To: Chip Sundstrom and the CTC
From: Steve Temple, UC Davis

Re: Request to release Line 9623

April 29, 1999

I am providing the following as supporting evidence for my request to release line 9623 as a Flor de Mayo drybean variety for the State of California. The Flor de Mayo is an interesting and very tasty bean class that is widely grown and consumed in areas of Northwest and Westcentral Mexico. There are quite a number of Flor de Mayo grain types, plant types, maturities, and adaptive ranges represented within the drybean germplasm, but the class is most typically known for an off-white or cream "ground" color, upon which is superimposed an irregular splattering of red, pink, or purple flecks and dots in a non-uniform ("Easter egg") manner. Some colleagues who have studied bean marketing report that the popularity of classes like the Flor de Mayo is due in part to the "after-darkening" gene that makes the harvested bean, with increasing age, temperature, moisture, and sunlight, turn from a soft cream to a light brown, and then to an orange-ish or dark brown color. The overall effect is that this allows bean dealers and consumers to know something of the age and harvest/storage conditions of the beans they are purchasing.

At any rate, we are told that many of the Hispanic consumers in California that currently buy an increasing volume of drybeans (many are pinks and pintos from out of state), would prefer a Flor de Mayo to the pintos that are commonly marketed to this ethnic purchasing group. As a result, the UCD Grain Legume Breeding Program in 1989 initiated a few crosses to develop high-quality, disease-resistant Flor de Mayos for production in California. Line 9623, and several other promising lines, are the result of that effort.

Origin and Breeding History:

Line 9623 is a selection from the 1989 greenhouse cross of UCD pink variety Yolano, to an improved Flor de Mayo line from CIAT, referred to as BAT 1763. BAT 1763 (also known as CIAT 83 VEF#867), is a Flor de Mayo carrying I-gene resistance to Bean Common Mosaic Virus, and was developed in the CIAT breeding program of Steve Temple, and brought to Davis by Temple in 1988. The F2 population was planted in the 1990 UCD nursery, and mass selected for podset, grain type, and architecture (strong stems and pods/branches elevated off
the ground). Original emphasis was on improving pink types, but some Flor de Mayo grain types were also carried forward.

25 individual F3 plants were selected in 1991 for similar plant and seed characteristics, and 12 seeds per plant were greenhouse-tested by Bob Gilbertson and Pablo Guzman, inoculating with the NL 3 strain of BCMNV to test for the presence of I hypersensitive gene. A number of F4 single plant selections were made at UCD in 1992 to continue the purification. As soon as they were true-breeding for BCMNV, the F4/F5 families were evaluated in UCD in 1993 and 1994, using pedigree selection to obtain lines true-breeding for grain type, plant type, architecture, and maturity. Beginning in 1991, the precursors to 9623 were selected in alternating seasons at Chico and UCD. Line 9623 emerged from the 1994 harvest at UCD, the mass selection of 10 plants from the F6 family, and was entered into yield testing in 1995 (see below).

The 1995 testing included evaluations for Lygus and heat at Kearney Ag Center and the WSREC, and Preliminary Yield Trials at Stockton and UCD. In those trials it became very clear that the entire group of Flor de Mayo selections were, as a group, very superior to both the Yolano (pink) check and/or the Ruffus/UI 35 (red Mexican) checks. This has held true for the set of Flor de Mayo lines for 4 seasons, and in every location and planting date tested. A recent small red selection from the National Dry Bean Nursery, UI 239 is competitive with Flor 9623 yields. In fact, we are disappointed at not identifying pink nor red Mexican progenies with similar yield advantage from these crosses.

Description: (see also the USDA form) *Phaseolus vulgaris*

Line 9623 is an indeterminate (vine) growth type that has a very strong mainstem, and secondary branches and petioles are strongly geotropic in a way that consistently elevates filled and drying pods above the soil and results in very high seed quality, even in locations and planting dates where the vegetative "factory" is highly developed and row cover is complete early in the season. In some evaluations the plant is sufficiently erect at harvest, and the pods sufficiently elevated, that direct harvest would be possible. Under other conditions (damp soil and late-season winds) the weight of the developing pods leads to root/ stem lodging that would render consistent direct harvesting problematical. Nonetheless, the plant generally has little or no guide development, which facilitates cutting and management in the windrow. I have also observed that the root systems of the Flor de Mayo lines are much stronger and more resistant to manual pulling than are those of our Yolano check.

