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National Water-Quality Assessment Program
-Status and trends of groundwater and surface water quality in-Status and trends of groundwater and surface water quality in 
the US.

-Cycle 1 started in 1991, Cycle 2 in 2001, Cycle 3 in 2013Cycle 1 started in 1991, Cycle 2 in 2001, Cycle 3 in 2013

Agricultural Chemical Transport (ACT) Agricultural Chemical Transport (ACT) 
study sites, irrigation, and fertilizationstudy sites, irrigation, and fertilization
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Flow system studies show common Flow system studies show common 
f t i h i t d thf t i h i t d thfeatures in chemistry versus depthfeatures in chemistry versus depth
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What controls variability of nitrate depth What controls variability of nitrate depth 
among flow systems?among flow systems?among flow systems?among flow systems?
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Sites can be divided by vertical Sites can be divided by vertical 
extent of NOextent of NOextent of NOextent of NO33

Vertical of Shallow NO3 Maximum 
NO3 extent 
(m below 
water table)

3
gradient 
(mg/L/m)

recharge 
NO3 (mg/L)

water table)
Iowa 2 4 37

Mississippi 4 4 13Mississippi 4 4 13

Nebraska 4 3 20

Minnesota 5 6 19Minnesota 5 6 19

Maryland 12 -2 18

California 28 1 31California 28 1 31

Washington 28 1 29



Scientific QuestionsScientific QuestionsScientific QuestionsScientific Questions

• What processes control the vertical extent ofWhat processes control the vertical extent of 
NO3 (and associated redox processes) below 
agricultural fields?
– Recharge (slower transport with low recharge)?
– Denitrification rates (lower NO3 with high rates)?

• How will land use changes (e.g. biofuels crops) 
affect the vertical extent of NO3?

Vertical water and chemical fluxes in Vertical water and chemical fluxes in 
groundwater at recharge areasgroundwater at recharge areasg gg g
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Denitrification produces “excess NDenitrification produces “excess N22” in ” in 
bibianaerobic zones anaerobic zones 

NO l t d N ti d t
Green et al., 2008

NO3 + electron donor → N2,D + reaction products
NO3,0 =N2,D + NO3

Chlorofluorocarbon and Sulfur Hexafluoride Chlorofluorocarbon and Sulfur Hexafluoride 
Based Age DatingBased Age DatingBased Age DatingBased Age Dating

CFC’s
SF6SF6

unsaturated
zoneo e

t=0t=0
Groundwater

Mathematical model of N fluxesMathematical model of N fluxes
BackgroundBackgroundBackgroundBackground

• Estimates vertical flux of water and solutes 
th h t t d d d tthrough unsaturated zone and groundwater

• Parameters include:
R h– Recharge rate

– Unsaturated zone transport time
Fraction N leached/applied– Fraction N leached/applied

– Fraction Cl leached/applied
– Denitrification rateDenitrification rate

• Historical inputs of N and Cl are from US Dept. 
of Ag. and US Geol. Survey county estimates & g y y
local info where available

Mathematical model of N fluxesMathematical model of N fluxes
I l t tiI l t tiImplementationImplementation

• Calibrated toCalibrated to 
– NO3, 
– NO3 in recharge, [NO3]0=[NO3]+[excess N2], 3 g [ 3]0 [ 3] [ 2]
– Cl, 
– atmospheric age-tracers (CFC’s, SF6, tritium)

• Calculated in spreadsheet
• Quick to implement and calibrate for multiple 

sites for comparisons and forecasts



Example ResultsExample Results -- MississippiMississippi
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Denitrification rates are relatively Denitrification rates are relatively 
if th itif th ituniform among these sitesuniform among these sites

(rates are 0.3 to 1.8 mg/L/yr)

Rates show weak or no correlation Rates show weak or no correlation 
ith d th f NOith d th f NOwith depth of NOwith depth of NO33
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Groundwater modifications affect Groundwater modifications affect 
di t ib ti f NOdi t ib ti f NO d h i td h i tdistribution of NOdistribution of NO33 and chemistryand chemistry

Future Work Future Work –– land use changes land use changes 
d bi f l d tid bi f l d tiand biofuel productionand biofuel production

E l h th ti l iExample – hypothetical scenarios 
increasing corn production at Mississippi

sc. 2



Key scientific findingsKey scientific findingsKey scientific findingsKey scientific findings
• Denitrification rates affect vertical extent of NO3

at a minority sites (IA WA)at a minority sites (IA, WA)
• Recharge rates are more strongly correlated 

with vertical extent of NO Hydrology maywith vertical extent of NO3. Hydrology may 
dominate  NO3 distributions at many agricultural 
sites.

Consequences for policyConsequences for policyConsequences for policyConsequences for policy

• At agricultural sites, fluxes of N are high and rates 
of natural attenuation are generally low.

• Monitoring the concentration at one depth does 
not reveal the extent of contamination nor give a 
sense of the fluxes of NO3.
W t lit d tit i bl• Water quality and quantity are inseparable. 
Drainage, pumping and irrigation will all affect the 
extent of NO contaminationextent of NO3 contamination.

Methods for estimating inMethods for estimating in--situ situ 
denitrificationdenitrification rate r in ground waterrate r in ground water

NO3 Gradient Excess N2 Gradient Injection tests

NO3 + electron donor -> N2 + reaction products

denitrificationdenitrification rate, r, in ground waterrate, r, in ground water

NO3 Gradient Excess N2 Gradient Injection tests
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Aerobic groundwater in USA aquifers Aerobic groundwater in USA aquifers 
indicates limited eindicates limited e-- donor reactivitydonor reactivityindicates limited eindicates limited e donor reactivitydonor reactivity

From McMahon and Chapelle, Ground Water

Example resultsExample results -- CaliforniaCaliforniaExample results Example results CaliforniaCalifornia
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Example resultsExample results -- MinnesotaMinnesotaExample results Example results MinnesotaMinnesota
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Unsat zone profiles indicate minimal NOUnsat zone profiles indicate minimal NO33
attenuationattenuationattenuationattenuation

Nebraska gas Nebraska gas 
and stable and stable 

isotope profiles isotope profiles 
indicate minimal indicate minimal 

denitrificationdenitrification

N leaching is higher in sandy N leaching is higher in sandy 
t t d (CA d MD)t t d (CA d MD)unsaturated zones (CA and MD)unsaturated zones (CA and MD)

(Capp, H2Oin)

(Cobs, Recharge)


