rochester, New York.



# **CLOSING**

Thank you for the privilege of your time

Questions

Presentations & Text can be found at

http://mgeldorado.ucanr.edu/Public Education Classes/Handou ts - Presentations/



University of California Agriculture and Natural Resources UCCE Master Gardener Program

# References

- 1. Canfield, Donald E. 2014. Oxygen A Four Billion Year History.
- 2. Janke, Paul R. A Correlated History of Earth.
- 3. Kryzynski, William L. & Paula J. Fletcher. Geological Time.
- 4. Kastings, Jim. Habitable Zones Around Main Sequence Stars.
- 5. Kump, L.R. 2008. The Rise of Atmospheric Oxygen. (In nature pages 777-778)
- 6. Wilkins, Alastair. A History of Supercontinents on Planet Earth.
- 7. Bramnen, Peter. 2017. The Ends of the World.
- 8. Mono Lake Committee Newsletter. Summer 2018. Dr. Alex Hall. The Future of Sierra Nevada Snow.
- 9. Mono Lake Committee Newsletter. Summer 2017. Bartské Miller. Big Winter, Warming Climate.
- 10. Yosemite Conservancy. Spring/Summer 2018. Greg Stock. Q&A.
- 11. Scientific American. Jan. 2013. Michael D. Bettinger & B. Lynn Ingram. The Coming Mega Floods.
- 12. Scientific American. Dec. 2017. Kate Marvel. The Cloud Conundrum.
- 13. Sacramento Bee. Apr. 12, 2018. Chris Mooney. Studies Say Atlantic Circulation of Warm Water is Slowing.
- 14. Mono Lake Committee Newsletter. Summer 2018
- 15. Scientific American. Dec. 2012. Charles H. Greene. The Winters of Our Discontent.
- 16. Scientific American. Jun. 2017. Danielle Dixson. Lost At Sea.
- 17. Scientific American. Jun. 2018. Max Fischeiti. Killer Seas.
- 18. Nature Conservancy Magazine. Summer 2017. Lisa Bramen. Saving Great Rivers.



# References

- 19. Defenders of Wildlife. Spring 2018. Getting Squeezed.
- 20. Nbcnews.com/science. Shannon Hall. Dawn of Plate Tectonics.
- 21. Various other articles from Scientific American, Sacramento Bee, National Geographic, nbcnews.com, Nature Conservancy and Yosemite Conservancy.
- 22. Scientific American. January 2019. Richard Coniff. The Last Resort.
- 23. Robert Sanders. April 2015. Did Dinosaur Killing Asteroid Trigger Largest Lava Flow on Earth?
- 24. Scientific American. March 2019. Michael E. Mann. The Weather Amplifier
- 25. Hindu Kush Himalaya Association
- 26. Various other articles from Scientific American, Sacramento Bee, National Geographic, NBC News.com, Nature Conservancy, Yosemite Conservancy, and Smithsonian Magazine.
- 27. Also see credits at bottom of various slides for additional sources.
- 28. Opramagazine, April 2019, page 95, Katharine Hayhoe (paraphrase of quote)
- 29. Rafi Getzer in Live Science
- 30. Gardening in a Warmer World, Cornel Cooperative Extension. Mary L. Walsh, Lori J. Brewer, and Annie Christian-Reuter. Fall 2018