Maturity of 9623 varies with planting date, season, and location, but 9623 has demonstrated relatively limited phototemperature sensitivity, and proven to be
one of our very best lines under the high temperatures that devastated other lines the last two seasons. The overall maturity is Medium-late (generally 90-105 days from planting to maturity) and we intend that this line be PVP-protected to guarantee competitiveness of the California industry that supported its development (it could be easily used in other bean-growing areas, and its wide adaptation would thus be a problem for our State's bean industry). Commercial seed companies have been cooperatively testing 9623 in the Sacramento Valley and other production environments, and are eager for its commercial release.

1995 Yield Data: (cwt/acre)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Mat</th>
<th>Stockton</th>
<th>Davis</th>
<th>Chico</th>
<th>KAC</th>
<th>WSREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>9623</td>
<td>M</td>
<td>32.5</td>
<td>14.4</td>
<td>20.0</td>
<td>fair</td>
<td>good</td>
</tr>
<tr>
<td>UI 35</td>
<td>VL</td>
<td>24.9</td>
<td>No Hvt (too late)</td>
<td>12.7</td>
<td>poor</td>
<td>no hvst</td>
</tr>
<tr>
<td>cv</td>
<td></td>
<td>Nn-rpltd</td>
<td>2 reps</td>
<td>33.7(ns)</td>
<td>obsvn</td>
<td>obsvn</td>
</tr>
</tbody>
</table>

1996 Yield Data (cwt/acre):

<table>
<thead>
<tr>
<th>Variety</th>
<th>Mat</th>
<th>Chico AYT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9623</td>
<td>ME</td>
<td>28.1 a</td>
</tr>
<tr>
<td>Ruffus</td>
<td>VL</td>
<td>19.5 d</td>
</tr>
<tr>
<td>cv</td>
<td></td>
<td>10.7</td>
</tr>
</tbody>
</table>

1997 Yield Data (cwt/acre)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Chico early</th>
<th>Chico late</th>
<th>Stockton</th>
<th>UCD strip</th>
</tr>
</thead>
<tbody>
<tr>
<td>9623</td>
<td>28.2 ab</td>
<td>23.1 bc</td>
<td>29.5 a</td>
<td>25.7</td>
</tr>
<tr>
<td>UI 239</td>
<td>30.7 a</td>
<td>27.3 a</td>
<td>30.1 a</td>
<td></td>
</tr>
<tr>
<td>Yolano</td>
<td></td>
<td>23.0 ab</td>
<td>Not Pltd</td>
<td></td>
</tr>
<tr>
<td>cv</td>
<td>10.2</td>
<td>8.6</td>
<td>10.1</td>
<td></td>
</tr>
</tbody>
</table>
1998 Yield Data (cwt/acre):

<table>
<thead>
<tr>
<th>Variety</th>
<th>UCD strip</th>
<th>Chico strip</th>
<th>Chico AYT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9623</td>
<td>27.9</td>
<td>28.4</td>
<td>28.2 d</td>
</tr>
<tr>
<td>UI 239</td>
<td>14.5</td>
<td>27.4</td>
<td>32.3 abc</td>
</tr>
<tr>
<td>Yolano</td>
<td>24.4</td>
<td>22.8</td>
<td>28.0 d</td>
</tr>
<tr>
<td>cv</td>
<td>No reps</td>
<td>No reps</td>
<td>7.9</td>
</tr>
</tbody>
</table>

A limited amount of breeder seed will be maintained by the UCD Grain legume Breeding Program, and a small amount of Foundation Seed should be adequate during the early stages of testing and production in the Sacramento Valley. The recessive nature of the grain type and color pattern, plus the I gene resistance to BCMV, make 9623 very easy to maintain genetic and phytosanitary purity.

Anticipated demand/marketing: It appears that a limited demand will exist in the early stages of release and production, and most of that will be from private seed interests. Because the Flor de Mayo class will in effect be competing directly with Pintos and Pinks and Red Mexicans in the national and international bean market. If the production costs are low (continued high yields) and the quality/preference is that reported, 9623 could make a significant inroad into the canned/refried bean and ethnic product market. The beans are extremely attractive, and we anticipate that small farmers that direct market (and some of which grow organically) will be interested in this heirloom-type bean. This is important to UC, because this is a "research product" that is of direct use to small farmers, and to those attempting to grow beans with reduced chemical weed control (the seedling and vegetative development are very vigorous, and thus completely shade the row quickly and outcompete late-season and within-row weeds.)
Objective Description of Variety

OF APPLICANT(S):

Steven R. Temple

EXPERIMENTAL NAME:

UCD 9623

VARIETY NAME:

Flor 9623

ADDRESS:

Agronomy + RS, Univ. Calif., One Shields Av., Davis, CA 95616

FOR OFFICIAL USE ONLY:

PVPO No.

