A Mass Balance Approach to Evaluate Salinity Sources in the Turlock Groundwater Sub-basin

Toward Sustainable Groundwater in Agriculture June 15, 2010

> Michael Steiger, P.E. Andy Safford, P.E. Ted Erler, P.E. John Montgomery-Brown, Ph.D.

> > Erler & Kalinowski, Inc.

Presentation Outline

eki

CK

- Central Valley Salinity Issues
- Turlock Groundwater Sub-basin
- Salt Balance Methodology
- Results

<u>eki</u>

· Conclusions and Policy Implications

Central Valley Salinity Issues

- Partially Closed Basin
- Salinity / Drainage Issues Not New
- Need for Drainage Recognized Since Late 1800's
- Groundwater TDS Concentration Increasing

Major Salinity Sources

- Irrigated Agriculture (Food and Fiber Crops)
- Confined Animals Feeding Operations (CAFOs) including Forage Crops, e.g., Dairies
- Municipalities & Publically Owned Treatment Works (POTWs)
- Food Processors
- Mineral Dissolution
- Others:
 - septic tanks
 - landfills
 - upwelling of deep saline groundwater

Turlock Groundwater Sub-basin

- Groundwater Subbasin of Central Valley
- 347,000 acres or 542 square miles
- Groundwater volume of 13 to 23 million AF

Salt Source Contributions

eK

Sector or Source	Surface Water (tons/yr)	Groundwater (tons/yr)
CAFOs & Forage Crops	9,000	111,000
Irrigated Agriculture	10,000	82,000
Municipalities	16,000	21,000
Food Processors	7,000	16,000
Septic Tank Systems		5,000
Water Supply Seepage (Mineral Dissolution)		23,000
Precipitation (Mineral Dissolution)	~0	6,000
Atmospheric Deposition	~0	1,000
Upwelling of Saline Groundwater		5,000
TOTALS	42,000	270,000

Salt Source Contributions

CKI

<u>eki</u>

Sector or Source	Surface Water	Groundwater
CAFOs & Forage Crops	21%	41%
Irrigated Agriculture	24%	30%
Municipalities	38%	8%
Food Processors	17%	6%
Septic Tank Systems		2%
Water Supply Seepage (Mineral Dissolution)		9%
Precipitation (Mineral Dissolution)	~0	2%
Atmospheric Deposition	~0	0.4%
Upwelling of Saline Groundwater		2%

Conclusions

- A Reasonable Salt Source Evaluation Was Achieved Using Publically-Available Data and a Salt Mass Balance Approach
- Mass Balance Approach Provides a Sensible Framework for Salt Management:
 - Cost Effective and Simple
 - Quantifies Individual Salt Inputs
 - Identifies Areas for Further Work

Areas for Further Work

eк

- Detailed Salt and Water Balances at Representative CAFOs, Food Processors, and Municipalities
- Mineral Dissolution Studies on Effects of Soil and Water Types
- Evaluation of Local Estimated Salt Contributions of Fertilizers and Soil Amendments

Potential Policy Implications

- Regional Salt Management Should Include Source Control, Focusing on "Low-Hanging Fruit", Identified Through Mass Balances and Feasibility Studies
- Facilitates Coordination Among Stakeholders for Developing Regulatory Approved Salinity Management Plans
- Promotes Regulatory Efforts Without Prolonged Additional Study or Detailed Groundwater Flow and Solute Transport Modeling