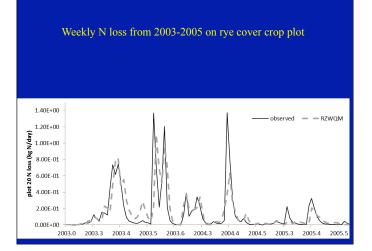
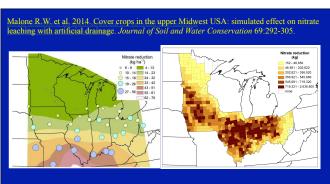

Nitrate Loss to Subsurface Drains from a Midwest Bioenergy Production System (RZWQM Simulations).

Rob Malone, Doug Karlen, Martin Shipitalo USDA-ARS, Ames, IA Liwang Ma USDA-ARS, Fort Collins, IA Gary Feyereisen USDA-ARS, St. Paul, MN





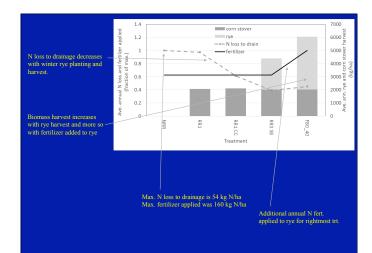
On average, RZWQM predicts that winter rye can reduce nitrate loss to tile drains more than 40% across the U.S. Midwest.

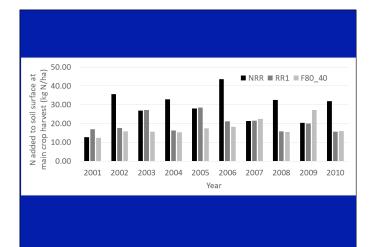
On average, RZWQM predicts that winter rye can reduce nitrate loss from Midwest tile drains to the Mississippi River by more than 150 million kg-N or about 20%.

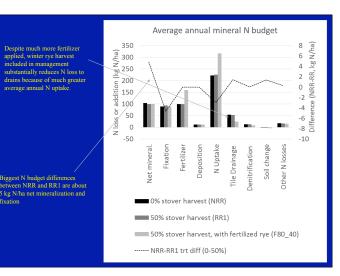
Background – Winter rye as a biofuel

(Shao et al., 2015, Biotechnology for Biofuels)

- "Planting winter rye as cover crop can add significantly to farmer's income"
- Winter rye biomass value more than \$150/Mg
- Fertilizer added to rye increases biomass
- Rye biomass delivered to the farm gate costs perhaps \$45– \$75 per Mg DM (Baker and Griffis, 2009).
- These two studies suggest planting rye as a cover crop may add to farmer's income
- Potential rye biomass harvest from U.S. corn/soybean-belt is 151 Tg (170 million U.S. tons) (Feyereisen et al., 2013)


Background – Winter rye as a biofuel


- Few studies have evaluated the effect of corn stover removal on nitrate loss to subsurface drainage (Daigh et al., 2015, JEQ)
- Evaluation of N loss in systems where winter cover crop was harvested is even more limited.
- Therefore, we used RZWQM to predict N loss to drainage in central Iowa corn/soybean rotations under


 corn stover harvest
 - winter rye cover crop harvest

Treatment	Fertilizer applied (kg N/ha)		Soybean planting date	Corn stover harvest	Rye biomass termination/harvest		
	Corn	Rye*		Amount	Amount	Prior to soybean	Prior to corn
NRR	200	0	5-May	0%	0%	n/a	n/a
RR1	200	0	5-May	50%	0%	n/a	n/a
RR1 CC	200	0	5-May	50%	0%	20-Apr	20-Apr
RR3 SB	200	0	5-Jun	50%	90%	20-May	20-Apr
F80_40	200	80/40	5-Jun	50%	90%	20-May	20-Apr

* Fertilizer applied to rye March 9 \rightarrow 80 kg N/ha prior to soybean planting and 40 prior to corn.

Summary and Conclusions

- Fertilized rye as a cover crop could provide 4.0 Mg/ha/year
- Literature suggests rye value more than \$150/Mg while cost to grow and harvest are less than \$75/Mg
- N loss to drainage in fertilized/harvested rye (F80_40) less than in conventional rye cover crop (RR1 CC).
- Rye as a bioenergy source could have economic and environmental benefits.