Provide data for all characters unless indicated as “optional.” Place numbers in the boxes for the characters or numerical values which best describe this variety. Measured data should be the mean of an appropriate number of well spaced (15-20 cm) plants. The Royal Horticultural Society or any recognized color standard may be used to determine plant color. Designate the color system used below.

Color System Used

Location of the Test(s) to Evaluate this Variety

Davis, Chico, Stockton, Fresno, Coalinga

Market Class

<table>
<thead>
<tr>
<th>CLASS</th>
<th>CHECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Navy (Pea) Seafarer</td>
</tr>
<tr>
<td>2</td>
<td>Small White Aurora</td>
</tr>
<tr>
<td>3</td>
<td>Black Midnight U-114</td>
</tr>
<tr>
<td>4</td>
<td>Pinto UI-59</td>
</tr>
<tr>
<td>5</td>
<td>Great Northern NW-59</td>
</tr>
<tr>
<td>6</td>
<td>Small Red Viva</td>
</tr>
<tr>
<td>7</td>
<td>Pink UI-50</td>
</tr>
<tr>
<td>8</td>
<td>Cranberry Montcarm</td>
</tr>
<tr>
<td>9</td>
<td>Dark Red Kidney Redklood</td>
</tr>
<tr>
<td>10</td>
<td>Light Red Kidney Steuben</td>
</tr>
<tr>
<td>11</td>
<td>Yellow Eye</td>
</tr>
<tr>
<td>12</td>
<td>Other (specify) Flor de Mayo UI 239</td>
</tr>
</tbody>
</table>

Maturity

1 Early (80-90 days); 2 = Medium (90-100 days); 3 = Late (>100 days)

Days from planting to harvest maturity

Heat units from planting to harvest maturity (optional). Specify base temperature used:

Days from planting to harvest maturity of check variety (use check appropriate to market class shown in item 1)

| UI 239 |

Plant Habit

1 = 1 a Bush-determinate, strong and erect stem and branches
2 = 1 b Bush-determinate, weak stem and branches
3 = 1 a Erect growth habit-indeterminate, guides (runners) short or not developed
4 = 1 b Erect growth habit-indeterminate, guides medium to long, with no ability to climb
5 = 1 a Vine-indeterminate, short guides with no ability to climb
6 = 1 b Vine-indeterminate, long guides with ability to climb
7 = 1 a Indeterminate climbing, pods distributed throughout the plant
8 = 1 b Indeterminate climbing, pods concentrated on the upper part of the plant

Type

Average height of mature plant, in cm.

Average height of check variety, in cm. (use same check as above)

Pod Position: 1 = Low (lower pods touching soil surface)
2 = High (lower pods not touching soil surface)
3 = Scattered (not concentrated high or low)

Adaptability to machine harvest: 1 = Adapted
2 = Not Adapted

Lodging resistance: 1 = Good
2 = Fair
3 = Poor

Leaflet Morphology (Use terminal leaflet of a fully expanded trifoliate)

1 = Smooth; 2 = Wrinkled
1 = Dull; 2 = Glossy; 3 = Semiglossy; 4 = Variable

Shape:

1 = Ovate
2 = Lanceolate
3 = Deltoid
4 = Cordate
5 = Rhomboid

** Apex of Leaflet:**

1 = Acute
2 = Acuminate
3 = Cuspidate
4 = Obtuse

** Base of Leaflet:**

1 = Obusue
2 = Oblique
3 = Cordate
4 = Cuneate
5 = Attenuate
COLOR OF STANDARD: 1 = White; 2 = Cream; 3 = Pink; 4 = Blue; 5 = Purple

COLOR OF KEEL: 1 = White; 2 = Cream; 3 = Pink; 4 = Blue; 5 = Purple

COLOR OF WINGS: 1 = White; 2 = Cream; 3 = Pink; 4 = Blue; 5 = Purple

Days to 50% bloom

POD MORPHOLOGY (Green pod morphology optional)

