Irrigation, Salinity and Fertility Management in Substrate production of Berries

Francisco Flores Segura

Driscolls Oxnard Test plot Manager

Outline

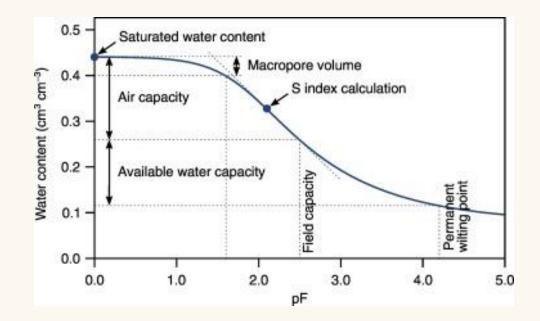
- Introduction to substrate
- Characteristic of a substrate
- Advantages and disadvantages of growing in substrates
- Irrigation management
- Fertility management
- Salinity management
- Soil borne diseases in substrates

Introduction

- What is a substrate?
 - Material alternative to soil where the roots grow.
 - Anchor the plant
 - Holds water.
 - Hold nutrient, does not supply nutrient itself.

• Types:

- Coir
- Peatmoss
- Sand
- Perlite
- Rockwool
- Vermiculate



Characteristic of a substrate:

- Easily available water
- High aeration capacity
- Degradation resistance
- Light weight
- Compressible
- Low salinity
- Recyclable
- Cost effective

Water Retention Curve

Advantages of substrate growing

- Low water tension with high oxygenation capacity
- Easier control of EC and pH
- Soil quality independent:
 - Chemically. Salinity.
 - Physically. Rocky soil or even lack of soil.
 - Biologically. Diseases
- Higher production potencial
- Better fruit quality

Disadvantages of substrate growing

- High setup cost
- Higher fertilizer cost
- Precise management
- Later production in winter

Why growing berries in substrate?

- Raspberries and Blackberries: Can grow long canes (Manipulate Chilling hours and production window)
- Strawberries
 - Attract labor
 - Soil diseases
 - Marketing
- Blueberries
 - Early production
 - Higher yield

Irrigation Management

5 Important Questions:

- How much?(Quantity per irrigation)
- How often? (Frequency)
- When to start in the morning?
- When to finish in the evening?
- How much to drain?

How much? (Quantity per irrigation)

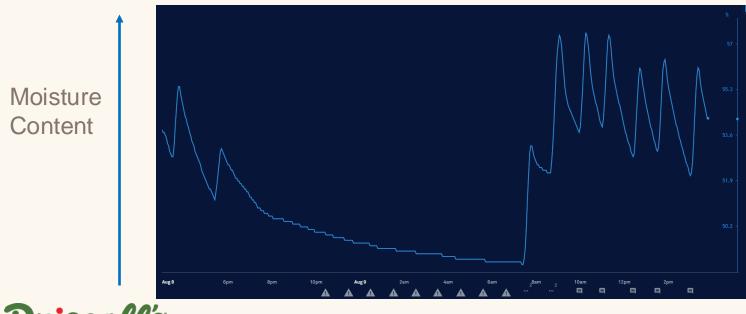
5% of the available water plus the drain percentage

- Example: 7 liters pot, 3.5L water holding capacity, 35% drain and 4L/h drippers
 - Water consumed by the plant: 5% of 3.5L = 0.175L = 175ml
 - Water applied: 175ml x1.35 = 236ml
 - Run time: 236ml/4,000ml/60min =3.5 minutes

How often?

• Objective:

- To keep up with transpiration at higher precision
- Get the targeted drain volume for every irrigation
- Method of programing:
 - Substrate moisture sensors: VWC, microtensiometer or scales.
 - Based on radiation (Jules/cm²)
 - Drain %.



When to start?

- Start with transpiration: sensors or experience
- Rule of thumbs: 2 hours after sunrise
- Sooner in summer
- Later in the winter

Time

When to finish?

- Dry down: reducing the water content at night for optimal oxygenation.
 - Below daytime ideal moisture content.
 - Reduce the likelihood of phytophthora.
 - Last irrigation must be done before the sunset
 - How early?:
 - Next day drain must be in the second or third irrigation.
 - It is a science and an art.
 - Heavily dependent on evening and night weather.

Time

How much to drain?