Green Mature

COLOR PATTERN: 1 = Solid; 2 = Striped; 3 = Blotched; 4 = Mottled; 5 = Other

PRIMARY COLOR: 1 = Purple; 2 = Red; 3 = Green; 4 = Yellow; 5 = Tan; 6 = Brown; 7 = Other

COLOR MODIFIER: 1 = Light; 2 = Light Medium; 3 = Medium; 4 = Medium Dark; 5 = Dark

SECONDARY COLOR: 1 = Purple; 2 = Red; 3 = Green; 4 = Yellow; 5 = Tan; 6 = Brown; 7 = Other

CROSS SECTION SHAPE:
1 = Flat 2 = Pear 3 = Round 4 = Figure Eight

POD CURVATURE:
1 = Straight 2 = Slightly Curved 3 = Curved 4 = Recurved

POD BEAK ORIENTATION:
1 = Straight 2 = Curved Upward 3 = Curved Downward 4 = Variable

Average beak length, in cm.

CONSTRUCTIONS: 1 = None; 2 = Slight; 3 = Deep

Average number of seeds per pod

7. SEED COLOR

1 = Shiny; 2 = Dull; 3 = Semishiny; 4 = Variable

PRIMARY COLOR: 1 = White; 2 = Yellow; 3 = Buff; 4 = Tan; 5 = Brown; 6 = Pink; 7 = Red; 8 = Purple; 9 = Blue; 10 = Black; 11 = Other

SECONDARY COLOR: 1 = White; 2 = Yellow; 3 = Buff; 4 = Tan; 5 = Brown; 6 = Pink; 7 = Red; 8 = Purple; 9 = Blue; 10 = Black; 11 = Other

COLOR PATTERN: 1 = Solid; 2 = Splashed; 3 = Mottled; 4 = Striped; 5 = Flecked; 6 = Dotted

HILAR RING: 1 = Absent; 2 = Present

HILAR RING COLOR: 1 = White; 2 = Yellow; 3 = Buff; 4 = Tan; 5 = Brown; 6 = Pink; 7 = Red; 8 = Purple; 9 = Blue; 10 = Black; 11 = Other

8. SEED SHAPE AND WEIGHT

SHAPE OF SEED TAKEN FROM MIDDLE OF POD:
1 = Round 2 = Oval 3 = Cuboid 4 = Kidney 5 = Truncate Fastigate

Dry seed weight in g/100g seeds (adjusted to 12% moisture)
1. KNOWN DISEASE REACTION

DISEASES - **COMMON NAME:** Anthracnose, Rust, Powdery mildew, Fusarium root rot, Pythium root rot, Rhizoctonia root rot, Pythium wilt, Sclerotinia white mold, Angular leaf spot, Bacterial wilt, Halo blight, Fuscosus blight, Common bacterial blight, Red node virus, Pod mottle virus, Bean common mosaic virus, Bean yellow mosaic virus, Curly top virus, Bacterial brown spot, Bean southern mosaic virus, Other (specify)

<table>
<thead>
<tr>
<th>REACTION:</th>
<th>1 = Susceptible; 2 = Resistant; 3 = Tolerant; 4 = Avoidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DISEASE: CN Bean Common Mosaic Virus</td>
<td>SN</td>
</tr>
<tr>
<td>2. DISEASE: CN Bean Common Mosaic Virus</td>
<td>SN</td>
</tr>
</tbody>
</table>

11. KNOWN INSECT/Nematode Resistance

PESTS - **COMMON NAME:** Aphids, Bean pod weevil, Bruchid beetle, Corn earworm, Flea beetle, Leaf hopper, Lesion nematode, Lygus, Mexican bean beetle, Root knot nematode, Corn seed maggot, Spider mites, Thrips, Weevils, Western bean cutworm, Other (specify)

<table>
<thead>
<tr>
<th>REACTION:</th>
<th>1 = Susceptible; 2 = Resistant; 3 = Tolerant; 4 = Avoidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PEST: CN Lygus</td>
<td>SN Lygus hesperus</td>
</tr>
<tr>
<td>2. PEST: CN</td>
<td>SN</td>
</tr>
</tbody>
</table>

KNOWN PHYSIOLOGICAL STRESS REACTION

1 = Susceptible; 2 = Resistant; 3 = Tolerant; 4 = Avoidance

- Heat
- Cold
- Drought
- Air Pollution

Nutrient toxicity or deficiency (specify nutrient)

Other

COMMENTS