- The purpose of draining in avoiding salt accumulation
- Depends on:
 - Crop tolerance to salinity
 - Salinity of water source
 - Fertilization program
- Rule of thumb: EC (drain) < 3.0 dS.m⁻¹

Special case: Santa Anas

Forget everything I said: Water day and night!

- High temperature
- Low humidity
- High wind speed

Fertility Management

- Substrates have lower buffer capacity.
- Constant feed is required, every nutrient needs to be applied.
- Source water typically supply some nutrients which need to be considered.
- EC (Drip) = EC (source) + \triangle EC
- \triangle EC expresses the amount of fertilizer added.
- Nutrients need to be balanced to avoid deficiencies and toxicities.

Example of a raspberry formula

Drip water analysis

mmol.l-1								ppm							
HCO3	NO3	H2PO4	NH4	K	Ca	Mg	SO4	Na	CI	Fe	Mn	Zn	Мо	Cu	EC
0.5	5.5	0.25	0.2	1.5	3.5	1.7	4	3.9	3.6	1	0.5	0.25	0.04	0.04	1.5

Recipe

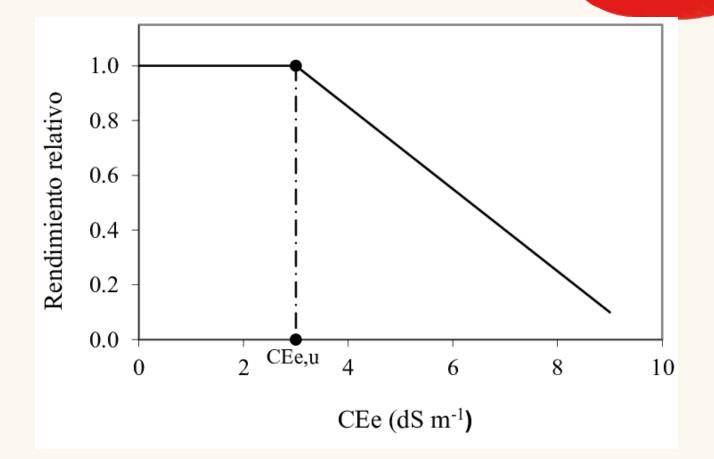
Tank A		Tank B						
CN-9	0.0	Ga	Phosphoric acid	7.8	Ga			
Pottasium Nitrate 13-0-46	296.0	lbs	Pottasium Nitrate 13-0-46	207.0	lbs			
Brandt Sequestar 14% Cu	400.0	gr	AN-20	8.8	Ga			
Brandt Sodium Molybdate- Powder	145.0	gr	Magnesium Nitrate	0.0	lbs			
Brandt Sequestar 13% Mn	12.0	lbs	Pottasium Sulfate	0.0	lbs			
Brandt Sequestar 14% Zn	5.6	lbs	Magnesium Sulfate	0.0	lbs			
Brandt Sequestar 13% Fe EDTA	21.1	lbs	Potassium Phosphate	0.0	lbs			

pH control

- Essential in substrate
- Berries are susceptible to both high and low pH
- Ideal pH 5.5-6.5 in drip and drain
- If pH in the drain is over 7.5 high risk of ferrous chlorosis

Ways to control pH

- Water acidification:
 - Sulfuric acid
 - Nitric acid
 - Phosphoric acid
- Ratio NO3/NH4 in drip
 - 75% NO3/ 25% NH4 helps maintain pH slightly acidic


Salinity

- It can be problematic in the Oxnard plain
- Salinity affects the plant negatively in two different way:
 - High osmotic pressure
 - Specific ion toxicity: Na, Cl, B
- Source of increased salinity in the substrate
 - Insufficient drainage
 - Excess application of fertilizer
 - Using fertilizers with undesirable salts
 - Salts in the source water

Salinity effect on production

Rule of thumb in berries: EC (drain) <3.0Ds.m-1

How to minimize salinity damage?

Drain.

- Avoid over application of fertilizer.
- Choose fertilizer with low undesirable salt content.
- Choose an alternative source of water
- RO water
 - High cost
 - Brine management

Soil borne diseases in substrate

- Almost nonexistence in substrate:
 - Fusarium oxysporium.
 - Macrophomina.
 - Verticilium dahliae
- Most problematic disease is Phytophthora:
 - Good dry down at night.
 - Avoid overwatering.
 - Choose substrate with good aeration capacity.
 - Biological and chemical pesticides.

Questions?

Francisco Flores Segura Francisco.flores@driscolls.com

8052282638

